
Linux on Z and LinuxONE

Secure Key Solution with the Common
Cryptographic Architecture Application
Programmer's Guide
Version 6.0

SC33-8294-08

IBM

Linux on Z and LinuxONE

Secure Key Solution with the Common
Cryptographic Architecture Application
Programmer's Guide
Version 6.0

SC33-8294-08

IBM

Note
Before using this document, be sure to read the information in “Notices” on page 1161.

This edition applies to the Common Cryptographic Architecture (CCA) API, Release 6.0 for Linux on IBM Z, and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2007, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|

Contents

Figures ix

Tables xi

About this document xvii
Revision history xvii

Edition April 2018, CCA Support Program
Releases 6.0 and 5.3 xvii
Edition March 2017, CCA Support Program
Releases 4.4 and 5.2 xix
Edition July 2016, CCA Support Program
Releases 4.4 and 5.2 xix

Who should use this document. xx
Distribution-specific information xx
Terminology xxi
Hardware requirements xxi
How to use this document xxiii
Where to find more information xxv

Cryptography publications xxvi
Do you have problems, comments, or
suggestions? xxviii

Part 1. IBM CCA programming 1

Chapter 1. Introduction to programming
for the IBM Common Cryptographic
Architecture 3
Available Common Cryptographic Architecture
(CCA) verbs 3
Common Cryptographic Architecture functional
overview 4

How application programs obtain service. . . . 8
Overlapped processing and load balancing . . . 9
Domain selection capabilities 10
Multi-coprocessor selection capabilities 11

CPACF support 14
Environment variables that affect CPACF usage 14

CSU_HCPUACLR 15
CSU_HCPUAPRT 15

Access control points that affect CPACF protected
key operations 16
CPACF operation (protected key) 16

Using keys with CPACF, protected key . . . 18
Using keys with CPACF, clear key or no key 18

CCA library CPACF preparation at startup . . . 18
Interaction between the default card and use of
protected key CPACF 19
Using the AUTOSELECT option and the use of
protected key CPACF 19

Security API programming fundamentals 19
Verbs, variables, and parameters 19
Commonly encountered parameters 22

Parameters common to all verbs 22

The rule_array and other keyword
parameters 22
Key tokens, key labels, and key identifiers . . 23

How to compile and link CCA application programs 24
Using the Master Key Process (CSNBMKP) verb 25
Building C applications using the CCA libraries 25
Using the CCA JNI 25

Calling the CCA JNI using the Java package
infrastructure 26
Entry points and data types used in the JNI 26
JNI sample modules and sample code . . . 26
Preparing your Java environment 27
Building Java applications using the CCA JNI 28

Building the Java byte code 28
Running the Java byte code 28

Chapter 2. Running CCA verbs in
PCI-HSM 2016 compliance mode . . . 31
Compliance warning events 32

Chapter 3. Using AES, DES, and HMAC
cryptography and verbs 33
Functions of the AES, DES, and HMAC
cryptographic keys 33

Key separation 33
Master key variant for fixed-length tokens . . . 34
Transport key variant for fixed-length tokens . . 34
Key forms 34
Key token 35
Key wrapping 37

AES key wrapping 37
DES key wrapping 37
Variable length token (AESKW method) . . . 40

Control vector 40
Types of keys 41

Verbs for managing AES and DES key storage files 51
Verbs for managing the PKA key storage file and
PKA keys in the cryptographic engine 51
EC Diffie-Hellman key agreement models 52
Improved remote key distribution 53

Remote key loading 53
Verbs supporting Secure Sockets Layer (SSL) . . . 55
Managing data integrity and message authentication 55

Processing message authentication code 55
Hashing functions 56

Processing personal identification numbers 56
Secure messaging 57
Trusted Key Entry support 57
Typical sequences of CCA verbs 57
Using the CCA node and master key management
verbs 58
Summary of the CCA nodes and resource control
verbs 59
Summary of the AES, DES, and HMAC verbs . . . 61

© Copyright IBM Corp. 2007, 2018 iii

|
||

||

|
||
||

Chapter 4. Introducing PKA
cryptography and using PKA verbs . . 71
PKA key algorithms 71
PKA master keys 71
PKA verbs 72
Verbs supporting digital signatures 72
PKA key management 73
Key identifier for PKA key token 74

Key label 74
Key token 75

Summary of the PKA verbs 76

Chapter 5. TR-31 symmetric key
management 79

Chapter 6. Understanding and
managing master keys 83
Symmetric and asymmetric master keys 83
Establishing master keys 84

Part 2. CCA verbs 87

Chapter 7. Using the CCA nodes and
resource control verbs 89
Access Control Maintenance (CSUAACM) 89
Access Control Tracking (CSUAACT) 93
Cryptographic Facility Query (CSUACFQ). . . . 100
Cryptographic Facility Version (CSUACFV) . . . 143
Cryptographic Resource Allocate (CSUACRA) . . 144
Cryptographic Resource Deallocate (CSUACRD) 147
Key Storage Initialization (CSNBKSI) 149
Log Query (CSUALGQ) 152
Master Key Process (CSNBMKP) 157
Random Number Tests (CSUARNT) 161

Chapter 8. Managing AES, DES, and
HMAC cryptographic keys 165
Clear Key Import (CSNBCKI) 166
Multiple Clear Key Import (CSNBCKM) 167
Control Vector Generate (CSNBCVG) 170
Control Vector Translate (CSNBCVT) 174
Cryptographic Variable Encipher (CSNBCVE) . . 178
Data Key Export (CSNBDKX) 180
Data Key Import (CSNBDKM). 181
Diversified Key Generate (CSNBDKG) 183
Diversified Key Generate2 (CSNBDKG2) 189
EC Diffie-Hellman (CSNDEDH) 195
Key Export (CSNBKEX) 209
Key Generate (CSNBKGN) 211
Key Generate2 (CSNBKGN2) 221
Key Import (CSNBKIM) 234
Key Part Import (CSNBKPI) 237
Key Part Import2 (CSNBKPI2). 241
Key Test (CSNBKYT) 245
Key Test2 (CSNBKYT2) 249
Key Test Extended (CSNBKYTX) 254
Key Token Build (CSNBKTB) 259
Key Token Build2 (CSNBKTB2) 264

Key Token Change (CSNBKTC) 301
Key Token Change2 (CSNBKTC2) 304
Key Token Parse (CSNBKTP) 307
Key Token Parse2 (CSNBKTP2) 311
Key Translate (CSNBKTR) 321
Key Translate2 (CSNBKTR2) 323
PKA Decrypt (CSNDPKD) 327
PKA Encrypt (CSNDPKE) 330
Prohibit Export (CSNBPEX) 334
Prohibit Export Extended (CSNBPEXX). 335
Restrict Key Attribute (CSNBRKA) 337
Random Number Generate (CSNBRNG) 341
Random Number Generate Long (CSNBRNGL) 342
Symmetric Key Export (CSNDSYX) 344
Symmetric Key Export with Data (CSNDSXD) . . 350
Symmetric Key Generate (CSNDSYG) 353
Symmetric Key Import (CSNDSYI) 358
Symmetric Key Import2 (CSNDSYI2) 362
Unique Key Derive (CSNBUKD) 369

Chapter 9. Protecting data 379
Modes of operation 379

Cipher Block Chaining (CBC) mode 379
Electronic Code Book (ECB) mode 380
Processing rules 380
Triple DES encryption 380

Decipher (CSNBDEC) 381
Encipher (CSNBENC) 385
Symmetric Algorithm Decipher (CSNBSAD) . . . 390
Symmetric Algorithm Encipher (CSNBSAE) . . . 397
Cipher Text Translate2 (CSNBCTT2) 404

Chapter 10. Verifying data integrity
and authenticating messages 417
How MACs are used 417
How hashing functions and MDCs are used . . . 418
HMAC Generate (CSNBHMG) 419
HMAC Verify (CSNBHMV) 423
MAC Generate (CSNBMGN) 426
MAC Generate2 (CSNBMGN2) 430
MAC Verify (CSNBMVR) 433
MAC Verify2 (CSNBMVR2) 438
MDC Generate (CSNBMDG) 441
One-Way Hash (CSNBOWH) 445

Chapter 11. Key storage mechanisms 449
Key labels and key-storage management 449
Key storage with Linux on Z, in contrast to z/OS 451
AES Key Record Create (CSNBAKRC) 455
AES Key Record Delete (CSNBAKRD) 457
AES Key Record List (CSNBAKRL) 459
AES Key Record Read (CSNBAKRR) 462
AES Key Record Write (CSNBAKRW) 464
DES Key Record Create (CSNBKRC) 466
DES Key Record Delete (CSNBKRD) 467
DES Key Record List (CSNBKRL) 469
DES Key Record Read (CSNBKRR) 471
DES Key Record Write (CSNBKRW) 473
PKA Key Record Create (CSNDKRC) 474
PKA Key Record Delete (CSNDKRD) 476

iv Common Cryptographic Architecture Application Programmer's Guide

PKA Key Record List (CSNDKRL) 478
PKA Key Record Read (CSNDKRR) 480
PKA Key Record Write (CSNDKRW) 482
Retained Key Delete (CSNDRKD) 484
Retained Key List (CSNDRKL) 487

Chapter 12. Financial services 491
How personal identification numbers (PINs) are
used 491
How Visa card verification values are used . . . 492
Translating data and PINs in networks 492
Working with Europay-Mastercard-Visa Smart
cards 492
PIN verbs 493
ANSI X9.8 PIN restrictions 495
The PIN profile. 497
Visa Format Preserving Encryption 502
Authentication Parameter Generate (CSNBAPG) 508
Clear PIN Encrypt (CSNBCPE) 511
Clear PIN Generate (CSNBPGN) 515
Clear PIN Generate Alternate (CSNBCPA) 518
CVV Generate (CSNBCSG) 523
CVV Key Combine (CSNBCKC) 526
CVV Verify (CSNBCSV) 531
Encrypted PIN Generate (CSNBEPG) 535
Encrypted PIN Translate (CSNBPTR) 539
Encrypted PIN Translate Enhanced (CSNBPTRE) 545
Encrypted PIN Verify (CSNBPVR) 555
FPE Decipher (CSNBFPED). 560
FPE Encipher (CSNBFPEE) 568
FPE Translate (CSNBFPET) 575
PIN Change/Unblock (CSNBPCU) 583
Recover PIN from Offset (CSNBPFO) 591
Secure Messaging for Keys (CSNBSKY). 595
Secure Messaging for PINs (CSNBSPN) 599
Transaction Validation (CSNBTRV) 603

Chapter 13. Financial services for DK
PIN methods. 609
Weak PIN table. 609
DK PIN methods 610
DK Deterministic PIN Generate (CSNBDDPG) . . 610
DK Migrate PIN (CSNBDMP) 617
DK PAN Modify in Transaction (CSNBDPMT) . . 623
DK PAN Translate (CSNBDPT) 630
DK PIN Change (CSNBDPC) 637
DK PIN Verify (CSNBDPV). 649
DK PRW Card Number Update (CSNBDPNU) . . 653
DK PRW CMAC Generate (CSNBDPCG) 659
DK Random PIN Generate (CSNBDRPG) 662
DK Regenerate PRW (CSNBDRP). 668

Chapter 14. Using digital signatures 675
Digital Signature Generate (CSNDDSG) 675
Digital Signature Verify (CSNDDSV) 680

Chapter 15. Managing PKA
cryptographic keys 689
PKA Key Generate (CSNDPKG) 689
PKA Key Import (CSNDPKI) 696

PKA Key Token Build (CSNDPKB) 699
PKA Key Token Change (CSNDKTC) 710
PKA Key Translate (CSNDPKT) 713
PKA Public Key Extract (CSNDPKX) 720
Remote Key Export (CSNDRKX) 722
Trusted Block Create (CSNDTBC) 734
Public Infrastructure Certificate (CSNDPIC) . . . 738
Public Infrastructure Manage (CSNDPIM) 744

Chapter 16. TR-31 symmetric key
management verbs 755
Key Export to TR31 (CSNBT31X) 755
TR31 Key Import (CSNBT31I) 781
TR31 Key Token Parse (CSNBT31P) 804
TR31 Optional Data Build (CSNBT31O) 808
TR31 Optional Data Read (CSNBT31R) 811

Chapter 17. Utility verbs 817
Code Conversion (CSNBXEA) 817

Part 3. Reference information . . . 823

Chapter 18. Return codes and reason
codes. 825
Return codes 825
Reason codes 825

Reason codes that accompany return code 0 . . 826
Reason codes that accompany return code 4 . . 827
Reason codes that accompany return code 8 . . 827
Reason codes that accompany return code 12 844
Reason codes that accompany return code 16 845

Chapter 19. Key token formats 847
AES internal fixed-length key token 847

Token validation value 849
DES internal key token 849
DES external key token 850
External RKX DES key tokens 851
DES null key token 852
RSA public key token 853
RSA private key token 853

RSA private external key token 854
RSA private internal key token 855
RSA private key token, 1024-bit
Modulus-Exponent 857
RSA private key token, 1024-bit
Modulus-Exponent format with OPK section . . 859
RSA private key token, 4096-bit
Modulus-Exponent 861
RSA private key, 4096-bit Modulus-Exponent
format with AES encrypted OPK section . . . 863
RSA private key, 2048-bit Chinese Remainder
Theorem 865
RSA private key, 4096-bit Chinese Remainder
Theorem with OPK 867
RSA private key, 4096-bit Chinese Remainder
Theorem format with AES encrypted OPK
section 869

Contents v

||
||

|
||

RSA private key token, 1024-bit
Modulus-Exponent internal format for
cryptographic coprocessor feature 872
RSA variable Modulus-Exponent token 873

ECC key token 874
PKA key tokens 880

PKA null key token 880
PKA key token sections 881
Integrity of PKA private key sections containing
an encrypted RSA key 884
Number representation in PKA key tokens . . 884

PKA public-key certificate section 885
HMAC key token 888
Variable-length symmetric key tokens 889

General format of a variable-length symmetric
key-token. 889
AES CIPHER variable-length symmetric key
token 904
AES MAC variable-length symmetric key token 911
HMAC MAC variable-length symmetric key
token 920
AES EXPORTER and IMPORTER
variable-length symmetric key token 927
AES PINPROT, PINCALC, and PINPRW
variable-length symmetric key token 938
AES DESUSECV variable-length symmetric key
token 947
AES DKYGENKY variable-length symmetric key
token 951
AES SECMSG variable-length symmetric key
token 960

TR-31 optional block data 967
Trusted blocks 968

Trusted block organization 969
Trusted block integrity 970
Number representation in trusted blocks . . . 971
Trusted block sections 971

Trusted block section X'11' 972
Trusted block section X'12' 972

Trusted block section X'12' subsections 974
Trusted block section X'13' 979
Trusted block section X'14' 980

Trusted block section X'14' subsections 980
Trusted block section X'15' 982

Chapter 20. Key forms and types used
in the Key Generate verb 985
Generating an operational key. 985
Generating an importable key 985
Generating an exportable key 985
Examples of single-length keys in one form only 985
Examples of OPIM single-length, double-length,
and triple-length keys in two forms 986
Examples of OPEX single-length, double-length,
and triple-length keys in two forms 986
Examples of IMEX single-length and double-length
keys in two forms 987
Examples of EXEX single-length and double-length
keys in two forms 987

Chapter 21. Control vectors and
changing control vectors with the
Control Vector Translate verb 989
Control vector table 989

Control-vector-base bit maps 991
Key Form Bits, fff 995
Specifying a control-vector-base value 995

Changing control vectors with the Control Vector
Translate verb 1000

Providing the control information for testing
the control vectors 1000
Mask array preparation 1000
Selecting the key-half processing mode . . . 1002
When the target key-token CV is null 1004
Control vector translate example 1004

Chapter 22. PIN formats and
algorithms 1005
PIN notation 1005
PIN block formats 1005
PIN extraction rules 1008
IBM PIN algorithms 1010
VISA PIN algorithms 1017

Chapter 23. Cryptographic
algorithms and processes 1021
Cryptographic key-verification techniques . . . 1021

Master-key verification algorithms 1021
SHA-1 based master-key verification
method 1021
z/OS-based master-key verification method 1022
SHA-256 based master-key verification
method 1022
Asymmetric master key MDC-based
verification method 1022
Key-token verification patterns 1022

CCA DES-key verification algorithm 1023
Encrypt zeros AES-key verification algorithm 1023
Encrypt zeros DES-key verification algorithm 1024

Modification Detection Code calculation 1024
Ciphering methods 1026

General data-encryption processes 1027
Single-DES and Triple-DES encryption
algorithms for general data 1027
ANSI X3.106 Cipher Block Chaining (CBC)
method 1027
ANSI X9.23 cipher block chaining 1029

Triple-DES ciphering algorithms. 1030
MAC calculation methods 1033

ANSI X9.9 MAC 1033
ANSI X9.19 Optional Procedure 1 MAC . . . 1034
EMV MAC 1034
ISO 16609 TDES MAC 1034
Keyed-hash MAC (HMAC) 1035

RSA key-pair generation 1035
Multiple decipherment and encipherment . . . 1036

Multiple encipherment of single-length keys 1037
Multiple decipherment of single-length keys 1037
Multiple encipherment of double-length keys 1038
Multiple decipherment of double-length keys 1039

vi Common Cryptographic Architecture Application Programmer's Guide

Multiple encipherment of triple-length keys 1040
Multiple decipherment of triple-length keys 1041

PKA92 key format and encryption process . . . 1042
Formatting hashes and keys in public-key
cryptography 1044

ANSI X9.31 hash format 1044
PKCS #1 hash formats 1044

Chapter 24. Access control points
and verbs 1047

Chapter 25. Access control data
structures 1073
Role structures 1073

Basic structure of a role 1073
Access control point list 1075
Default role contents 1077

Examples of the access control data structures 1078
Access control point list - data structure
example 1078
Role data structure example 1079

Chapter 26. Using verbs and
applications in PCI-HSM 2016
compliance mode 1081
Generating PCI-HSM 2016 compliant keys . . . 1081
Impact of the PCI-HSM 2016 compliance mode on
the callable verbs. 1082
Restrictions on creation and use of PCI-HSM 2016
compliant key tokens 1084
Restrictions on PIN block translation operations
for compliant-tagged key tokens 1085
Generating warning events 1085
Migrating applications to PCI-HSM 2016
compliance mode. 1088

Chapter 27. Sample verb call
routines 1093
Sample program in C 1093
Sample program in Java 1097

Chapter 28. Initial system set-up tips 1103
Installing and loading the cryptographic device
driver 1103
Unloading the cryptographic device driver . . . 1104
Confirming your cryptographic devices 1105
Checking the adapter settings 1105
Performance tuning 1106
Running secure key under a z/VM guest. . . . 1106

Chapter 29. CCA installation
instructions. 1107
Before you begin 1107
Ubuntu installation considerations 1107
Default installation directory 1108
Download and install the RPM or DEB file . . . 1108

Files in the RPM or DEB 1109
Samples in the RPM or DEB 1110

Groups in the RPM or DEB 1111
Install and configure the RPM or DEB 1111

Uninstall the RPM or DEB. 1116

Chapter 30. Coexistence of CEX6C
and previous CEX*C features 1117
Concurrent installations 1117
CEX6C information 1117

Chapter 31. Utilities 1119
CCA Master Key administration: choosing the
right method or tool 1119
The panel.exe utility 1121

panel.exe default syntax as of CCA 6.0 . . . 1121
panel.exe legacy syntax. 1123
panel.exe functions 1124
Using panel.exe for key storage initialization 1126
Using panel.exe for key storage re-encipher
when changing the master key 1128
Using panel.exe to show the active role and
ACPs 1129
Using panel.exe to control ACP tracking . . . 1131
Using panel.exe for verifying CCA epoch
certificates 1132
Using panel.exe to query the adapter
compliance state 1132

Chapter 32. Security API command
and sub-command codes. 1135

Chapter 33. openCryptoki support 1139
Configuring openCryptoki for CCA support . . . 1140

Confirming the openCryptoki configuration file 1140
Starting the openCryptoki slot daemon . . . 1141
Initializing the token 1142
How to recognize the CCA token 1143

Using the CCA token 1144
Supported mechanisms for the CCA token 1144
Restrictions with using the CCA library
functions 1146

Migrating openCryptoki version 2 tokens to
version 3 1146
Migrating to a new CCA master key 1148
Tracing in openCryptoki 1150

Chapter 34. List of abbreviations 1151

Part 4. Appendixes 1157

Appendix. Accessibility 1159

Notices 1161
Programming interface information. 1162
Trademarks. 1162

Glossary 1163

Index 1173

Contents vii

|
|
||
||
|
||
|
||
|
||
||
|
||

|
||

|

||

|
||
|
||

||

viii Common Cryptographic Architecture Application Programmer's Guide

Figures

1. CCA security API, access layer, and
cryptographic engine. 5

2. CPACF 17
3. Control Vector Generate and Key Token Build

CV keyword combinations for fixed-length
DES key tokens 48

4. PKA key management 73
5. Key Token Build2 keyword combinations for

AES CIPHER keys 270
6. Key Token Build2 keyword combinations for

AES DKYGENKY keys 273
7. Key Token Build2 keyword combinations for

AES EXPORTER keys 277
8. Key Token Build2 keyword combinations for

AES IMPORTER keys 281
9. Key Token Build2 keyword combinations for

AES MAC keys 285
10. Key Token Build2 keyword combinations for

HMAC MAC keys 288
11. Key Token Build2 keyword combinations for

AES PINCALC keys 291
12. Key Token Build2 keyword combinations for

AES PINPROT keys 293
13. Key Token Build2 keyword combinations for

AES PINPRW keys. 296
14. Key Token Build2 keyword combinations for

AES SECMSG keys 298
15. Control vector base bit map (common bits

and key-encrypting keys) 992
16. Control vector base bit map (data operation

keys) 993
17. Control vector base bit map (PIN processing

keys and cryptographic variable-encrypting
keys) 994

18. Control vector base bit map (key generating
keys) 995

19. Control Vector Translate verb mask_array
processing 1002

20. Control Vector Translate verb 1003
21. ISO-3 PIN-block format 1006
22. 3624 PIN generation algorithm 1011
23. GBP PIN generation algorithm 1012
24. PIN-Offset generation algorithm 1013
25. PIN verification algorithm 1015
26. GBP PIN verification algorithm 1017
27. PVV generation algorithm 1018
28. Triple-DES data encryption and decryption 1027
29. Enciphering using the ANSI X3.106 CBC

method 1028
30. Deciphering using the CBC method 1029
31. Enciphering using the ANSI X9.23 method 1030
32. Deciphering using the ANSI X9.23 method 1030
33. Triple-DES CBC encryption process 1031
34. Triple-DES CBC decryption process 1032
35. EDE algorithm. 1032
36. DED process 1033
37. MAC calculation method 1034
38. Multiple encipherment of single-length keys 1037
39. Multiple decipherment of single-length keys 1038
40. Multiple encipherment of double-length

keys 1039
41. Multiple decipherment of double-length

keys 1040
42. Multiple encipherment of triple-length keys 1041
43. Multiple decipherment of triple-length keys 1042
44. Access-control-point list example 1078
45. Role data structure example 1079
46. Syntax, sample routine in C 1093
47. Syntax, sample routine in Java 1098
48. ACP setting for a role 1131
49. Querying an adapter's compliance mode

(part 1) 1133
50. Querying an adapter's compliance mode

(part 2) 1134

© Copyright IBM Corp. 2007, 2018 ix

|
||
|
||
|
|
||
|
||

||

|
||
|
||

x Common Cryptographic Architecture Application Programmer's Guide

Tables

1. New verbs for CCA Releases 6.0 and 5.3 xvii
2. Updated verbs for CCA Releases 6.0 and 5.3 xviii
3. New verbs for CCA Releases 4.4 and 5.2 xix
4. Updated verbs for CCA Releases 4.4 and 5.2 xix
5. Verbs that ignore AUTOSELECT 12
6. Key types 44
7. Key subtypes specified by the rule_array

keyword 46
8. DES control vector key-subtype and key-usage

keywords 49
9. Access control points used by ATM remote key

loading 53
10. Summary of CCA nodes and resource control

verbs. 59
11. Summary of CCA AES, DES, and HMAC verbs 61
12. Summary of PKA verbs 76
13. TR-31 symmetric key management verbs 80
14. Keywords for Access Control Maintenance

control information 90
15. Meaning of the name parameter 90
16. Meaning of the output_data parameter 91
17. Keywords for Access Control Tracking control

information 95
18. Role tracking data header format 97
19. GETDATA output_data format 97
20. GETSTATE output_data format 99
21. Keywords for Cryptographic Facility Query

control information 102
22. Cryptographic Facility Query information

returned in the rule_array 106
23. Output data format for the GETCOMPD

keyword 118
24. Output data format for the SIZEWPIN

keyword 123
25. Output data format for the STATDECT

keyword 123
26. Output data format for STATICSA operational

key parts 124
27. Output data format for STATICSB operational

key parts 126
28. Output data format for STATICSE operational

key parts 129
29. Output data format for STATICSX operational

key parts 131
30. Output data format for STATKPR operational

key parts 133
31. Output data format for the STATOAHL

keyword 134
32. Output data format for STATVKPR

operational key parts 140
33. Output data format for the STATWPIN

keyword 141
34. CSUACFQ weak PIN entry structure (type

X'30') 141
35. Keywords for Cryptographic Resource

Allocate control information 145

36. Keywords for Cryptographic Resource
Deallocate control information 148

37. Keywords for Key Storage Initialization
control information 150

38. Keywords for Log Query control information 153
39. Meaning of log_number_or_level for the

requested service (keyword) 153
40. Meaning of log_data_length for the

requested service (keyword) 154
41. Required commands for the Log Query verb 156
42. Keywords for Master Key Process control

information 158
43. Keywords for Random Number Tests control

information 162
44. Keywords for Multiple Clear Key Import

control information 168
45. Keywords for Control Vector Generate control

information 171
46. Keywords for Control Vector Translate control

information 176
47. Keywords for Diversified Key Generate

control information 184
48. Keyword for Diversified Key Generate2

control information 190
49. Generating and generated key tokens 193
50. CSNDEDH skeleton key-tokens 196
51. CSNDEDH concatenation string format for

DERIV01 197
52. DERIV01 supplied public information 198
53. CSNDEDH concatenation string format for

DERIV02 198
54. Keywords for EC Diffie-Hellman control

information 201
55. Valid key bit lengths and minimum curve

size 206
56. Keywords for the Key Generate verb

key_form parameter 213
57. Key length values for the Key Generate verb 214
58. Key Generate - key lengths for each key type 215
59. Keywords for Key Generate, valid key types

and key forms for a single key 219
60. Keywords for Key Generate, valid key types

and key forms for a key pair 219
61. Keywords for Key Generate2 control

information 223
62. Keywords and associated algorithms for

key_type_1/2 parameter 224
63. ACPs supporting DK keys for the Key

Generate2 verb 228
64. Key Generate2 key_type and key_form

keywords for one AES or HMAC key . . . 229
65. Key Generate2 key_type and key_form

keywords for a pair of AES or HMAC keys . 229
66. AES KEK strength required for generating an

HMAC key under an AES KEK 232

© Copyright IBM Corp. 2007, 2018 xi

||
||

|
||

|
||

|
||

67. CSNBKGN2 access control requirements for
DK enabled keys 232

68. Keywords for Key Part Import control
information 239

69. Keywords for Key Part Import2 control
information 242

70. Key Test parameter changes. 245
71. Key Test GENERATE outputs and VERIFY

inputs 246
72. Keywords for Key Test control information 247
73. Keywords for Key Test2 control information 250
74. Required commands for CSNBKYT2 253
75. Keywords for Key Test Extended control

information 256
76. Keywords for Key Token Build control

information 260
77. Keywords for Key Token Build2 266
78. Related key usage fields when Key Token

Build2 builds a DKYGENKY key-token . . . 269
79. Key Token Build2 rule array keywords for

AES CIPHER keys 270
80. Key Token Build2 rule array keywords for

AES DKYGENKY keys 274
81. Key Token Build2 rule array keywords for

AES EXPORTER keys 278
82. Key Token Build2 rule array keywords for

AES IMPORTER keys 282
83. Key Token Build2 rule array keywords for

AES MAC keys 285
84. Key Token Build2 rule array keywords for

HMAC MAC keys 288
85. Key Token Build2 rule array keywords for

AES PINCALC keys 291
86. Key Token Build2 rule array keywords for

AES PINPROT keys 294
87. Key Token Build2 PINPRW related key words 296
88. Key Token Build2 SECMSG related key words 299
89. Keywords for Key Token Change control

information 302
90. Keywords for Key Token Change2 control

information 305
91. Keywords for Key Token Parse control

information 309
92. Keywords for Key Token Parse2 314
93. Keywords for Key Translate2 control

information 324
94. Keywords for PKA Decrypt control

information 328
95. Keywords for PKA Encrypt control

information 331
96. Keywords for Restrict Key Attribute control

information 338
97. Keywords for Random Number Generate

form parameter 341
98. Keywords for Random Number Generate

Long control information 343
99. Keywords for Symmetric Key Export control

information 345
100. AES EXPORTER strength required for

exporting an HMAC key under an AES
EXPORTER 349

101. Minimum RSA modulus strength required to
contain a PKOAEP2 block when exporting an
AES key 349

102. Minimum RSA modulus length to adequately
protect an AES key 349

103. Keywords for Symmetric Key Export with
Data control information 350

104. Required commands for the Symmetric Key
Export with Data verb 352

105. Keywords for Symmetric Key Generate
control information 354

106. Keywords for Symmetric Key Import control
information 359

107. Symmetric Key Import2 key-wrapping
method of target key when system default is
ECB (Legacy) 363

108. Symmetric Key Import2 key-wrapping
method of target key when system default is
CBC (Enhanced) 364

109. Keywords for Symmetric Key Import2 control
information 366

110. PKCS#1 OAEP encoded message layout
(PKOAEP2) 368

111. Keywords for Unique Key Derive control
information 371

112. Valid Control Vectors for Derived Keys 375
113. Required commands for the Symmetric Key

Export with Data verb 376
114. Derivation variants 376
115. Keywords for Decipher control information 383
116. Keywords for Encipher control information 388
117. Keywords for Symmetric Algorithm Decipher

control information 392
118. Keywords for Symmetric Algorithm Encipher

control information 400
119. Keywords for Cipher Text Translate2 control

information 406
120. Restrictions for cipher_text_in_length and

cipher_text_out_length 411
121. Cipher Text Translate2 key usage 414
122. Keywords for HMAC Generate control

information 420
123. Hash methods and HMAC key sizes 421
124. Keywords for HMAC Verify control

information 423
125. Keywords for MAC Generate control

information 428
126. Keywords for MAC Generate2 control

information 431
127. CSNBMGN2 access control points 432
128. Keywords for MAC Verify control

information 435
129. Keywords for MAC Verify2 control

information 438
130. Required commands for CSNBMVR2 440
131. Keywords for MDC Generate control

information 443
132. Keywords for One-Way Hash control

information 445
133. Valid symbols for the name token. 451
134. Key labels that are not valid 451

xii Common Cryptographic Architecture Application Programmer's Guide

||

135. Keywords for AES Key Record Delete control
information 458

136. Keywords for AES Key Record Write control
information 464

137. Keywords for DES Key Record Delete control
information 468

138. Keywords for PKA Key Record Delete control
information 477

139. Keywords for PKA Key Record Write control
information 483

140. ANSI X9.8 PIN - Allow only ANSI PIN blocks 497
141. Format of a PIN profile 498
142. Format values of PIN blocks 498
143. PIN block format and PIN extraction method

keywords 498
144. Verbs affected when the enhanced PIN

security mode is enabled. 500
145. Format of a pad digit 500
146. Pad digits for PIN block formats 501
147. Format of the Current Key Serial Number

Field 502
148. VFPE alphabet by field type 504
149. VFPE BASE-10 alphabet for PAN data and

Track 2 Discretionary Data 505
150. VFPE Track 1 Discretionary Data and

Cardholder Name alphabets 505
151. Base-16 alphabet 507
152. Keywords for Authentication Parameter

Generate control information 509
153. Keywords for Clear PIN Encrypt control

information 513
154. Keywords for Clear PIN Generate control

information 516
155. Array elements for the Clear PIN Generate

verb 516
156. Array elements for Clear PIN Generate 517
157. Keywords for Clear PIN Generate Alternate

control information 520
158. Array elements for Clear PIN Generate

Alternate, data_array (IBM-PINO). 521
159. Array elements for Clear PIN Generate

Alternate, data_array (VISA-PVV). 521
160. Keywords for CVV Generate control

information 524
161. Key-wrapping matrix for the CVV Key

Combine verb 529
162. Required commands for the CVV Key

Combine verb, mixed key types 530
163. Keywords for CVV Verify control information 532
164. Keywords for Encrypted PIN Generate

control information 536
165. Array elements for Encrypted PIN Generate

data_array parameter 537
166. Keywords for Encrypted PIN Generate

control information 537
167. Keywords for Encrypted PIN Translate

control information 541
168. Additional names for PIN formats 545
169. Pairings supported for VDSP 546
170. Keywords for Encrypted PIN Translate

Enhanced control information 548

171. Keywords for Encrypted PIN Verify control
information 557

172. Array elements for Encrypted PIN Verify
data_array parameter 558

173. Array elements required by the process rule 559
174. Keywords for FPE Decipher control

information 562
175. Keywords for CSNBFPEE control information 569
176. Keywords for FPE Translate control

information 577
177. Keywords for PIN Change/Unblock control

information 586
178. Keywords for Secure Messaging for Keys

control information 596
179. Keywords for Secure Messaging for PINs

control information 600
180. Keywords for Transaction Validation control

information 604
181. Values for Transaction Validation

validation_values parameter 606
182. Keywords for DK Deterministic PIN Generate

control information 612
183. Keywords for DK Migrate PIN control

information 619
184. Keywords for DK PIN Change control

information 639
185. Keywords for DK PRW Card Number Update

control information 654
186. Keywords for DK Random PIN Generate

control information 664
187. Keywords for Digital Signature Generate

control information 676
188. Keywords for Digital Signature Verify control

information 682
189. Keywords for PKA Key Generate control

information 692
190. Keywords for PKA Key Import control

information 697
191. Keywords for PKA Key Token Build control

information 700
192. PKA Key Token Build - Key value structure

length maximum values 702
193. PKA Key Token Build - Key value structure

elements, ECC keys 703
194. PKA Key Token Build - Key value structure

elements, RSA keys 705
195. Keywords for PKA Key Token Change control

information 711
196. Keywords for PKA Key Translate control

information 716
197. Keywords for Remote Key Export control

information 725
198. Keywords for Remote Key Export

certificate_parms parameter 726
199. Keywords for Trusted Block Create control

information 736
200. Keywords for Public Infrastructure Certificate

control information 739
201. Keywords for CSNDPIM control information 746
202. Supported signature algorithms for public

infrastructure management (CSNDPIM). . . 752

Tables xiii

|
||
||
|
||

203. Keywords for Key Export to TR31 control
information 758

204. Export translation table for a TR-31 BDK base
derivation key (BDK) 762

205. Export translation table for a TR-31 CVK card
verification key (CVK) 764

206. Export translation table for a TR-31 data
encryption key (ENC). 765

207. Export translation table for a TR-31 key
encryption or wrapping, or key block
protection key (KEK or KEK-WRAP). . . . 766

208. Export translation table for a TR-31 ISO MAC
algorithm key (ISOMACn) 767

209. Commands 768
210. Export translation table for a TR-31 PIN

encryption or PIN verification key (PINENC,
PINVO, PINV3624, VISAPVV) 770

211. Export translation table for a TR-31
EMV/chip issuer master-key key
(DKYGENKY, DATA) 773

212. Import translation table for a TR-31 BDK base
derivation key (usage "B0") 787

213. Import translation table for a TR-31 CVK card
verification key (usage "C0") 787

214. Import translation table for a TR-31 data
encryption key (usage "D0"). 789

215. Import translation table for a TR-31 key
encryption or wrapping, or key block
protection key (usages "K0", "K1"). 789

216. Import translation table for a TR-31 ISO MAC
algorithm key (usages "M0", "M1", "M3") . . 790

217. Import translation table for a TR-31 PIN
encryption or PIN verification key (usages
"P0", "V0", "V1", "V2") 792

218. Commands 794
219. Import translation table for a TR-31

EMV/chip issuer master-key key (usages
"E0", "E1", "E2", "E3", "E4", "E5") 796

220. TR31 Key Import CV sources 800
221. TR31 Key Import protection methods 801
222. Keywords for the CSNBXEA utility 817
223. EBCDIC to ASCII conversion table 820
224. ASCII to EBCDIC conversion table 821
225. Return code values 825
226. Reason codes for return code 0 826
227. Reason codes for return code 4 827
228. Reason codes for return code 8 828
229. Reason codes for return code 12 844
230. Reason codes for return code 16 845
231. AES Internal fixed-length key token format,

version X'04' 848
232. AES internal fixed-length key-token flag byte 848
233. DES internal key token format 849
234. DES external key token format. 850
235. External RKX DES key-token format, version

X'10' 851
236. DES null key token format 852
237. RSA Public Key Token format 853
238. RSA private external key token basic record

format 854

239. RSA private internal key token basic record
format 855

240. RSA private key, 1024-bit Modulus-Exponent
format section (X'02') 857

241. RSA private key, 1024-bit Modulus-Exponent
format with OPK section (X'06') 859

242. RSA Private Key Token, 4096-bit
Modulus-Exponent. 861

243. RSA private key, 4096-bit Modulus-Exponent
format with AES encrypted OPK section
(X'30') external and internal form 863

244. RSA private key, 2048-bit Chinese Remainder
Theorem format section (X'05') 865

245. RSA private key token, 4096-bit Chinese
Remainder Theorem with OPK section (X'08') . 867

246. RSA private key, 4096-bit Chinese Remainder
Theorem format with AES encrypted OPK
section (X'31') 869

247. RSA private internal key token, 1024-bit
Modulus-Exponent format for cryptographic
coprocessor feature 872

248. RSA variable Modulus-Exponent token format 873
249. Supported Prime elliptic curves by size,

name, and object identifier 874
250. Supported Brainpool elliptic curves by size,

name, and object identifier 875
251. ECC private-key section (X'20'). 875
252. ECC section hash TLV object (X'60') of

Version 1 ECC private-key section (X'20') . . 878
253. ECC public key section (X'21') 878
254. ECC key-derivation information section

(X'23') 879
255. Summary of PKA key token sections 880
256. PKA null key token format 881
257. Optional RSA private key sections 881
258. RSA private-key blinding information 883
259. Optional ECC private key sections 883
260. PKA key token header 885
261. PKA public-key certificate section (X'40') 885
262. ECC public-key subsection (X'22') of PKA

public-key certificate section (X'40') 886
263. RSA public-key subsection (X'41') of PKA

public-key certificate section (X'40') 886
264. PKA certificate-information subsection (X'42')

of PKA public-key certificate section (X'40') . 886
265. PKA user-data TLV object (X'50') of PKA

certificate-information subsection (X'42') . . 887
266. PKA private-key EID TLV object (X'51') of

PKA certificate-information subsection (X'42') . 887
267. PKA serial number TLV object (X'52') of PKA

certificate-information subsection (X'42') . . 887
268. PKA signature subsection (X'45') of PKA

public-key certificate section (X'40') 887
269. HMAC symmetric null key token format 888
270. General format of a variable-length

symmetric key-token, version X'05' 889
271. AES CIPHER variable-length symmetric

key-token, version X'05' 904
272. AES MAC variable-length symmetric

key-token, version X'05' 912

xiv Common Cryptographic Architecture Application Programmer's Guide

|

|

|
||

273. HMAC MAC variable-length symmetric
key-token, version X'05' (CCA 4.1.0 or later) . 920

274. AES EXPORTER and IMPORTER
variable-length symmetric key-token, version
X'05' 928

275. AES CIPHER variable-length symmetric
key-token, version X'05' 938

276. AES DESUSECV variable-length symmetric
key-token, version X'05' 947

277. AES DKYGENKY variable-length symmetric
key-token, version X'05' 951

278. AES SECMSG variable-length symmetric
key-token, version X'05' 960

279. IBM optional block data in a TR-31 key block 968
280. Trusted block sections and their use 969
281. Trusted block header format 971
282. Trusted block trusted RSA public key section

(X'11') 972
283. Trusted block rule section (X'12') 973
284. Summary of trusted block X'12' subsections 974
285. Transport key variant subsection (X'0001') of

trusted block rule section (X'12') 975
286. Transport key rule reference subsection

(X'0002') of trusted block rule section (X'12') . 976
287. Common export key parameters subsection

(X'0003') of trusted block rule section (X'12') . 976
288. Source key rule reference subsection (X'0004')

of trusted block rule section (X'12') 978
289. Export key CCA token parameters subsection

(X'0005') of trusted block rule section (X'12') . 978
290. Trusted block key label (name) section X'13' 980
291. Trusted block information section (X'14') 980
292. Summary of trusted block information

subsections 981
293. Protection information subsection (X'0001') of

trusted block information section (X'14') . . 981
294. Activation and expiration dates subsection

(X'0002') of trusted block information section
(X'14') 982

295. Trusted block application-defined data section
(X'15') 982

296. Default control vector values 989
297. Main key type bits 996
298. Key subtype bits 996
299. Calculation method keyword bits 997
300. INGEN, IPINENC, and OPINENC key bits 998
301. Generic key type bits 998
302. DKYGENKY key type bits 999
303. Versions of the MDC calculation method 1025
304. MDC calculation procedures 1025
305. PKA96 clear DES key record 1042
306. Access Control Points and corresponding

CCA verbs 1048
307. Access-control system: basic structure of a

role 1073
308. Access-control-point list structure 1075
309. Bit-map segment structure 1076
310. Callable services not compliant with

PCI-HSM 2016 1082
311. Callable services that do not support

compliant-tagged key tokens 1082
312. Callable services that support

compliant-tagged key tokens in
cryptographic operations 1083

313. Using compliant-tagged key tokens to
translate between PIN block formats . . . 1085

314. Verbs called by the sample routines 1093
315. CCA groups. 1115
316. Tools and methods for CCA master key

administration 1120
317. Alphabetical list of security API command

and subcommand codes returned by
STATDIAG 1135

318. openCryptoki libraries 1140
319. PKCS #11 mechanisms supported by the

CCA token 1145

Tables xv

|
||
|
||
|
|
||
|
||

xvi Common Cryptographic Architecture Application Programmer's Guide

About this document

The presented information describes how to use a variety of services for
cryptography and data-security provided in the Common Cryptographic
Architecture (CCA).

CCA functions described in this edition apply to the CCA host library (RPM)
version 6.0, shortly referred to as CCA (Release) 6.0. The new host library 6.0 is
tested on CCA firmware versions 4.4.x, 5.3.x, and 6.0.x. Note that there is no CCA
firmware or host library version 4.5.

The CCA functions perform cryptographic operations using the following adapters
in CCA coprocessor mode:
v IBM® Crypto Express6 (CEX6C), Feature Code 0893
v IBM Crypto Express5 (CEX5C), Feature Code 0890
v IBM Crypto Express4 (CEX4C), Feature Code 0865
v IBM Crypto Express3 (CEX3), Feature Code 0864

See “Concurrent installations” on page 1117 for details.

This publication is for planning and programming purposes only.

The CCA host software provides an application programming interface through
which applications request secure, high-speed cryptographic services from the
hardware cryptographic features.

This publication continues to document CCA Releases 5.0 up to 5.2. Where CCA
Releases 6.0 or 5.3 have been changed or enhanced from the previously
documented CCA Release 5.2, these changes are indicated with revision marks.

Applications linked with prior CCA host software will continue to function if the
CCA host software is upgraded in place. However, IBM always recommends full
testing of upgrades before implementing production roll-out.

For the supported environments and product ordering information, see:
http://www.ibm.com/security/cryptocards/

Revision history
Track the changes of this document for each CCA Support Program release.

Edition April 2018, CCA Support Program Releases 6.0 and 5.3
This edition describes the IBM CCA Basic Services API for Release 6.0 including
those for Release 5.3.

For Release 6.0, changes to the CCA API include the following new verbs:

Table 1. New verbs for CCA Releases 6.0 and 5.3

Verb Service name Category

CSNDPIC “Public Infrastructure Certificate (CSNDPIC)” on
page 738

Managing PKA cryptographic keys

© Copyright IBM Corp. 2007, 2018 xvii

|
|
|
|

|

|
|
|

|

|
|

|

||

|||

||
|
|

http://www.ibm.com/security/cryptocards/

Table 1. New verbs for CCA Releases 6.0 and 5.3 (continued)

Verb Service name Category

CSNDPIM “Public Infrastructure Manage (CSNDPIM)” on
page 744

Managing PKA cryptographic keys

The following verbs provide new keywords:

Table 2. Updated verbs for CCA Releases 6.0 and 5.3

Verb Service name Category

CSUACFQ “Cryptographic Facility Query (CSUACFQ)” on
page 100

Using the CCA nodes and resource control verbs

CSNBKYT2 “Key Test2 (CSNBKYT2)” on page 249 Managing AES and DES cryptographic keys

CSNBKTB “Key Token Build (CSNBKTB)” on page 259 Managing AES and DES cryptographic keys

CSNBKTB2 “Key Token Build2 (CSNBKTB2)” on page 264 Managing AES and DES cryptographic keys

CSNBKTR2 “Key Translate2 (CSNBKTR2)” on page 323 Managing AES and DES cryptographic keys

CSNDDSG “Digital Signature Generate (CSNDDSG)” on page
675

Using Digital Signatures

CSNDDSV “Digital Signature Verify (CSNDDSV)” on page
680

Using Digital Signatures

CSNDPKB “PKA Key Token Build (CSNDPKB)” on page 699 Managing PKA cryptographic keys

CSNDPKT “PKA Key Translate (CSNDPKT)” on page 713 Managing PKA cryptographic key

In addition, the following changes apply to CCA Release 6.0:
v When configured as a CCA coprocessor, a CEX6C adapter is capable of running

in PCI-HSM 2016 compliance mode. Where applicable, CCA has updated its
services to produce or use keys that adhere to the PCI-HSM 2016 standards.
Currently, only internal, fixed-length TDES key tokens can be compliant-tagged.
You can migrate existing CCA applications to make use of the PCI-HSM 2016
compliant services.

v CCA 6.0 now supports X.509 certificates with CSNDDSV based on a Public Key
Infrastructure (PKI) hosted in the adapter. The PKI is managed from a Trusted
Key Entry workstation version 9.0 or later.

v The new CSNDPIC verb can create a PKCS #10 Certificate Signing Request
based on your input private key, suitable to have a Certificate Authority to
create a signed certificate of the public key associated with the private key in the
token.

v CCA now supports export of AES CIPHER keys to CPACF. This is the first
strongly typed key that can be exported as a CPACF protected key. Export is
controlled by a new management bit in the AES CIPHER variable key token
structure. Therefore to exploit this feature, new AES CIPHER key tokens need to
be created which have the management bit enabled. Use the CSNBKTB2 verb to
create the skeleton key tokens with this bit enabled. Use the CSNBKGN2 verb to
populate a key to the skeleton.

v The panel.exe utility now presents a more usable command line interface,
which, among others, supports services for the PCI-HSM 2016 compliance mode,
for certificates, master keys, and roles.

xviii Common Cryptographic Architecture Application Programmer's Guide

|

|||

||
|
|

|

|

||

|||

||
|
|

|||

|||

|||

|||

||
|
|

||
|
|

|||

|||
|

|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

v Domain selection capabilities are added in the CCA host library. In the
application environment, a user may select which domain is to be used by that
application. The domain used must be one of the domains configured available
for the LPAR.

v The default wrapping method for DES key tokens was ORIGINAL for CEX*C
firmware before CCA 6.0. Now with CEX6C, the default wrapping method is
ENHANCED (see also “DES key wrapping” on page 37).

The following change applies to CCA Release 5.3:
v For the CSNDDSG and CSNDDSV verbs, a new digital-signature hash method

PKCS-PSS is available. This method supports the PKCS #1 v2.2 standard for the
RSA Probabilistic Signature Scheme (RSA-PSS). RSA-PSS is based on the RSA
crypto system and provides increased security assurance.
The CSNDDSV verb can now verify hashes using a variety of SHA-<xxx>
methods. Also, CSNDDSV supports new certificate validation methods.

Edition March 2017, CCA Support Program Releases 4.4 and
5.2

This publication is the second edition for CCA Support Program Releases 5.2 and
4.4. It now includes installation instructions for the Ubuntu DEB package for IBM
CCA.

Edition July 2016, CCA Support Program Releases 4.4 and 5.2
This edition describes the IBM CCA Basic Services API for Release 5.2, including
those for Release 4.4.

For Release 5.2, changes to the CCA API include the following new verbs:

Table 3. New verbs for CCA Releases 4.4 and 5.2

Verb
entry-point
name Service name Category

CSUAACM “Access Control Maintenance (CSUAACM)” on
page 89

Using the CCA nodes and resource control verbs

CSUAACT “Access Control Tracking (CSUAACT)” on page
93

Using the CCA nodes and resource control verbs

The following verbs provide new keywords:

Table 4. Updated verbs for CCA Releases 4.4 and 5.2

Entry-point Service name Category

CSNBKGN2 “Key Generate2 (CSNBKGN2)” on page 221 Managing AES and DES cryptographic keys

CSNBKYT2 “Key Test2 (CSNBKYT2)” on page 249 Managing AES and DES cryptographic keys

CSNDEDH “EC Diffie-Hellman (CSNDEDH)” on page 195 Managing AES and DES cryptographic keys

CSNBKTB2 “Key Token Build2 (CSNBKTB2)” on page 264 Managing AES and DES cryptographic keys

CSNBKTP2 “Key Token Parse2 (CSNBKTP2)” on page 311 Managing AES and DES cryptographic keys

CSNBSAD “Symmetric Algorithm Decipher (CSNBSAD)” on
page 390

Protecting data

CSNBSAE “Symmetric Algorithm Encipher (CSNBSAE)” on
page 397

Protecting data

About this document xix

|
|
|
|

|
|
|

|

|
|
|
|

|
|

Table 4. Updated verbs for CCA Releases 4.4 and 5.2 (continued)

Entry-point Service name Category

CSNDPKB “PKA Key Token Build (CSNDPKB)” on page 699 Managing PKA cryptographic keys

CSNDPKG “PKA Key Generate (CSNDPKG)” on page 689 Managing PKA cryptographic keys

CSNBKTB: The keywords CV-KEK and NOCV-KEK introduced with CCA 5.0 produced unexpected results during
further testing. These issues are fixed in CCA 5.2.

In addition, the following change applies to CCA Release 5.2
v For the JNI version of the verbs, starting with this release, a new data type

hikmNativeLong is replacing the old type hikmNativeInteger. Both types inherit
from an abstract class hikmNativeNumber. Thus, type hikmNativeInteger is still
supported, so you can run existing applications with this deprecated data type.
However, start using type hikmNativeLong for new applications instead,
because hikmNativeInteger may be removed in the future.

Applications linked with prior CCA host software will continue to function if the
CCA host software is upgraded in place. However, IBM always recommends full
testing of upgrades before implementing production roll-out.

A note on the document structure: There is a new topic called “RSA private key
token” on page 853 that describes in its subtopics the RSA private key tokens for
both the external and internal format, combined into one table for each token type.

Who should use this document
This document is intended for application programmers who are responsible for
writing application programs that use the security application programming
interface (API) to access cryptographic functions.

Distribution-specific information

Common Cryptographic Architecture for Linux on IBM Z® provides support for
the CEX6S feature since Release 6.0. In order to use the full set of CCA, starting
with Release 6.0, a Linux distribution with support for the CEX6S feature is
required.

For the most current distribution-specific information about CCA Release 6.0 and
prior releases, always refer to the Release Notes on the software-package selection
page. The contained information may be more up-to-date than in this publication.

CCA 6.0 is supported on the following distributions:
v Red Hat Enterprise Linux 6.9 (with update)
v Red Hat Enterprise Linux 7.4
v Red Hat Enterprise Linux 8
v SUSE Linux Enterprise Server 11 SP4 (with update)
v SUSE Linux Enterprise Server 12 SP3
v SUSE Linux Enterprise Server 15
v Ubuntu 16.04 (with update)

To exploit the full functionality of CCA 6.0 introduced with CEX6S, you need an
IBM z14™ with a CEX6S installed.

xx Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

http://www-03.ibm.com/security/cryptocards/pciecc3/lonzsoftware.shtml
http://www-03.ibm.com/security/cryptocards/pciecc3/lonzsoftware.shtml

Note: In order to fully exploit the CCA 6.0 functionality, CEX6S toleration by the
Linux on Z operating system is sufficient. All distributions listed above provide
sufficient CEX6S support on the required hardware.

For restrictions and recommendations about the usage of CCA prior to release 6.0
with Linux on Z distributions, refer to:
IBM 4767 CCA software releases

Note: Only 64-bit versions of this software are provided. 31-bit support is not
provided.

Terminology
The following terms are used in this document for CCA releases and features.

CEX3C
An IBM 4765 Crypto Express3 feature (CEX3), configured in CCA
coprocessor mode. This publication does not cover other modes of the
CEX3.

CEX4C
An IBM 4765 Crypto Express4 feature (CEX4S), configured in CCA
coprocessor mode. This publication does not cover other modes of the
CEX4.

CEX5C
An IBM 4767 Crypto Express5 feature (CEX5S), configured in CCA
coprocessor mode. This publication does not cover other modes of the
CEX5.

CEX6C
An IBM 4768 Crypto Express6 feature (CEX6S), configured in CCA
coprocessor mode. This publication does not cover other modes of the
CEX6.

CEX*C
Either the CEX3C, CEX4C, CEX5C, CEX6C, or (if plural) any combination
of these.

Hardware requirements
In order to make use of the verbs provided in the Common Cryptographic
Architecture (CCA) API for Linux on Z, your hardware must meet certain
minimum requirements.

This is the minimum supported hardware configuration:
v zEC12
v One CEXC4 feature, with one CEXC4 adapter mapped to the z/VM® image or

LPAR that uses it. The CEXC4 must have CCA 4.2.0z or greater firmware
loaded, configured in co-processor mode.

v If you plan to use a Trusted Key Entry (TKE) workstation, you must have a TKE
V9.0 to see CEX6C adapters and to exploit PCI-HSM 2016 compliance mode.
– You need a TKE 6.0 workstation or higher to support CEX3C adapters.
– You need a TKE 7.2 workstation or higher in order to see supported CEX4C

adapters.
– A TKE V8.0 workstation is required to manage CEX5C adapters.

About this document xxi

|
|
|

|
|

|

|

|

|
|
|
|

|
|

|

|
|
|

|
|

|

|
|

|

https://www-03.ibm.com/security/cryptocards/pciecc2/releases.shtml

For more detailed information about required TKE versions for accessing the
various CEX*C features, see “CEX6C information” on page 1117.

This is the maximum supported hardware configuration:
v IBM z14

– 16 CEX6S adapters total in the machine

This hardware configuration is also supported:
v IBM z13®

– 16 CEX5S adapters total in the machine
– all 16 adapters may also be mapped to an LPAR, up to 85 total LPARs
– there is one adapter per feature code.

v IBM zEnterprise® EC12
– two CEX4C adapter features, with up to 4 CEX4C adapters mapped to a

single z/VM image or LPAR.

See “Concurrent installations” on page 1117 for details about a mixed environment
of CEX65S and previous CEX*C features. Note that CEX4Cs are only supported by
TKE 7.2 or later if the Linux driver reports them as CEX4s. If you are running in
toleration mode, and the Linux driver reports them as CEX3Cs, then TKE 6.0 can
manage them as CEX3Cs.

To determine whether a Crypto Express adapter available to Linux on Z is a
CEX3C, a CEX4C, a CEX5C, or a CEX6C, see “Listing CCA coprocessors” on page
13.

Apply the following APAR fixes on the appropriate z/VM systems to achieve the
applicable cryptographic coprocessor support:

VM64656
Introduces Crypto Express3 support.

VM64727
Fixes problem with shared coprocessors.

VM64793
Introduces protected key CPACF support.

On z/VM 6.2, apply the following APAR fixes:

VM65007
Introduces Crypto Express4 support.

VM65577
Introduces Crypto Express5 support.

On z/VM 6.3, apply the following APAR fixes:

VM65577
Introduces Crypto Express5 support.

VM65942
Introduces Crypto Express6 support.

On z/VM 6.4, apply the following APAR fix:

VM65942
Introduces Crypto Express6 support.

xxii Common Cryptographic Architecture Application Programmer's Guide

|
|

|

|

|

|

|

|

|
|

|

|

|
|

|
|

|

|
|

How to use this document
Read an overview of the information in each section of this document.

For encryption, CCA supports Advanced Encryption Standard (AES), Data
Encryption Standard (DES), public key cryptography (PKA or RSA), and Elliptic
Curve Cryptography (ECC). These are very different cryptographic systems.
Additionally, CCA provides APIs for generating and verifying Message
Authentication Codes (MACs), Hashed Message Authentication Codes (HMACs),
hashes, and PINS, as well as other cryptographic functions.

Part 1, “IBM CCA programming,” on page 1 includes the following chapters:
v Chapter 1, “Introduction to programming for the IBM Common Cryptographic

Architecture,” on page 3 describes the programming considerations for using the
CCA verbs. It also explains the syntax and parameter definitions used in verbs.
Information about concurrency is also provided.

v Chapter 2, “Running CCA verbs in PCI-HSM 2016 compliance mode,” on page
31 describes the support for compliance-tagged tokens introduced with CCA 6.0
It gives links to further related information in this document, and discusses the
new warning mode to aid installations in detecting migration concerns.

v Chapter 3, “Using AES, DES, and HMAC cryptography and verbs,” on page 33
gives an overview of AES, DES, and HMAC cryptography, and provides general
guidance information on how these verbs use different key types and key forms.

v Chapter 4, “Introducing PKA cryptography and using PKA verbs,” on page 71
introduces Public Key Algorithm (PKA) support and describes programming
considerations for using the CCA PKA and ECC verbs, such as the PKA key
token structure and key management.

v Chapter 5, “TR-31 symmetric key management,” on page 79 introduces TR-31
support and how CCA uses an IBM-defined optional block in a TR-31 key block.

v Chapter 6, “Understanding and managing master keys,” on page 83 provides
information about master key management.

Part 2, “CCA verbs,” on page 87 includes the following topics:
v Chapter 7, “Using the CCA nodes and resource control verbs,” on page 89

describes using the CCA resource control verbs.
v Chapter 8, “Managing AES, DES, and HMAC cryptographic keys,” on page 165

describes the verbs for generating and maintaining DES and AES cryptographic
keys, the Random Number Generate verb (which generates 8-byte random
numbers), the Random Number Generate Long verb (which generates up to
8192 bytes of random content), and the Secure Sockets Layer (SSL) security
protocol. This chapter also describes utilities to build DES and AES tokens,
generate and translate control vectors, and describes the PKA verbs that support
DES and AES key distribution.

v Chapter 9, “Protecting data,” on page 379 describes the verbs for enciphering
and deciphering data.

v Chapter 10, “Verifying data integrity and authenticating messages,” on page 417
describes the verbs for generating and verifying Message Authentication Codes
(MACs), generating and verifying Hashed Message Authentication Codes
(HMACs), generating Modification Detection Codes (MDCs), and generating
hashes (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, MD5, RIPEMD-160).

v Chapter 11, “Key storage mechanisms,” on page 449 describes the use of key
storage, key tokens, and associated verbs.

About this document xxiii

|
|
|
|

v Chapter 12, “Financial services,” on page 491 describes the verbs for use in
support of finance-industry applications. This includes several categories.
– Verbs for generating, verifying, and translating personal identification

numbers (PINS).
– Verbs that generate and verify VISA card verification values and American

Express card security codes.
– Verbs to support smart card applications using the EMV (Europay

MasterCard Visa) standards.
v Chapter 13, “Financial services for DK PIN methods,” on page 609 describes the

verbs for PIN methods and requirements for financial services specified by the
German Banking Industry Committee, Deutsche Kreditwirtschaft (DK).

v Chapter 14, “Using digital signatures,” on page 675 describes the verbs that
support using digital signatures to authenticate messages.

v Chapter 15, “Managing PKA cryptographic keys,” on page 689 describes the
verbs that generate and manage PKA keys.

v Chapter 16, “TR-31 symmetric key management verbs,” on page 755 describes
the verbs used to manage TR-31 key blocks and TR-31 functions.

v Chapter 17, “Utility verbs,” on page 817 describes the utility verb CSNBXEA
which is provided for code conversion.

Part 3, “Reference information,” on page 823 includes the following information:
v Chapter 18, “Return codes and reason codes,” on page 825 explains the return

and reason codes returned by the verbs.
v Chapter 19, “Key token formats,” on page 847 describes the formats for AES,

DES internal, external, and null key tokens, for PKA public, private external, and
private internal key tokens containing Rivest-Shamir-Adleman (RSA)
information, PKA null key tokens, ECC key tokens, HMAC key tokens,
Transaction Validation Values (TVVs), and trusted blocks.

v Chapter 20, “Key forms and types used in the Key Generate verb,” on page 985
describes the key forms and types used by the Key Generate verb.

v Chapter 21, “Control vectors and changing control vectors with the Control
Vector Translate verb,” on page 989 contains a table of the default control vector
values that are associated with each key type and describes the control
information for testing control vectors, mask array preparation, selecting the
key-half processing mode, and an example of using the Control Vector Translate
verb.

v Chapter 22, “PIN formats and algorithms,” on page 1005 describes the PIN
notation, formats, extraction rules, and algorithms.

v Chapter 23, “Cryptographic algorithms and processes,” on page 1021 describes
various ciphering and key verification algorithms, as well as the formatting of
hashes and keys.

v Chapter 24, “Access control points and verbs,” on page 1047 lists the access
control points and their corresponding verbs.

v Chapter 25, “Access control data structures,” on page 1073 documents the data
structures that are used in the access control system.

v Chapter 26, “Using verbs and applications in PCI-HSM 2016 compliance mode,”
on page 1081 informs about how to manage keys, verbs and applications that
should apply the PCI-HSM 2016compliance standard.

v Chapter 27, “Sample verb call routines,” on page 1093 contains sample verb call
routines, both in C and Java™, that illustrates the practical application of CCA
verb calls.

xxiv Common Cryptographic Architecture Application Programmer's Guide

|
|
|

v Chapter 28, “Initial system set-up tips,” on page 1103 includes tips to help you
set up your system for the first time.

v Chapter 29, “CCA installation instructions,” on page 1107 includes RPM
installation, configuration, and uninstallation instructions.

v Chapter 30, “Coexistence of CEX6C and previous CEX*C features,” on page 1117
includes information about using various versions of CEX*C features in the same
system, and other restrictions.

v Chapter 31, “Utilities,” on page 1119 describes the ivp.e and panel.exe utilities.
v Chapter 32, “Security API command and sub-command codes,” on page 1135

contains an alphabetical list of security API command and sub-command codes
returned by the output rule-array for option STATDIAG of the Cryptographic
Facility Query verb.

v Chapter 33, “openCryptoki support,” on page 1139 provides information about
openCryptoki which is an open source implementation of the Cryptoki API as
defined by the industry-wide PKCS #11 Cryptographic Token Interface Standard.

v Chapter 34, “List of abbreviations,” on page 1151 contains definitions of
abbreviations used.

Where to find more information
You can find other CCA product publications that might be helpful when
developing applications and systems that exploit the IBM Crypto Express features.

While there is substantial commonality in the API supported by the CCA products,
and while this document seeks to guide you to the subset supported by Linux on
Z, other individual product publications might provide further insight into
potential issues of compatibility.

IBM 4768 Cryptographic Coprocessors - CEX6S
All of the IBM 4768-related publications can be obtained from the product
web site:
IBM PCIeCC3 library

There are the following categories:

HSM CEX6S general documentation
The listed manuals apply to the IBM CEX6S Cryptographic
Coprocessor.

PCIeCC3 Enterprise PKCS #11 (EP11)
This manual describes the capabilities of the cryptographic
application programming interface (API) provided with the
Enterprise PKCS#11 (EP11) Library for Linux on Z.

Related products
This category includes information about
v the IBM CPACF Enablement crypto feature
v the IBM Cryptographic Coprocessor Facility (CCF)

IBM 4767 Cryptographic Coprocessors - CEX5S
All of the IBM 4767-related publications can be obtained from the product
web site:
HSM 4767 - IBM PCIeCC2 library

There are the following categories:

About this document xxv

|
|
|

|

|

|
|
|

|
|
|
|

|
|

|

|

|
|
|

|

|

https://www-03.ibm.com/security/cryptocards/pciecc3/library.shtml
https://www-03.ibm.com/security/cryptocards/pciecc2/library.shtml

HSM 4767 general documentation
These manuals apply to the IBM 4767 PCIe Cryptographic
Coprocessor. Among these is the IBM 4767 PCIe Cryptographic
Coprocessor Installation Manual which describes how to install
CCA.

PCIeCC2 CCA Support Program
The CCA Basic Services and Secure Key Solution manuals describe
the capabilities of the security application programming interface
(API) provided with the CCA Support Program

IBM 4767 custom programming
This category includes programming information for creating
applications that perform within the IBM 4767 cryptographic
coprocessor.

IBM 4767 optional smart cards and readers for Linux users
The Smart Card User Guide describes the IBM Smart Card Utility
Program (SCUP) and SCUP-enabled Cryptographic Node
Management (CNM) utility.

IBM 4767 CCA utilities
The CCA Utilities User Guide describes CCA backup/restore, CCA
initialization, and CCA HSM.

Other documents referenced in this book are:
v CCA Basic Services Reference and Guide for the IBM 4767 and IBM 4765 PCIe

Cryptographic Coprocessors

v z/OS Cryptographic Services ICSF Trusted Key Entry Workstation User’s Guide

v Cryptographic Services Integrated Cryptographic Service Facility Application
Programmer's Guide

v Cryptographic Services Integrated Cryptographic Service Facility System
Programmer's Guide

v For Linux on Z:
– Device Drivers, Features, and Commands, SC33-8411

v See the following web site for information about your distribution of Linux:
– Distribution hints

Cryptography publications
The publications listed in this topic describe cryptographic standards, research, and
practices relevant to the coprocessor.
v Accredited Standards Committee X9, Inc.: X9 TR-31 2010: Interoperable Secure Key

Exchange Block Specification for Symmetric Algorithms

v American Express Travel Related Services Company, Inc.: American Express
Hardware Security Module (HSM): Function Requirements, August, 2011.

v American National Standards Institute (ANSI). ANSI is the official U.S.
representative to the International Organization for Standardization (ISO) and,
via the U.S. National Committee, the International Electrotechnical Commission
(IEC). ANSI is also a member of the International Accreditation Forum (IAF).
– ANSI X9.8-1:2003 Banking -- Personal Identification Number Management and

Security -- Part 1: PIN Protection Principles and Techniques for Online PIN
Verification in ATM & POS Systems.

– ANSI X9.9:1986 Financial Institution Message Authentication (Wholesale).

– ANSI X9.19:1998 Financial Institution Retail Message Authentication.

xxvi Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

https://www-03.ibm.com/security/cryptocards/pciecc2/pdf/4767install.pdf
https://www-03.ibm.com/security/cryptocards/pciecc2/pdf/4767install.pdf
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/developerworks/linux/linux390/distribution_hints.html

– ANSI X9.23:1998 Financial Institution Encryption of Wholesale Financial Messages.

– ANSI X9.24-1:2009 Retail Financial Services Symmetric Key Management -- Part 1:
Using Symmetric Techniques.

– ANSI X9.24-2:2006 Retail Financial Services Symmetric Key Management -- Part 2:
Using Asymmetric Techniques for the Distribution of Symmetric Keys.

– ANSI X9.31:1998 Digital Signature Using Reversible Public Key Cryptography for
the Financial Services Industry.

– ANSI X9.52:1998 Triple Data Encryption Algorithm Modes of Operation.

– ANSI X9.62:2005 Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA).

– ANSI X9.63:2001 Public Key Cryptography for the Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography.

– ANSI X9.102:2008 Symmetric Key Cryptography for the Financial Services Industry
-- Wrapping of Keys and Associated Data.

v Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edition,
Bruce Schneier, John Wiley & Sons, Inc., 1996, ISBN 0-471-12845-7 or ISBN
0-471-11709-9

v ECC Brainpool Standard Curves and Curve Generation, v.1.0, October 19, 2005
Available at http://www.ecc-brainpool.org/download/Domain-parameters.pdf.

v Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation
(RFC 5639), Manfred Lochter and Johannes Merkle, IETF Trust, March 2010.
Available at http://www.rfc-editor.org/rfc/rfc5639.txt

v Federal Information Processing Standards (FIPS), issued by the U.S. National
Institute of Standards and Technology (NIST, see http://www.nist.gov/itl/). The
listed FIPS publications are available from this web site: FIPS PUBLICATIONS.
– FIPS PUB 140-2 Security Requirements for Cryptographic Modules, May, 2001.
– FIPS PUB 180-4 Secure Hash Standard (SHS), May, 2012.
– FIPS PUB 186-4 Digital Signature Standard (DSS), July, 2013.
– FIPS PUB 197 Advanced Encryption Standard (AES), November, 2001.
– FIPS PUB 198-1 The Keyed-Hash Message Authentication Code (HMAC), July,

2008.
v International Organization for Standardization (ISO). ISO is the world's largest

developer and publisher of International Standards. ISO is a network of the
national standards institutes of many countries, one member per country, with a
Central Secretariat in Geneva, Switzerland, that coordinates the system.
– ISO 16609:2004 Banking -- Requirements for Message Authentication Using

Symmetric Techniques.

– ISO/DIS 9564-1 Financial Services -- Personal Identification Number (PIN)
Management and Security -- Part 1: Basic Principles and Requirements for PINs in
Card-Based Systems.

– ISO 9564-4:2016 Financial services -- Personal Identification Number (PIN)
management and security -- Part 4: Requirements for PIN handling in eCommerce
for Payment Transactions

– ISO 20038:2017 Banking and related financial services -- Key wrap using AES

v International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC)
– ISO/IEC 9796-1:1997 Information Technology -- Security Techniques -- Digital

Signature Schemes Giving Message Recovery -- Part 1: Mechanisms Using
Redundancy.

About this document xxvii

|
|
|

|

http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.rfc-editor.org/rfc/rfc5639.txt
http://www.nist.gov/itl/
http://csrc.nist.gov/publications/PubsFIPS.html
https://www.iso.org/standard/61246.html
https://www.iso.org/standard/61246.html
https://www.iso.org/standard/61246.html
https://www.iso.org/standard/64400.html

– ISO/IEC 9796-2:2002 Information Technology -- Security Techniques -- Digital
Signature Schemes Giving Message Recovery -- Part 2: Integer Factorization Based
Mechanisms.

– ISO/IEC 9797-1:1999 Information technology -- Security techniques -- Message
Authentication Codes (MACs) -- Part 1: Mechanisms Using a Block Cipher.

– ISO/IEC 11770-3:2008 Information Technology -- Security Techniques -- Key
Management -- Part 3: Mechanisms Using Asymmetric Techniques.

v National Institute of Standards and Technology (NIST) Special Publications (SP),
U.S. Dept. of Commerce
– NIST SP 800-38D Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC, November 2007. Available at
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

– NIST SP 800-38A Recommendation for Block Cipher Modes of Operations: Methods
and Techniques, 2001 Edition. Available at http://csrc.nist.gov/publications/
nistpubs/800-38a/sp800-38a.pdf.

– NIST SP 800-38B Recommendation for Block Cipher Modes of Operation: The
CMAC Mode for Authentication, May 2005. Available at: http://csrc.nist.gov/
publications/nistpubs/800-38B/SP_800-38B.pdf.

– NIST SP 800-56A Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography (Revised), May 2013. Available at
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf.

– NIST SP 800-90A Revision 1 Recommendation for Random Number Generation
Using Deterministic Random Bit Generators, June 2015. Available at:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf.

– NIST SP 800-108 Recommendation for Key Derivation Using Pseudorandom
Functions (Revised), October 2009 Edition. Available at: http://csrc.nist.gov/
publications/nistpubs/800-108/sp800-108.pdf.

– The NIST SP 800-90A Deterministic Random Bit Generator Validation System
(DRBGVS), updated: October 29, 2015. Available at: http://csrc.nist.gov/
groups/STM/cavp/documents/drbg/DRBGVS.pdf.

v RSA Laboratories, Standard Initiatives, for information on the Public-Key
Cryptographic Standards (PKCS): http://www.emc.com/emc-plus/rsa-labs/
standards-initiatives/index.htm, especially PKCS #11: PKCS #11: Cryptographic
Token Interface Standard

v The MD5 Message-Digest Algorithm, Internet Engineering Task Force Request for
Comments (RFC) 1321, MIT Laboratory for Computer Science and RSA Data
Security, Inc., April 1992. Available at http://www.ietf.org/rfc/rfc1321.txt.

v Visa Integrated Circuit Card Specification (VIS) Version 1.5, Visa International
Service Association and Visa Inc. Available at https://www.scribd.com/doc/
87334890/Visa-VIS-Specification-15-May-2009.

Do you have problems, comments, or suggestions?
Your suggestions and ideas can contribute to the quality and the usability of this
document.

If you have problems using this document, or if you have suggestions for
improving it, complete and mail the Reader's Comment Form found at the back of
the document.

xxviii Common Cryptographic Architecture Application Programmer's Guide

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/DRBGVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/DRBGVS.pdf
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/index.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/index.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.ietf.org/rfc/rfc1321.txt
https://www.scribd.com/doc/87334890/Visa-VIS-Specification-15-May-2009
https://www.scribd.com/doc/87334890/Visa-VIS-Specification-15-May-2009

Part 1. IBM CCA programming

Read the information in this part of the document which introduces programming
for the IBM CCA, AES, DES, HMAC, and PKA cryptography.

The topics in this part explain how to use CCA nodes and AES, DES, HMAC, and
PKA verbs.
v Chapter 1, “Introduction to programming for the IBM Common Cryptographic

Architecture,” on page 3 describes the programming considerations for using the
CCA verbs. It also explains the syntax and parameter definitions used in the
verbs. Information about concurrency is also provided.

v Chapter 2, “Running CCA verbs in PCI-HSM 2016 compliance mode,” on page
31 describes the support for compliance-tagged tokens introduced with CCA 6.0
It gives links to further related information in this document, and discusses the
new warning mode to aid installations in detecting migration concerns.

v Chapter 3, “Using AES, DES, and HMAC cryptography and verbs,” on page 33
gives an overview of AES, DES, and ECC cryptography and provides general
guidance information on how these verbs use different key types and key forms.

v Chapter 4, “Introducing PKA cryptography and using PKA verbs,” on page 71
introduces Public Key Algorithm (PKA) and Elliptic Curve Cryptography (ECC)
support, and describes programming considerations for using the CCA PKA
verbs, such as the PKA key token structure and key management.

v Chapter 5, “TR-31 symmetric key management,” on page 79 introduces X9 TR-31
(Technical Report 31) support, and provides details about the TR-31 key block.

v Chapter 6, “Understanding and managing master keys,” on page 83 provides
information about master key management.

© Copyright IBM Corp. 2007, 2018 1

|
|
|
|

2 Common Cryptographic Architecture Application Programmer's Guide

Chapter 1. Introduction to programming for the IBM Common
Cryptographic Architecture

By using the IBM CCA application programming interface (API), you can obtain
cryptographic and other services from the CEX*C feature and CCA.

The following subtopics are discussed:
v “Available Common Cryptographic Architecture (CCA) verbs”
v “Common Cryptographic Architecture functional overview” on page 4
v “CPACF support” on page 14
v “Security API programming fundamentals” on page 19
v “How to compile and link CCA application programs” on page 24

Available Common Cryptographic Architecture (CCA) verbs
CCA products provide a variety of cryptographic processes and data-security
techniques.

Your application program can call verbs (sometimes called services) to perform the
following functions:

Data confidentiality
Encrypt and decrypt information, typically using the AES or DES
algorithms in Cipher Block Chaining (CBC) mode to enable data
confidentiality.

Data integrity
Hash data to obtain a digest, or process the data to obtain a Message
Authentication Code (MAC) or keyed hash MAC (HMAC), that is useful in
demonstrating data integrity.

Nonrepudiation
Generate and verify digital signatures using either the RSA algorithm or
the ECDSA algorithm, to demonstrate data integrity and form the basis for
nonrepudiation.

Authentication
Generate, encrypt, translate, and verify finance industry personal
identification numbers (PINs) and American Express, MasterCard, and Visa
card security codes with a comprehensive set of finance-industry-specific
services.

Key management
Manage the various AES, DES, ECC, and RSA keys necessary to perform
the mentioned cryptographic operations.

Java interaction
Interact with the Java Native Interface (JNI). The CCA verbs have a specific
version that can be used for JNI work.

Note: In this JNI, a new data type hikmNativeLong is replacing the old
type hikmNativeInteger since CCA version 5.2. Both types inherit from an
abstract class hikmNativeNumber. Thus, type hikmNativeInteger is still
supported, so you can run existing applications with this deprecated data

© Copyright IBM Corp. 2007, 2018 3

type. However, start using type hikmNativeLong for new applications
instead, because hikmNativeInteger may be removed in the future.

CCA management
Control the initialization and operation of CCA.

This publication groups the many available verbs by topics. Each topic lists the
verbs in alphabetical order by verb pseudonym.

Common Cryptographic Architecture functional overview
You use the CCA security API to access a common cryptographic architecture.

Figure 1 on page 5 provides a conceptual framework for positioning the CCA
security API, which you use to access a common cryptographic architecture.
Application programs make procedure calls to the CCA security API to obtain
cryptographic and related I/O services. You can issue a call to the CCA security
API from essentially any high-level programming language. The call, or request, is
forwarded to the cryptographic services access layer and receives a synchronous
response. Your application program loses control until the access layer returns a
response after processing your request.

4 Common Cryptographic Architecture Application Programmer's Guide

The products that implement the CCA support consist of both hardware and
software components.

CCA software support: The software consists of application development and
runtime software components.
v The application development software primarily consists of language bindings

that can be included in new applications to assist in accessing services available
at the API. Language bindings are provided for the C and Java programming
languages.

v The runtime software can be divided into the following categories:
– Service-requesting programs, including application and utility programs.
– The security API, an agent function that is logically part of the calling

application program or utility.
– The cryptographic services access layer: an environment-dependent request

routing function, key-storage support services, and device driver to access one
or more hardware cryptographic engines.

Application and utility programs

Security API

Cryptographic services

access layer

Security

server

Directory

server, AES, HMAC

Directory

server, DES

Directory

server, PKA

Device driver

Cryptographic engine

Figure 1. CCA security API, access layer, and cryptographic engine

Chapter 1. Program for CCA 5

– The cryptographic engine software that gives access to the cryptographic
engine hardware.
The cryptographic engine is implemented in the hardware of the CEX*C
coprocessor. Security-sensitive portions of CCA are implemented in the
cryptographic engine software running in the protected coprocessor
environment.

– Utility programs and tools provide support for administering CCA secret
keys, interacting with CCA managed symmetric and public key cryptography
key storage, and configuring the software support.

You can create application programs that employ the CCA security API or you can
purchase applications from IBM or other sources that use the products. This
document is the primary source of information for designing systems and
application programs that use the CCA security API with the cryptographic
coprocessors.

Cryptographic engine: The CCA architecture defines a cryptographic subsystem
that contains a cryptographic engine operating within a protected boundary. The
coprocessor's tamper-resistant, tamper-responding environment provides physical
security for this boundary and the CCA architecture provides the logical security
needed for the full protection of critical information.

CEX3C Coprocessors: The coprocessor provides a secure programming and
hardware environment wherein AES, DES, RSA, Elliptic Curve, and HMAC
processes are performed. Each cryptographic coprocessor includes a
general-purpose processor, non-volatile storage, and specialized cryptographic
electronics. These components are encapsulated in a protective environment to
enhance security. The IBM CCA Support Program enables applications to employ a
set of AES, DES, RSA, Elliptic Curve, and HMAC-based cryptographic services
utilizing the coprocessor hardware. Services include:
v DES, AES, RSA, Elliptic Curve, and HMAC key-pair generation
v DES, AES, RSA, Elliptic Curve, and HMAC host-based key record management
v Digital signature generation and verification
v Cryptographic key wrapping and unwrapping
v Data encryption, decryption and MAC generation/verification
v PIN processing for the financial services industry
v Other services, including DES key-management based on control-vector-enforced

key separation.

CEX4C Coprocessor: The coprocessor provides the same cryptographic functions as
the CEX3C coprocessor.

CEX5C Coprocessor: The coprocessor provides the same functions as the CEX4C
coprocessor with more algorithms moved from hardware-enhanced to fully
hardware-accelerated. CMAC, VFPE, AESKW, and other algorithms are added.

CEX6C Coprocessor: The coprocessor provides domain support for up to 85 logical
partitions. When configured as a CCA coprocessor, it includes secure key functions
with emphasis on the specialized functions required for banking and payment card
systems. It is optionally programmable to add custom functions and algorithms by
using User Defined Extensions (UDX). A new mode, called Payment Card Industry
(PCI) PIN Transaction Security (PTS) Hardware Security Module (HSM), shortened
to PCI-HSM 2016 compliance mode, is available exclusively for Crypto Express6S

6 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|
|
|

in CCA mode. Exploitation of PCI-HSM 2016 mode with compliance-tagged secure
key tokens simplifies compliance with PCI requirements for hardware security
modules.

CCA: Common Cryptographic Architecture (CCA) is the basis for a consistent
cryptographic product family. Applications employ the CCA security API to obtain
services from, and to manage the operation of, a cryptographic system that meets
CCA specifications.

CCA access control: Each CCA node has an access-control system enforced by the
hardware and protected software. The robust UNIX style access controls integrated
into the Linux operating system are used to protect the integrity of the underlying
CCA hardware environment. The specialized processing environment provided by
the cryptographic engine can be kept secure because selected services are provided
only when certain requirements are met or a Trusted Key-Entry console is used to
enable access. The access-control decisions are performed within the secured
environment of the cryptographic engine and cannot be subverted by rogue code
that might run on the main computing platform.

Coprocessor certification: After quality checking a newly manufactured
coprocessor, IBM loads and certifies the embedded software. Following the loading
of basic, authenticated software, the coprocessor generates an RSA key-pair and
retains the private key within the cryptographic engine. The associated public key
is signed by a certification key securely held at the manufacturing facility and then
the certified device key is stored within the coprocessor. The manufacturing facility
key has itself been certified by a securely held key unique to the CEX*C product
line.

The private key within the coprocessor, known as the device private key, is
retained in the coprocessor. From this time on, if tampering is detected or if the
coprocessor batteries are removed or lose power in the absence of bus power, the
coprocessor sets all security-relevant keys and data items to zero. This process is
irreversible and results in the permanent loss of the factory-certified device key, the
device private key, and all other data stored in battery-protected memory.
Security-sensitive data stored in the coprocessor flash memory is encrypted. The
key used to encrypt such data is itself retained in the battery-protected memory.

CCA master key: When using the CCA architecture, working keys, including
session keys and the RSA and ECC private keys used at a node to form digital
signatures or to unwrap other keys, are generally stored outside the
cryptographic-engine protected environment. These working keys are wrapped
(DES triple-encrypted or AES encrypted) by the CCA master key. The master key is
held in the clear (not enciphered) within the cryptographic engine.

The number of keys usable with a CCA subsystem is thus restricted only by the
host server storage, not by the finite amount of storage within the coprocessor
secure module. In addition, the working keys can be used by additional CCA
cryptographic engines which have the same master key. This CCA characteristic is
useful in high-availability and high-throughput environments where multiple
cryptographic processors must function in parallel.

Establishing a CCA master key: To protect working keys, the master key must be
generated and initialized in a secure manner. One method uses the internal
random-number generator for the source of the master key. In this case, the master
key is never external to the node as an entity and no other node has the same
master key unless master-key cloning is authorized and in use (unless, out of all

Chapter 1. Program for CCA 7

|
|
|

the possible values, another node randomly generates the same master-key data). If
an uncloned coprocessor loses its master key - for example, the coprocessor detects
tampering and destroys the master key, - there is no way to recover the working
keys that it wrapped. The number of possible values is:
v For DES and RSA master keys, 2168

v For AES and APKA master keys, 2256

Another master-key-establishment method enables authorized users to enter
multiple, separate key parts into the cryptographic engine. As each part is entered,
that part is XORed with the contents of the new master-key register. When all
parts have been accumulated, a separate command is issued to promote the
contents of the current master-key register to the old master-key register and to
promote the contents of the new master-key register to the current master-key
register. The length of the key parts is:
v For DES and RSA master keys, 168 bits
v For AES and APKA master keys, 256 bits

CCA verbs: An application or utility program obtains service from the CCA
Support Program by issuing service requests (verb calls or procedure calls) to the
runtime subsystem (see Chapter 27, “Sample verb call routines,” on page 1093). To
fulfill these requests, the Support Program in turn obtains service from the
coprocessor software and hardware.

The available services are collectively described as the CCA security API. All the
software and hardware accessed through the CCA security API should be
considered an integrated subsystem. A command processor performs the verb
request within the cryptographic engine.

Commands and access control, roles, profiles: In order to ensure that only
designated individuals (or programs) can run commands such as master-key
loading, each command processor that performs sensitive processing interrogates
one or more control-point values within the cryptographic engine access-control
system for permission to perform the request.

The access-control system includes one or more roles. Each role defines the
permissible control points for users of that role. In the IBM Z environment, all
application programs run using the permissions defined in the default role for
their domain. The default role can only be modified using the TKE workstation.
For a description of the functions that are permitted by the default version of the
default role, see z/OS Cryptographic Services ICSF Trusted Key Entry Workstation
User’s Guide.

How application programs obtain service
Application programs and utility programs obtain services from the security
product by issuing service requests to the runtime subsystem of software and
hardware. Use a procedure call according to the rules of your application language.

When the cryptographic services access layer receives requests concurrently from
multiple application programs, it serializes the requests and returns a response for
each request. There are other multiprocessing implications arising from the
existence of a common master-key and a common key-storage facility. These
implications are covered by separate topics of this publication.

8 Common Cryptographic Architecture Application Programmer's Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm

The way application programs and utilities are linked to the API services depends
on the computing environment. In the Linux environment, the operating system
dynamically links application security API requests to the subsystem shared object
library code. Compile application programs that use CCA and link the compiled
programs to the CCA library. The library and its default distribution location is
/usr/lib64/libcsulcca.so.

Together, the security API shared library and the environment-dependent request
routing mechanism act as an agent on behalf of the application and present a
request to the server. Requests can be issued by one or more programs. Each
request is processed by the server as a self-contained unit of work. The
programming interface can be called concurrently by applications running as
different processes. The security API can be used by multiple threads in a process
and is thread safe.

In each server environment, a device driver provided by IBM supplies low-level
control of the hardware and passes the request to the hardware device. Requests
can require one or more I/O commands from the security server to the device
driver and hardware.

The security server and a directory server manage key storage. Applications can
store locally used cryptographic keys in a key-storage facility. This is especially
useful for long-life keys. Keys stored in key storage are referenced using a key
label. Before deciding whether to use the key-storage facility or to let the
application retain the keys, consider system design trade-off factors, such as key
backup, the impact of master-key changing, the lifetime of a key, and so forth.

Overlapped processing and load balancing
You can maximize throughput by organizing your application or applications to
make multiple, overlapping calls to the CCA API.

Calls to the CCA security API are synchronous, that is, your program loses control
until the verb completes. Multiple processing-threads can make concurrent calls to
the API.

You can maximize throughput by organizing your application or applications to
make multiple, overlapping calls to the CCA API. You can also increase throughput
by employing multiple coprocessors, each with CCA. You can maximize
throughput by organizing your application (or applications) to make multiple,
overlapping calls to the CCA API. You can also increase throughput by employing
multiple coprocessors, each with CCA. Another way to maximize throughput is to
make use of the AUTOSELECT option for automatic load-balancing. See
“Multi-coprocessor selection capabilities” on page 11.

Within the coprocessor, the CCA software is organized into multiple threads of
processing. This multiprocessing design is intended to enable concurrent use of the
coprocessor's main engine, PCIe communications, DES and Secure Hash
Algorithm-1 (SHA-1) engine, and modular-exponentiation engine.

Host-side key caching

Calls to the CCA security API are synchronous, that is, your program loses control
until the verb completes. Multiple processing-threads can make concurrent calls to
the API.

Chapter 1. Program for CCA 9

CCA provides caching of key records obtained from key storage within the CCA
host code. However, the host cache is unique for each host process. If different host
processes access the same key record, an update to a key record caused in one
process does not affect the contents of the key cache held for other processes.
Caching of key records within the key-storage system can be suppressed so all
processes access the most current key-records. To suppress caching of key records,
use the SET command to set the environment variable CSUCACHE to NO. If this
environment variable is not set, or is set to anything other than NO, caching of key
records will not be suppressed. The CSUCACHE environment variable does not
impact CPACF translated key caching.

Domain selection capabilities

Beginning with CCA 6.0 and Linux kernel version 4.10, the user can exploit
multiple domains. To find out the available domains on your partition use the
lszcrypt command:

lszcrypt

CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT

00 CEX5C CCA-Coproc online 36
00.0005 CEX5C CCA-Coproc online 10
00.001f CEX5C CCA-Coproc online 7

In the example, there is a single card, designated ID 0. For card 0 there are two
domains available, X'05' and X'1f' (31 decimal).

There is a default domain for the system, which can be retrieved using the
following command:

cat /sys/bus/ap/ap_domain

CCA uses this default domain if no other choice is made using the
CSU_DEFAULT_DOMAIN environment variable.

You can configure a CCA application to use the multi-domain capabilities with the
environment variable CSU_DEFAULT_DOMAIN. The CCA library scans this
variable one time when the application starts, but not for every request. CCA does
not try to fix bad values for the variable. An error is returned for each request sent
to an unconfigured domain, and information is placed into the system log.

Using CSU_DEFAULT_DOMAIN
v Selecting a single domain

To set a single domain for use by the current application, whether that is a
configuration utility (such as panel.exe) or a production business application, set
the CSU_DEFAULT_DOMAIN variable to the decimal number for that domain.
Continuing with the previous example, if domain 31 is desired, use this
command:

export CSU_DEFAULT_DOMAIN=31

Use cases for a single-domain configuration in a multi-domain system image

10 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
|

|
|
|
|
|
|
|
||

|
|

|
|

|
||

|
|

|
|
|
|
|

|

|

|
|
|
|
|

|
||

|

– When setting master keys for multiple domains on the same card using the
panel.exe utility, set the default domain to the desired value in between
configuration actions to target the correct domain.

– If there are two applications that run on the same system but require unique
master keys and unique key storage locations:
- Configure domain X on all cards with the master key for application_1, and

configure domain Y on all cards with the master key for application_2.
- Create unique key storage for each application.
- Set the CSU_DEFAULT_DOMAIN environment variable for each

application.
v Selecting any domain

Similar to the multi-card load-balancing approach, there is a way to request that
the Linux device driver load-balances your requests across all domains. It is best
used in concert with the multi-card load-balancing approach since there is no
extra performance capacity available by using a second domain from the same
card. It is very important that all used domains used are configured with the
same master key. Also, further required configuration (such as decimalization
tables) must be the same for all domains, if they are made available to a system
that exploits multi-domain load-balancing.
To configure multi-domain load-balancing, use this command:

export CSU_DEFAULT_DOMAIN=DOM-ANY

Multi-coprocessor selection capabilities
Multi-coprocessor selection capabilities allow you to employ more than one CCA
coprocessor.

When more than one CCA coprocessor is installed, an application program can
control which CCA coprocessor to use. It can explicitly select a CCA coprocessor, it
can switch on the AUTOSELECT option, or it can optionally employ the default
CCA coprocessor.

AUTOSELECT option

If switched on, the AUTOSELECT option overrides an explicit CCA coprocessor
selection and default CCA coprocessor selection for all verbs (except those listed in
“Verbs that ignore AUTOSELECT” on page 12).

When the AUTOSELECT option is switched on, the CCA coprocessor to be used by
a verb will be selected by the operating system (the Linux device driver) from the
set of available CCA coprocessors, including any coprocessors loaded with CCA
user defined function (UDX) code. The Linux device driver chooses a CCA
coprocessor based on a policy for load balancing.

To switch on the AUTOSELECT option, use the Cryptographic Resource Allocate
verb (CSUACRA). Alternatively, the AUTOSELECT option can be switched on at
program start by setting the environment variable CSU_DEFAULT_ADAPTER to
the value DEV-ANY. For example:
export CSU_DEFAULT_ADAPTER=DEV-ANY

To switch off the AUTOSELECT option, use the Cryptographic Resource Deallocate
verb (CSUACRD).

Chapter 1. Program for CCA 11

|
|
|

|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|

|

|
||

|

Master key coherence for AUTOSELECT

When using the AUTOSELECT option, all CCA coprocessors accessible by the
operating system must have the same state. In particular, they must be configured
with the same master key as appropriate for the services in use. For example, if
your application uses only DES functions and you enable AUTOSELECT, then the
SYM-MK should be the same across all accessible CCA coprocessors. If you use
any RSA functions from PKA verbs, then the ASYM-MKs must be the same. For
AES usage the AES-MKs must match, and for ECC the APKA-MK must match.

Verbs that ignore AUTOSELECT

The following verbs ignore the AUTOSELECT option and use the explicitly
selected or default CCA coprocessor instead. These verbs act as if the
AUTOSELECT option does not exist, acting exactly as they did in prior releases in
which AUTOSELECT was not present.

Table 5. Verbs that ignore AUTOSELECT

Verb Explanation

CSUACFQ When querying CCA coprocessor state it is important to retrieve data from
the explicitly queried CCA coprocessor.

CSUARNT When testing adapter health it is also important to receive explicit results.

CSNDRKL,
CSNDRKD

Listing and managing the retained keys for a CCA coprocessor requires
dealing with explicitly selected CCA coprocessors. Note that it is specifically
not recommended to use any retained key functions (such as choosing to
use retained keys with PKA verbs) when AUTOSELECT is active. By their
very nature retained keys are tied to the specific CCA coprocessor where
they were created

CSNBMKP Managing the Master Keys for a CCA coprocessor also requires explicit
allocation and de-allocaton to achieve expected results.

HOST-only
verbs

Some verbs are not impacted by AUTOSELECT simply because they never
use the CCA coprocessor. These verbs take actions that do not involve
secrets guarded by the card Master Keys. These include:

CSUACFV, CSNBKSI, CSNBCVG, CSNBKTB, CSNBKTB2, CSNBKTP,
CSNBKTP2, CSNBT31O, CSNBT31R, CSNBT31P, CSNBAKRC,
CSNBAKRD, CSNBAKRL, CSNBAKRR, CSNBAKRW, CSNBKRC,
CSNBKRD, CSNBKRL, CSNBKRR, CSNBKRW, CSNDKRC, CSNDKRD,
CSNDKRL, CSNDKRR, CSNDKRW, CSNDPKB, CSNDPKX

CPACF using
verbs

Some verbs use the CPACF according to configuration of appropriate
environment variables. These verbs will ignore AUTOSELECT if told to use
CPACF. These include:

CSNBOWH, CSNBDEC, CSNBENC, CSNBSAE, CSNBSAD, CSNBMGN,
CSNBMVR

Explicit CCA coprocessor selection

To explicitly select a CCA coprocessor, use the Cryptographic Resource Allocate
verb (CSUACRA). This verb allocates a CCA coprocessor loaded with the CCA
software. When a CCA coprocessor is allocated and the AUTOSELECT option is
not on, CCA requests are routed to it until it is de-allocated. Similarly, when a
CCA coprocessor is allocated and one of the verbs that ignore the AUTOSELECT
option is used, then CCA requests are routed to it until it is de-allocated.

12 Common Cryptographic Architecture Application Programmer's Guide

|
|

To de-allocate an allocated coprocessor, use the Cryptographic Resource Deallocate
verb (CSUACRD). When a coprocessor is not allocated (either before an allocation
occurs or after the cryptographic resource is de-allocated), requests are routed to
the default coprocessor unless the AUTOSELECT option is on.

Note: The scope of the Cryptographic Resource Allocate and the Cryptographic
Resource Deallocate verbs is to a thread. A multi-threaded application program can
use all of the installed CCA coprocessors simultaneously. A program thread can
use only one of the installed coprocessors at any given time, but it can switch to a
different installed coprocessor as needed. To perform the switch, a program thread
must deallocate an allocated cryptographic resource, if any, and then it must
allocate the desired cryptographic resource. The Cryptographic Resource Allocate
verb fails if a cryptographic resource is already allocated.

Listing CCA coprocessors

With the first call to CCA from a process, CCA associates coprocessor designators
CRP01, CRP02, and so on with specific coprocessors. The host determines the total
number of coprocessors installed through a call to the coprocessor device driver.
Adding, removing, or relocating coprocessors can alter the number associated with
a specific coprocessor. The host then polls each coprocessor in turn to determine
which ones contain the CCA firmware. As each coprocessor is evaluated, the CCA
host associates the identifiers CRP01, CRP02, and so forth to the CCA coprocessors.
CCA coprocessors loaded with a UDX extension are also assigned a CRPnn
identifier.

For a specific device driver, names such as these are used: CRPnn, cardnn, APnn,
and so forth, where the nn values normally do not match (for example, some start
with 0, others start with 1).

To determine the coprocessor type of a card (one out of CEX3C through CEX6C),
use one of these methods:
v Invoke the Cryptographic Facility Query verb (see “Determining if a card is a

CEX3C, CEX4C, CEX5C, or a CEX6C” on page 101).
v Use the lszcrypt command (see “Confirming your cryptographic devices” on

page 1105).
v Use the hwtype attribute of your cryptographic devices in sysfs (see the version

of Device Drivers, Features, and Commands, that applies to your distribution).
v Run panel.exe -x using the panel.exe utility installed with the RPM, to get a

quick summary of cards available and their status. See “The panel.exe utility” on
page 1121.

v Run ivp.e, another utility installed with the RPM, which gives more detailed
information about each card available. See Chapter 31, “Utilities,” on page 1119.

Note that the mapping of logical card identifiers such as CRP01 and CRP02 to
physical cards in your machine is not defined. This is because the mapping can
change depending on the machine and its configuration. If your application needs
to identify specific coprocessor cards, you can do one of the following:
v Use the Cryptographic Facility Query verb (see “Cryptographic Facility Query

(CSUACFQ)” on page 100) with the STATCARD or STATCRD2 rule_array
keyword

v Use the panel.exe utility program with option -x, in order to read a card's serial
number (see “The panel.exe utility” on page 1121).

Chapter 1. Program for CCA 13

|

Default CCA coprocessor

The selection of a default device occurs with the first CCA call to a coprocessor.
When the default device is selected, it remains constant throughout the life of the
thread. Changing the value of the environment variable after a thread uses a
coprocessor does not affect the assignment of the default coprocessor. If a thread
with an allocated coprocessor ends without first de-allocating the coprocessor,
excess memory consumption results. It is not necessary to deallocate a
cryptographic resource if the process itself ends. It is suggested only if individual
threads end while the process continues to run.

You can alter the default designation by explicitly setting the
CSU_DEFAULT_ADAPTER environment variable. This is accomplished by issuing
following command:
export CSU_DEFAULT_ADAPTER=CRPxx

Replace CRPxx with the identifier for the resource you wish to use, such as CRP02.
The rpm limits the maximum value of xx such that CRP01 through CRP08 are the
valid identifiers for the default coprocessor (limited by the number of coprocessors
actually configured).

When cards of multiple types (CEX*C) are active in the same system, note the
following:
v The CCA library detects CEX*C adapters and intermingle them in the CRPxx

adapter instance list. This is a list of all available adapters, in the order that they
were discovered by the device driver.

v The default adapter will be the lowest numbered CEX*C instance, that is, the
newest adapter level, found by the device driver. For example, if the ordered
discovery list is: [CEX3C, CEX4C, CEX3C, CEX4C], the default adapter will be
the first CEX4C.

v A user can specify the proper CRPxx number to allocate and work with any card
(CEX*C) .

v For a specific device driver, names such as these are used: CRPnn, cardxx, APxx,
and so forth, where the xx values normally do not match (for example, some
start with 0, others start with 1).

CPACF support
Central Processor Assist for Cryptographic Functions (CPACF) must be configured
and enabled on the system before you can use it.

CPACF support has these features:
v “Environment variables that affect CPACF usage”
v “Access control points that affect CPACF protected key operations” on page 16
v “CPACF operation (protected key)” on page 16
v “CCA library CPACF preparation at startup” on page 18
v “Interaction between the default card and use of protected key CPACF” on page

19

Environment variables that affect CPACF usage
The CSU_HCPUACLR and CSU_HCPUAPRT environment variables control
whether the CPACF is used for certain CCA functions.

14 Common Cryptographic Architecture Application Programmer's Guide

These variables are overridden by the explicit use of the Cryptographic Resource
Allocate (CSUACRA) and Cryptographic Resource Deallocate (CSUACRD) verbs to
enable or disable these access patterns. To avoid confusion, the environment
variables are given similar names to the keywords used by Cryptographic
Resource Allocate (CSUACRA) and Cryptographic Resource Deallocate
(CSUACRD).

Note: The default values listed here are valid even if these environment variables
are not defined. Their settings represent default policy decisions made in the
library code.

CSU_HCPUACLR
Use the CSU_HCPUACLR variable to allow CPACF for clear key operations and
hashing algorithms.

Set CSU_HCPUACLR to 1 in a profile setup file or with this command:
export CSU_HCPUACLR=1

Setting this variable to any other value (except for the case where the variable has
not been set, as noted above) results in disabling the use of the CPACF for clear
key operations and hashing algorithms. The default is 1, meaning that the function
is enabled.

Affected verbs
v MDC Generate (CSNBMDG)
v One-Way Hash (CSNBOWH)
v Symmetric Algorithm Decipher (CSNBSAD) (clear key AES)
v Symmetric Algorithm Encipher (CSNBSAE) (clear key AES)

CSU_HCPUAPRT
Use the CSU_HCPUAPRT variable to use CPACF for protected key (translated
secure key) operations.

Set CSU_HCPUAPRT to 1 in a profile setup file or with this command:
export CSU_HCPUAPRT=1

Setting this variable to any other value (except for the case where the variable has
not been set, as noted above) results in disabling the use of the CPACF for
protected key (translated secure key) operations. The default is 0, meaning that the
function is disabled.

Affected verbs
v Decipher (CSNBDEC)
v Encipher (CSNBENC)
v MAC Generate (CSNBMGN)
v MAC Verify (CSNBMVR)
v Symmetric Algorithm Decipher (CSNBSAD) (clear key AES, protected key AES)
v Symmetric Algorithm Encipher (CSNBSAE) (clear key AES, protected key AES)

Chapter 1. Program for CCA 15

|

|

Access control points that affect CPACF protected key
operations

There are two access points that enable the protected key feature.

These two access points are:

High-performance secure DES keys
This is bit X'0295', and is set ON by default.

This ACP enables translating DES keys for use with the CPACF. Without
this bit set ON, the call to the CEX*C to rewrap the key under the CPACF
wrapping key will fail with a return code 8 and reason code 90, which will
in turn imply disabling the use of this function by the host user. This error
will not be returned to the user, instead the operation will be sent to the
CEX*C. Because the default value of the bit is ON, it is assumed that the
user will know that it is set OFF on purpose. A return code 8 and reason
code 90 will cause no further requests to go to the CEX*C verb that
translates keys, in an effort to preserve normal path performance.

High-performance secure AES keys
This is bit X'0296', and is set ON by default.

This ACP enables translating AES keys for use with the CPACF. Without
this bit set ON, the call to the CEX*C to rewrap the key under the CPACF
wrapping key will fail with a return code 8 and reason code 90, which will
in turn imply disabling the use of this function by the host user. This error
will not be returned to the user, instead the operation will be sent to the
CEX*C. Because the default value of the bit is ON, it is assumed that the
user knows that it is set OFF on purpose. A return code 8 and reason code
90 do not cause further requests to go to the CEX*C verb that translates
keys, in an effort to preserve normal path performance.

CPACF operation (protected key)
These are details for Central Processor Assist for Cryptographic Functions (CPACF)
usage by the host library.

Note that at system power-on, the CPACF generates a new Key Encryption Key
(KEK, kek-t) for wrapping translated keys.

Figure 2 on page 17 illustrates the CPACF layer as it relates to the security access
API and cryptographic engine. The CPACF exploitation layer examines commands
received by the security server to see if they can be redirected to the CPACF. If so,
this layer makes preparations (including translating secure keys to protected keys),
and then call the CPACF directly. If all preparations and the CPACF operations are
successful, the results are returned as a normal return through the security server.
For any errors, the command is redirected back through the security server to the
normal path, using the allocated CEX*C for the thread making the call.

16 Common Cryptographic Architecture Application Programmer's Guide

|

|

Clear key or No key: For operations that do not use keys (such as hash
algorithms) or operations that use keys that are not encrypted under the card
master key, (called clear keys), no translation is necessary and the CPACF is used
immediately.

Protected key: The device driver and the other layers are used for protected key
support, for translating keys. This relationship is similar to the 'directory server'
relationship: a translation layer invisible to the customer. After translation the
'translated-key' is stored in an invisible runtime cache so that the next use of the
key can avoid the translation step. For protected key usage, a CEX*C feature must
be available and allocated for use by the thread.

CPACF service actions and running applications: The CPACF is an independent
hardware unit, like the CEX*C itself, and can be independently configured
available or unavailable while a Linux instance is running by service technicians
performing service actions. If the CPACF is cycled it will generate a new wrapping
key for translated keys, invalidating all of the keys in the CCA library key
translation cache. Therefore, it is never advisable to attempt such a service action
while there are system instances with applications running that use the CPACF.

If such an action is undertaken, applications should be stopped and restarted so
that the libcsulcca.so is unloaded from memory and reloaded. This will cause the
key cache to be cycled. A more complete measure would be to reboot system
images. If these precautions are disregarded and a CPACF service action is
undertaken as described, application crashes may ensue with a SIGSEGV error.
This could occur due to translated keys wrapped under outdated CPACF
wrapping keys being used.

Figure 2. CPACF

Chapter 1. Program for CCA 17

A normal system-wide power cycle will cause the CPACF to generate a new
wrapping key by design, however, this action also of course cycles all of the hosted
system LPARs and VM system images so there is no problem; translated keys are
not cached in permanent storage.

Using keys with CPACF, protected key
Follow the steps in this procedure to use keys with CPACF, protected key.

Procedure
1. An eligible CCA verb call (see lists in “Access control points that affect CPACF

protected key operations” on page 16) specifying a key token or key identifier
for a key token that is a normal internal CCA key token, called key-e here,
comes into the CCA library.

2. The CCA library verifies that a CEX*C is available for key translation. If not,
then the standard no-available-device error is returned.

3. The CCA library tries to find an already translated version (key-t) that matches
the key-e passed into the CCA library.
v The user application (CCA library in this case) must cache translated key-t

objects in RAM, using the key-e tokens as references.
4. If a key-t is not found for the key-e used:

The CCA library translates the key-e to a key-t for use with the CPACF using
CCA secure services, then caches the key pair.

5. At this point, either a fresh key-t has been obtained, or a key-t was found in
RAM cache for the operation.

6. The CCA library directs the operation to the CPACF using the key-t.

Results

The panel.exe --list-cpacf command displays all the supported CPACF
functions. This is especially useful on a z/VM system, to make sure that the
protected key functions are available. For details, see “The panel.exe utility” on
page 1121.

Using keys with CPACF, clear key or no key
Follow the steps in this procedure to use keys with CPACF, clear key or no key.

Procedure
1. An eligible CCA verb call (see lists in “Access control points that affect CPACF

protected key operations” on page 16) comes into the CCA library.
2. No CEX*C is necessary, so no check for availability or Cryptographic Resource

Allocate (CSUACRA) call will be implied.
3. The CCA library prepares an appropriate CPACF clear key (key-c) structure

using the clear key passed to the CCA verb (key-v).
4. The CCA library directs the operation to the CPACF using the key-c.

CCA library CPACF preparation at startup
When the CCA library first starts up, it must take some initialization steps to
prepare for using the Central Processor Assist for Cryptographic Functions
(CPACF).

18 Common Cryptographic Architecture Application Programmer's Guide

|

Procedure
1. Check configuration options to see if either is set to ON, allowing some use of

the CPACF. If neither is on, skip the rest of initialization
2. Check for existence and configuration of the CPACF.

Interaction between the default card and use of protected key
CPACF

While the CPACF can be used to encrypt and decrypt data in the absence of a
CEX*C, for protected key operations, a CEX*C is still necessary and it must be the
allocated or default adapter for the thread doing the processing.

Using the AUTOSELECT option and the use of protected key
CPACF

While the CPACF can be used to encrypt and decrypt data in the absence of a
CEX*C, for protected key operations a CEX*C is still necessary, because the users'
key tokens are translated with a service only available on the CEX*C for use with
the CPACF.

Therefore, when enabling the AUTOSELECT option, all CCA coprocessors available
to the operating system must be CEX3C or newer. See “Multi-coprocessor selection
capabilities” on page 11 for more information.

Security API programming fundamentals
You obtain CCA cryptographic services from the coprocessor through procedure
calls to the CCA security application programming interface (API).

Most of the services provided are considered an implementation of the IBM
Common Cryptographic Architecture (CCA). Most of the extensions that differ
from other IBM CCA implementations are in the area of the access-control services.
If your application program is used with other CCA products, compare the
product literature for differences.

Your application program requests a service through the security API by using a
procedure call for a verb. The term verb implies an action that an application
program can initiate. Other publications might use the term callable service instead.
The procedure call for a verb uses the standard syntax of a programming
language, including the entry-point name of the verb and the parameters of the
verb. Each verb has an entry-point name and a fixed-length parameter list.

The security API is designed for use with high-level languages, such as C, COBOL,
or RPG and for low-level languages, such as assembler language. It is also
designed to enable you to use the same verb entry-point names and variables in
the various supported environments. Therefore, application code you write for use
in one environment generally can be ported to additional environments with
minimal change.

Verbs, variables, and parameters
Certain information is included for each verb, including the entry-point name and
the parameter list.

Chapter 1. Program for CCA 19

Each verb has an entry-point name and a fixed-length parameter list. Part 2, “CCA
verbs,” on page 87 describes each verb, and includes the following information for
each verb:
v Pseudonym
v Entry-point name
v Description
v Format
v Parameters
v Restrictions
v Required commands
v Usage notes
v Related information
v JNI version

Pseudonym
Also known as a general-language name or verb name. This name
describes the function that the verb performs, such as Key Generate.

Entry-point name
Also known as a computer-language name. This name is used in your
program to call the verb. Each verb's 7 or 8 character entry-point name
begins with one of the following prefixes:

CSNB Generally, the AES and DES verbs

CSND Public key cryptography verbs, including RSA and Elliptic Curve

CSUA Cryptographic-node and hardware-control verbs

The last three or four letters in the entry-point name after the prefix
identify the specific verb in a group and are often the first letters of the
principal words in the verb pseudonym.

When verbs are described throughout this publication, they are sometimes
referred to by the pseudonym, and at other times by the pseudonym
followed by the entry-point name in parenthesis. An example of this is:
Key Generate (CSNBKGN).

The verb prefixes used here are different from those used by the Integrated
Cryptographic Service Facility (ICSF).

Description
The verb is described in general terms. Be sure to read the parameter
descriptions because these add additional detail.

Format
The format section for each verb lists the entry-point name followed by the
list of parameters for the verb. You must code all the parameters, and they
must be in the order listed.

entry-point name(
return_code,
reason_code,
exit_data_length,
exit_data,
parameter_5,
parameter_6,
...
parameter_n)

20 Common Cryptographic Architecture Application Programmer's Guide

Parameters
All information exchanged between your application program and a verb
is through the variables identified by the parameters in the procedure call.
These parameters are pointers to the variables contained in application
program storage that contain information to be exchanged with the verb.
Each verb has a fixed-length parameter list and though all parameters are
not always used by the verb, they must be included in the call.

The first four parameters are the same for all of the verbs. For a
description of these parameters, see “Parameters common to all verbs” on
page 22. For the description of the remaining parameters, see the
definitions with the individual verbs.

In the description for each parameter, data flow direction and data type are
indicated, as follows.

Direction: direction
Type: data type

direction The parameter descriptions use the following terms to identify
the flow of information:

Input The application program sends the variable to the verb (to the
called routine).

Output
The verb returns the variable to the application program.

Input/Output
The application program sends the variable to the verb or the verb
returns the variable to the application program, or both.

data type Data identified by a verb parameter can be a single value or a
one-dimensional array. If a parameter identifies an array, each data element
of the array is of the same data type. If the number of elements in the
array is variable, a preceding parameter identifies a variable that contains
the actual number of elements in the associated array. Unless otherwise
stated, a variable is a single value, not an array.

For each verb, the parameter descriptions use the following terms to
describe the type of variable:

Integer
A CCA integer (CCAINT). On Linux on Z, this is defined as the
system type long. On other platforms this has been defined as a
4-byte (32-bit), signed, two's-complement binary number. (CCA for
Linux on Z has always defined the CCA integer as long).

String A series of bytes where the sequence of the bytes must be
maintained. Each byte can take on any bit configuration. The string
consists only of the data bytes. No string terminators, field-length
values, or typecasting parameters are included. Individual verbs
can restrict the byte values within the string to characters or
numerics.

Character data must be encoded in the native character set of the
computer where the data is used. Exceptions to this rule are noted
where necessary.

Array An array of values, which can be integers or strings. Only

Chapter 1. Program for CCA 21

one-dimensional arrays are permitted. For information about the
parameters that use arrays, see “The rule_array and other
keyword parameters.”

Restrictions
Any restrictions are noted.

Required commands
Any access control points required to use the verb are described here.

Usage notes
Usage notes about this verb are listed.

Related information
Any related information is noted.

JNI version
If the verb has a Java Native Interface version, it is described.

Commonly encountered parameters
Some parameters are common to all verbs and other parameters are used with
many of the verbs.
v “Parameters common to all verbs”
v “The rule_array and other keyword parameters”
v “Key tokens, key labels, and key identifiers” on page 23

Parameters common to all verbs
A parameter is an address pointer to the associated variable in application program
storage.

The first four parameters (return_code, reason_code, exit_data_length, and
exit_data) are the same for all verbs:

return_code
The return code specifies the general result of the verb. Chapter 18, “Return
codes and reason codes,” on page 825 lists the return codes.

reason_code
The reason code specifies the result of the verb that is returned to the
application program. Each return code has different reason codes assigned to it
that indicate specific processing problems. Chapter 18, “Return codes and
reason codes,” on page 825 lists the reason codes.

exit_data_length
A pointer to an integer value containing the length of the string (in bytes) that
is returned by the exit_data value. This parameter should point to a value of
zero, to ensure compatibility with any future extension or other operating
environment.

exit_data
The data that is passed to an installation exit. Exits are not supported and no
exit data is allowed in this parameter.

Restriction: The exit_data_length and exit_data variables must be declared
in the parameter list. The exit_data_length parameter should be set to B'0'.

The rule_array and other keyword parameters
The rule_array parameter and some other parameters use keywords to transfer
information.

22 Common Cryptographic Architecture Application Programmer's Guide

Generally, a rule_array consists of a variable number of data elements that contain
keywords that control specific details of the verb process. Almost all keywords, in
a rule_array or otherwise, are eight bytes in length, and should be uppercase,
left-aligned, and padded on the right with space characters. Because not all
implementations fold lowercase characters to uppercase, you should always code
the keywords in uppercase.

The number of keywords in a rule_array is specified by a rule_array_count
variable, an integer that defines the number of 8-byte elements in the array.

In some cases, a rule_array is used to convey information other than keywords
between your application and the server. This is, however, an exception. For a list
of key types that are passed in the rule_array keyword, see Table 7 on page 46.

Key tokens, key labels, and key identifiers
Essentially all cryptographic operations employ one or more keys. In CCA, keys
are retained within a structure called a key token.

A verb parameter can point to a variable that contains a key token. Generally you
do not need to be concerned with the details of a key token. You can deal with it
as an entity.

Key tokens are described as either internal, operational, or external, as follows:

Internal
A key token that contains an encrypted key for local use. The
cryptographic engine decrypts an internal key to use the key in a local
operation. When a key is entered into the system, it is always encrypted if
it appears outside the protected environment of the cryptographic engine.
The engine has a special key-encrypting key, called a master key. This key
is held within the engine to wrap and unwrap locally used keys.

Operational
An internal key token that is complete and ready for use and contains a
key that is encrypted under a master key. During entry of a key, the
internal key-token can have a flag set indicating the key information is
incomplete.

External
A key token that contains a key that is either in the clear or is encrypted
by some key-encrypting key other than the master key. Generally, when a
key is to be transported from place to place or is to be held for a
significant period of time, the key must be encrypted with a transport key.
A key wrapped by a (transport) key-encrypting key is designated as being
external.

RSA and ECC public-keys are not encrypted values and, when not
accompanied by private-key information, are retained in an external
key-token.

Internal key tokens can be stored in a file maintained by the directory server. These
key tokens are referenced by use of a key label. A key label is an alphanumeric
string you place in a variable and reference with a verb parameter.

Parameter descriptions specify how you can provide a key using these terms:

Key token
The parameter must contain a proper key-token structure.

Chapter 1. Program for CCA 23

Key label
The parameter must contain a key-label string used to locate a key record
in key storage.

Key identifier
The parameter must contain either a key token or a key label. The first
byte in the parameter indicates whether it contains a key token or a key
label.

X'00' indicates a DES null key-token.

range X'01' - X'1F'
indicates that the variable is processed as a key token.

range X'20' - X'FE'
indicates that the variable is processed as a key label. There are
additional restrictions on the value of a key label.

X'FF' raises an error condition when passed to the API.

How to compile and link CCA application programs
The CCA RPM includes C libraries that you can use to build CCA C applications.

One of these libraries also supports a Java Native Interface (JNI) that you can use
to build CCA Java applications. The CCA RPM also includes Java libraries with
front end classes for the JNI.

The C libraries and their default distribution locations are:

/usr/lib64/libcsulcca.so.*
The libcsulcca.so library is the main interface library to most CCA
interface calls. It contains all CCA verbs apart from the Master Key Process
(CSNBMKP) verb. The names of the verbs and their parameters are listed
in the C header file csulincl.h.

This library also contains the C support for the JNI.

/usr/lib64/libcsulccamk.so.*
This library contains the Master Key Process (CSNBMKP) verb and is
required for applications that use the master key process (see “Using the
Master Key Process (CSNBMKP) verb” on page 25).

CCA 5.0 includes two versions of the Java libraries:

New version introduced with CCA 4.2

As of CCA 4.2, new Java libraries that use the Java package infrastructure
are included. These Java libraries and their default distribution locations
are:

/opt/IBM/CCA/cnm/CNM.jar
This library contains the data classes used by the JNI (see “Entry
points and data types used in the JNI” on page 26) and most JNI
verb front end classes.

/opt/IBM/CCA/cnm/CNMMK.jar
This library contains the JNI front end class for the Master Key
Process (CSNBMKP) verb.

Deprecated version - removed starting with CCA 5.0

24 Common Cryptographic Architecture Application Programmer's Guide

Note that the CCA 5.0 rpm no longer contains the files mentioned in this
section. However, CCA 4.2 still includes the Java libraries of earlier CCA
versions to support your existing applications. These libraries contain all
verbs available with CCA 4.2 but future additions will not be available in
these libraries. The default distribution locations of these deprecated
libraries are:

/opt/IBM/CCA/cnm/HIKM.zip
This library contains the data classes used by the JNI (see “Entry
points and data types used in the JNI” on page 26) and most JNI
verb front end classes.

/opt/IBM/CCA/cnm/HIKMMK.zip
This library contains the JNI front end class for the Master Key
Process (CSNBMKP) verb.

See “Calling the CCA JNI using the Java package infrastructure” on page 26 for
more information about the two versions of the Java libraries.

The CCA RPM also includes C and Java sample programs that help you develop
your application (see “Building C applications using the CCA libraries” and “JNI
sample modules and sample code” on page 26).

Using the Master Key Process (CSNBMKP) verb
/usr/lib64/libcsulccamk.so contains the Master Key Process (CSNBMKP) verb.

Any use of the libcsulccamk.so library is restricted because the library is installed
so that only the root user (user ID of 0) and members of the group cca_admin have
read access. The cca_admin group is added by the CCA RPM installation
procedure. This is done to limit the ability of an untrusted user to copy the library
with the purpose of reverse-engineering the master-key access methods inside it.

Furthermore, use of some specific access methods through the Master Key Process
(CSNBMKP) verb are restricted to a corresponding Linux group membership of the
user trying to make that access. Table 315 on page 1115 contains a list of the groups
and their functions.

Users without the required group membership are denied use. For more
information, see Master key load (Step 7 on page 1113).

Building C applications using the CCA libraries
Perform these steps to build a C program from a make file.

Procedure
1. Change to the directory that contains the make file.
2. Issue this command to compile the program:

make -f <makefile>

For example, to use the make file of “Sample program in C” on page 1093,
issue:
make -f makefile.lnx

Using the CCA JNI
You can use the Java native interface (JNI) to work with the CCA.

Chapter 1. Program for CCA 25

Calling the CCA JNI using the Java package infrastructure

Starting with CCA 5.0, there is only one method for calling the CCA JNI.
Deprecated methods are no longer available, and therefore documented only in
prior editions of this publication.

For more information, see topic “JNI sample modules and sample code” about
available sample programs.

When calling the CCA JNI, you need import statements in the Java source files.
The JNI JAR files used by this method are CNM.jar and, for the master key process,
CNMMK.jar.

See “Building the Java byte code” on page 28 for details about compiling and
running Java applications with this method.

Entry points and data types used in the JNI
The Java entry points of CCA verbs are similar to the C entry points, except that a
letter J is appended to the entry point name.

For example, CSNBKGN is the C entry point for the Key Generate verb, and
CSNBKGNJ is the Java entry point for this verb. The detailed verb descriptions in
Part 2, “CCA verbs,” on page 87 include a section for the JNI interface.

The following data types are defined and used in the JNI:

hikmNativeNumber
Abstract data type. Parent for hikmNativeLong and hikmNativeInteger.

hikmNativeLong
64-bit native signed integer (type long), matching the C interface

Byte * general pointer type to unsigned byte

hikmNativeInteger
This data type is deprecated.

Note: The data type hikmNativeLong is replacing the old type hikmNativeInteger
since CCA version 5.2. Both types inherit from abstract class hikmNativeNumber.
Thus, type hikmNativeInteger is still supported, so you can run existing
applications with this deprecated data type. However, start using type
hikmNativeLong for new applications instead, because hikmNativeInteger may be
removed in the future.

The following documentation files (per default located in /opt/IBM/CCA/doc)
provide information about these classes:

hikmNativeNumber.html

hikmNativeLong.html

hikmNativeInteger.html

A file named hikmNativeNumber.html provides information about this class. The
default location of this file is /opt/IBM/CCA/doc directory.

JNI sample modules and sample code
To illustrate the two JNI access methods and also how to use the CCA JNI to call
CCA verbs, sample modules are provided.

26 Common Cryptographic Architecture Application Programmer's Guide

|
|
|

mac.java
illustrates JNI calls versus C calls to CCA.

This sample program calls the same CCA verbs as the sample C language
program named mac.c.

This sample program uses the package infrastructure of the new JNI access
method. For more information about this sample program, see “Sample
program in Java” on page 1097.

RNGpk.java
illustrates the method available for calling the JNI.
v Java class implementations (*.java files) that call CCA JNI functions

need an import line, such as this:
import com.ibm.crypto.cca.jni.*;

v The Java classpath must point to CNM.jar.

The default location of the sample code is /opt/IBM/CCA/samples for both, SUSE
and Red Hat distributions.

Preparing your Java environment
Before you can compile and run Java applications that use the CCA Java Native
Interface (JNI), you must install a Java version that is supported by your
distribution.

Install Java from the distribution installation media or from other authorized
sources for that distribution.

The CCA JNI has been tested with IBM Java version 1.8.0 for the following
distributions:
v Red Hat Enterprise Linux 7.4
v Red Hat Enterprise Linux 6.9
v SUSE Linux Enterprise Server 11 SP4
v SUSE Linux Enterprise Server 12 SP3
v Ubuntu 16.04.4

Later versions of Java, as provided with a distribution, might work, although they
have not been tested.

For compiling and running applications that use the CCA JNI, you need access to
the java and javac executables. Use one of the following methods to ensure that
you can call the command without preconditions:
v Add the path to the java and javac executable to your PATH environment

variable.
v Create soft links from the java and javac executables from wherever they are

located to a directory that is in your PATH environment variable by default,
such as /usr/bin.

Note: IBM Java 1.7.0 interaction

Some users reported an issue with IBM Java, support item IV52646. The following
exception occurs:

Chapter 1. Program for CCA 27

|
|

|

|

|

|

|

http://www-01.ibm.com/support/docview.wss?uid=swg1IV52646

Exception in thread "main" java.lang.UnsatisfiedLinkError: nio
(/usr/lib64/jvm/java-1.7.0-ibm-1.7.0/jre/lib/s390x/libnio.so:
symbol NET_Bind, version SUNWprivate_1.1 not defined in file libnet.so
with link time reference)

This occurs because the s390x version of the libnio.so library is being loaded
when aJava program is run. The correct version is:
/usr/lib64/jvm/java-1.7.0-ibm-1.7.0/jre/lib/s390/libnio.so

To ensure that the application uses the correct version, do the following in the
application environment as a test, and then add an appropriate adjustment to the
application environment file (such as .bashrc or .bash_profile):
export LD_LIBRARY_PATH=/usr/lib64/jvm/java-1.7.0-ibm-1.7.0/jre/lib/s390x:$LD_LIBRARY_PATH

Building Java applications using the CCA JNI
Call the CCA JNI using the Java package infrastructure.

This method is the preferred method for new applications.

Building the Java byte code:

Perform these steps to compile a Java source file.

Procedure

1. Ensure that your LD_LIBRARY_PATH variable points to the CCA libraries. This
example points to the default location:
export LD_LIBRARY_PATH=/usr/lib64

2. Change to the directory that contains the source code file of the program you
want to compile.

3. Issue this command to compile a Java source code file <program>.java:
javac -classpath <fullpath>/CNM.jar <program>.java

where <fullpath> is the location of CNM.jar.
The following example uses the default path and the sample program of
“Sample program in Java” on page 1097:
javac -classpath /opt/IBM/CCA/cnm/CNM.jar RNGpk.java

If the program uses the Master Key Process (CSNBMKP) verb, you must also
include CNMMK.jar in the class path (see “Using the Master Key Process
(CSNBMKP) verb” on page 25). Issue this command to compile such programs:
javac -classpath <fullpath>/CNM.jar:<fullpath>/CNMMK.jar <program>.java

Tip: Instead of using the -classpath option, you can set the CLASSPATH
variable to point to CNM.jar and, if required, CNMMK.jar.

Running the Java byte code:

Perform these steps to run a compiled Java program.

Procedure

1. Change to the directory that contains the compiled Java program you want to
run.

2. Issue this command to run a program <program>.class:
java -classpath <fullpath>/CNM.jar:. <program>.class

28 Common Cryptographic Architecture Application Programmer's Guide

where <fullpath> is the location of CNM.jar. The period (.) at the end of the
class path ensures that Java can find <program>.class in the current directory.
The following example uses the default path and the compiled sample program
of “Sample program in Java” on page 1097:
javac -classpath /opt/IBM/CCA/cnm/CNM.jar:. RNGpk.class

If the program uses the Master Key Process (CSNBMKP) verb in addition to
other verbs, you must also include CNMMK.jar in the class path (see “Using the
Master Key Process (CSNBMKP) verb” on page 25). Issue this command to run
such programs:
java -classpath <fullpath>/CNM.jar:<fullpath>/CNMMK.jar:. <program>.class

Tip: Instead of using the -classpath option, you can set the CLASSPATH
variable to point to CNM.jar and, if required, CNMMK.jar.

Chapter 1. Program for CCA 29

30 Common Cryptographic Architecture Application Programmer's Guide

Chapter 2. Running CCA verbs in PCI-HSM 2016 compliance
mode

Starting with the Crypto Express6 feature (CEX6S), the IBM Z cryptographic
hardware offers the possibility to run CCA applications using keys that conform to
the PIN Transaction Security (PTS) standards of the Payment Card Industry (PCI).
This PCI PTS standard implemented on a hardware security module as of June
2016 is referred to in this documentation as PCI-HSM 2016 compliance mode.

When configured as a CCA coprocessor, a CEX6C adapter is capable of running in
PCI-HSM 2016 compliance mode. In order for the requirements of PCI-HSM 2016
to apply to a workload, the workload must be using compliant-tagged key tokens.
Such a workload can be processed in the domain of a cryptographic coprocessor
which is also switched into PCI-HSM 2016 compliance mode.

You can use a TKE V9.0 or higher to set a domain on the adapter to this PCI-HSM
2016 compliance mode. Then you can use the TKE to manually enter or create
operational secure keys that have a compliance-tag, or you can create
compliance-tagged keys directly from an application using verbs such as
CSNBKTB or CSNBKGN. Thus, the CCA applications that invoke services that use
PCI-HSM 2016 compliant keys, also apply to the PTS standards of the Payment
Card Industry (PCI).

Such a compliant-tagged key token is a key token that adheres to the requirements
of the PCI-HSM 2016 compliance mode. The compliant tag is indicated by bit 58 in
the control vector of the key token. For more information about the compliant tag,
see Chapter 21, “Control vectors and changing control vectors with the Control
Vector Translate verb,” on page 989.

For verbs that support PCI-HSM 2016 compliant-tagged key tokens, their
description in Part 2, “CCA verbs,” on page 87 contains a note that indicates this
support. Also, Table 312 on page 1083 provides a compact list of these verbs.

Restriction: Only internal, fixed-length TDES key tokens can be tagged to be
compliant to PCI-HSM 2016.

Watch the TKE Demonstration Video to learn how to use a TKE V9.0 to set a domain
on a crypto adapter to PCI-HSM 2016 compliance mode.

The PCI-HSM 2016 compliance mode places certain restrictions on the use of
compliant-tagged key tokens. For more detail, see “Impact of the PCI-HSM 2016
compliance mode on the callable verbs” on page 1082.

Existing applications prior to CCA release 6.0 that exploit verbs that are now
PCI-HSM 2016 compliant, can be migrated to apply to PCI-HSM 2016 compliance
mode. For more information, see “Migrating applications to PCI-HSM 2016
compliance mode” on page 1088.

© Copyright IBM Corp. 2007, 2018 31

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

https://www.youtube.com/watch?v=FKaDnH89bWI&feature=youtu.be

Compliance warning events
CCA can generate warning events for operations that might need modifications to
meet requirements for the request to be compliant. In the system log, the
compliance warning indicates whether the request was compliant or not, while the
request processes normally with no change in behavior noticeable to the
application.

You set the environment variable CSU_CMP_WARN_MODE=SYSLOG to indicate that the
generation of warning events is desired.
v Warning events are generated for requests that can be successfully made

compliant. When the request is potentially compliant, you can convert the used
key tokens to compliant-tagged key tokens and the operation is successful.

v When the request is non-compliant, the key tokens, the verb, or the verb and
rule combination must be updated to be compliant before the key tokens used
can be converted to be compliant-tagged.

Warning events are generated for potentially successful requests where at least one
of the key tokens that are used is an internal, version 00 or version 01 DES key
token and none of the key tokens is already compliant-tagged. This includes
external key tokens and output key tokens. For services that do not accept
compliant-tagged key tokens, only internal key tokens that are used as input to the
service are included in the event. For services that accept compliant-tagged key
tokens, all key tokens that are used are included in the event.

Warning events are generated in the form of SYSLOG entries. See “Generating
warning events” on page 1085 for more information and examples.

For detailed information about the format of generated warning events and the
required steps for making applications compliant, read “Migrating applications to
PCI-HSM 2016 compliance mode” on page 1088.

Restriction: Cryptographic coprocessors earlier than CEX6C do not respond to a
specification of desired warning events. In addition, Linux sometimes buffers log
entries before posting them, thus causing a short delay.

32 Common Cryptographic Architecture Application Programmer's Guide

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

Chapter 3. Using AES, DES, and HMAC cryptography and
verbs

You can use AES, DES, and HMAC cryptographic functions that CCA provides.
CCA also provides cryptographic key functions, and you can use CCA to build key
tokens.

The CEX*C protects data from unauthorized disclosure or modification. This
coprocessor protects data stored within a system, stored in a file off a system on
magnetic tape, and sent between systems. The coprocessor also authenticates the
identity of customers in the financial industry and authenticates messages from
originator to receiver. The coprocessor uses cryptography to perform these
functions.

The CCA API for the coprocessor provides access to cryptographic functions
through verbs. A verb is a routine that receives control using a function call from
an application program. Each verb performs one or more cryptographic functions,
including:
v Generating and managing cryptographic keys
v Enciphering and deciphering data with encrypted keys using either the U.S.

National Institute of Standards and Technology (NIST) Data Encryption
Standard (DES) or Advanced Encryption Standard (AES)

v Re-enciphering text from encryption under one key to encryption under another
key

v Encoding and decoding data with clear keys
v Generating random numbers
v Ensuring data integrity and verifying message authentication
v Generating, verifying, and translating personal identification numbers (PINs)

that identify a customer on a financial system

Functions of the AES, DES, and HMAC cryptographic keys
The CCA API provides functions to create, import, and export AES, DES, and
HMAC keys.

Key separation
The cryptographic coprocessor controls the use of keys by separating them into
unique types, allowing you to use a specific type of key only for its intended
purpose.

For example, a key used to protect data cannot be used to protect a key.

A CCA system has only one DES or AES master key. However, to provide for key
separation, the cryptographic coprocessor automatically encrypts each type of key
in a fixed-length token under a unique variation of the master key. Each variation
of the master key encrypts a different type of key. Although you enter only one
master key, you have a unique master key to encrypt all other keys of a certain
type.

© Copyright IBM Corp. 2007, 2018 33

Master key variant for fixed-length tokens
Whenever the master key is used to encipher a key, the cryptographic coprocessor
produces a variation of the master key according to the type of key that the master
key will encipher.

These variations are called master key variants. The cryptographic coprocessor
creates a master key variant by XORing a fixed pattern, called a control vector, onto
the master key. A unique control vector is associated with each type of key. For
example, all the different types of data-encrypting, PIN, MAC, and transport keys
each use a unique control vector which is XORed with the master key in order to
produce the variant. The different key types are described in “Types of keys” on
page 41.

Each master key variant protects a different type of key. It is similar to having a
unique master key protect all the keys of a certain type.

The master key, in the form of master key variants, protects keys operating on the
system. A key can be used in a cryptographic function only when it is enciphered
under a master key. When systems want to share keys, transport keys are used to
protect keys sent outside of systems. When a key is enciphered under a transport
key, the key cannot be used in a cryptographic function. It must first be brought on
to a system and enciphered under the system's master key, or exported to another
system where it will then be enciphered under that system's master key.

Transport key variant for fixed-length tokens
Like the master key, the coprocessor creates variations of a transport key to encrypt
a key according to its type.

This allows for key separation when a key is transported off the system. A
transport key variant, also called key-encrypting key variant, is created the same way a
master key variant is created. The transport key's clear value is XORed with a
control vector associated with the key type of the key it protects.

Note: To exchange keys with systems that do not recognize transport key variants,
the coprocessor allows you to encrypt selected keys under a transport key itself,
not under the transport key variant. For more information, see NOCV Importers
and Exporters on page “NOCV importers and exporters” on page 43.

Key forms
A key that is protected under the master key is in operational form, which means
the coprocessor can use it in cryptographic functions on the system.

When you store a key with a file or send it to another system, the key is
enciphered under a transport key rather than the master key. The transport key is
a key shared by your system and another system for the purpose of securely
exchanging other keys. When CCA enciphers a key under a transport key, the key
is not in operational form and cannot be used to perform cryptographic functions.

When a key is enciphered under a transport key, the sending system considers the
key in exportable form. The receiving system considers the key in importable form.
When a key is re-enciphered from under a transport key to under a system's
master key, it is in operational form again.

34 Common Cryptographic Architecture Application Programmer's Guide

Enciphered keys appear in three forms. The form you need depends on how and
when you use a key.
v Operational key form is used at the local system. Many verbs can use an

operational key form.
The Key Generate, Key Import, Data Key Import, Clear Key Import, and
Multiple Clear Key Import verbs can create an operational key form.

v Exportable key form is transported to another cryptographic system. It can be
passed only to another system. The CCA verbs cannot use it for cryptographic
functions. The Key Generate, Data Key Export, and Key Export verbs produce
the exportable key form.

v Importable key form can be transformed into operational form on the local
system. The Key Import verb (CSNBKIM) and the Data Key Import verb
(CSNBDKM) can use an importable key form. Only the Key Generate verb
(CSNBKGN) can create an importable key form.

For more information about the key types, see “Functions of the AES, DES, and
HMAC cryptographic keys” on page 33. See Chapter 20, “Key forms and types
used in the Key Generate verb,” on page 985 for more information about key form.

Symmetric key (DES, AES) flow

The conversion from one key to another key is considered to be a one-way flow.
An operational key form cannot be turned back into an importable key form. An
exportable key form cannot be turned back into an operational or importable key
form. The flow of CCA key forms can be in only one direction:
IMPORTABLE —to→ OPERATIONAL —to→ EXPORTABLE

Key token
CCA supports two types of symmetric key tokens, fixed-length and
variable-length.

An AES or DES fixed-length token is a 64-byte field composed of a key value and
control information in the control vector. An HMAC key token is a variable-length
token composed of a key value and control information. The control information is
assigned to the key when the coprocessor creates the key. The key token can be
either an internal key token, an external key token, or a null key token. Through
the use of key tokens, CCA can do the following:
v Support continuous operation across a master key change
v Control use of keys in cryptographic services

If the first byte of the key identifier is X'01', the key identifier is interpreted as an
internal key token. An internal key token is a token that can be used only on the
CCA system that created it or another CCA system with the same host master key.
It contains a key that is encrypted under the master key.

An application obtains an internal key token by using one of the verbs such as
those listed below. The verbs are described in detail in Chapter 8, “Managing AES,
DES, and HMAC cryptographic keys,” on page 165.
v AES Key Record Read
v Clear Key Import
v Data Key Import
v DES Key Record Read
v Key Generate

Chapter 3. AES, DES, and HMAC cryptography and verbs 35

v Key Generate2
v Key Import
v Key Part Import
v Key Part Import2
v Key Token Build
v Key Token Build2
v Multiple Clear Key Import
v Symmetric Key Import2

The master key could be dynamically changed between the time that you invoke a
verb, such as the Key Import verb, to obtain a key token, and the time that you
pass the key token to the Encipher verb. When a change to the master key occurs,
the coprocessor will still successfully use the key, because it stores a copy of the
old master key as well as the new one.

Attention: If an internal key token held in user storage is not used while the
master key is changed twice, the internal key token is no longer usable. A return
code of 0 with a reason code of 10001 notifies you that the master key used to
decrypt the key used in your operation was an old master key, as a reminder that
you should use one of the Key Token Change verbs to re-encipher your key under
the current or new master key (as desired, see verbs for description).

If the first byte of the key identifier is X'02', the key identifier is interpreted as an
external key token. By using the external key token, you can exchange keys
between systems. It contains a key that is encrypted under a key-encrypting key.

An external key token contains an encrypted key and control information to allow
compatible cryptographic systems to:
v Have a standard method of exchanging keys
v Control the use of keys through the control vector
v Merge the key with other information needed to use the key

An application obtains the external key token by using one of the verbs such as
those listed below. They are described in detail in Chapter 8, “Managing AES, DES,
and HMAC cryptographic keys,” on page 165.
v Key Generate
v Key Export
v Data Key Export
v Symmetric Key Export

If the first byte of the key identifier is X'00', the key identifier is interpreted as a
null key token. Use the null key token to import a key from a system that cannot
produce external key tokens. That is, if you have an 8 or 16-byte key that has been
encrypted under an importer key, but is not imbedded within a token, place the
encrypted key in a null key token and then invoke the Key Import verb to get the
key in operational form.

For debugging information, see Chapter 19, “Key token formats,” on page 847 for
the format of internal, external, or null key tokens.

36 Common Cryptographic Architecture Application Programmer's Guide

Key wrapping
CCA supports two methods of wrapping the key value in a fixed-length symmetric
key token for DES and AES keys: the original ECB wrapping and an enhanced
CBC wrapping method, which is ANSI X9.24 compliant.

These methods use the 64-byte token. HMAC keys use a variable length token
with associated data and the payload wrapping method. Variable-length tokens are
wrapped by using the AESKW wrapping method that is defined in ANSI X9.102.

AES key wrapping
The key value in AES tokens are wrapped using the AES algorithm and cipher
block chaining (CBC) mode of encryption.

The key value is left-aligned in a 32-byte block, padded on the right with zero, and
encrypted.

The enhanced wrapping of an AES key (*K) using an AES *MK is defined as:
e*MK(*K) = ecbcMK(*K)

where:

e*k(m) or e*kek(*k)
message m is encrypted (e) with key *k or key *k is encrypted with key
encrypting key *kek

ecbc*k(m)
message m is encrypted (e) with key *k using the cipher block chaining (cbc)
mode of operation

DES key wrapping
The key value in a DES key token are wrapped using one of several possible
methods.

The methods are:

Original method
The key value in DES tokens are encrypted using triple-DES encryption,
and key parts are encrypted separately. The original method is the default
on CEX*C before CEX6C.

Enhanced method
The key value for keys is bundled with other token data and encrypted
using triple-DES encryption and cipher block chaining mode. The
enhanced method applies only to DES key tokens. The enhanced method
of symmetric key wrapping is designed to be ANSI X9.24 and PCI-HSM
2016 compliant. The enhanced method is the default as of CEX6C.

Compliant-tagged method
This method is the same as the enhanced method except for a few
important differences:
v The master-key-to-wrapping-key derivation process uses a different

input string, giving a different actual wrapping key.
v The process for binding the key halves together before encryption uses

SHA-256 instead of SHA-1. This method was introduced with CCA 6.0
and is exclusive to compliant-tagged DES keys.

Chapter 3. AES, DES, and HMAC cryptography and verbs 37

|
|

|
|

|
|
|

|
|

|
|
|

When the Allow weak wrapping of compliance-tagged keys by DES MK (X'02EB')
access control point is enabled, any service which attempts to wrap a
compliant-tagged key token with a weaker DES master key in terms of effective
key strength (1 or more 56 bit key parts are repeated) will succeed.

ECB wrapping of DES keys (original method)

In ECB wrapping, a double length key (*K) is wrapped using a double-length
key-encrypting key (*KEK).

The definition is as follows:
e*KEK(KL) || e*KEK(KR) = eKEKL(dKEKR(eKEKL(KL))) || eKEKL(dKEKR(eKEKL(KR)))

where:

KL is the left 64 bits of *K

KR is the right 64 bits of *K

KEKL is the left 64 bits of *KEK

KEKR is the right 64 bits of *KEK

|| means concatenation

d*k(m) or e*k(m)
means that message m is decrypted (d) or encrypted (e) with key *k.

Enhanced CBC wrapping of DES keys

The enhanced CBC wrapping method uses triple-DES encryption, an internal
chaining of the key value, and CBC mode.

The enhanced wrapping of a double-length key (*K) using a double-length
key-encrypting key (*KEK) is defined as:
e*KEK(*KL) = ecbcKEKL(dcbcKEKR(ecbcKEKL(KLPRIME || KR)))
KLPRIME = KL XOR SHA1(KR)

Where:

KL is the left 64 bits of *K

KR is the right 64 bits of *K

KLPRIME
is the 64-bit modified value of KL

KEKL is the left 64 bits of *KEK

KEKR is the right 64 bits of *KEK

SHA1(X)
is the 160-bit SHA-1 hash of X

|| means concatenation

XOR means bitwise exclusive OR

ecbc means encryption using cipher block chaining mode

dcbc means decryption using cipher block chaining mode.

38 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|

Wrapping key derivation for enhanced wrapping of DES keys

The wrapping key is exactly the same key that is used by the legacy wrapping
method (the only method used by CCA 4.0.0), with one exception.

Instead of using the base key itself (master key or key-encrypting key), a key that
is derived from that base key is used. The derived key will have the control vector
applied to it in the standard CCA manner, and then use the resulting key to wrap
the new-format target key token.

The reason for using a derived key is to ensure that no attacks against this
wrapping scheme are possible using the existing CCA functions. For example, it
was observed that an attack was possible by copying the wrapped key into an ECB
CCA key token, if the wrapping key was used instead of a derivative of that key.

The key will be derived using a method defined in the U.S. National Institute of
Standards and Technology (NIST) standard SP 800-108, Recommendation for Key
Derivation Using Pseudorandom Functions (October, 2009). Derivation will use the
method KDF in counter mode using pseudo-random function (PRF) HMAC-SHA256.
This method provides sufficient strength for deriving keys for any algorithm used.

The HMAC algorithm is defined as:
HMAC(K, text) = H((K0 XOR opad) || H((K0 XOR ipad) || text))

where:

H Is an approved hash function.

K Is a secret key shared between the originator and the intended receivers.

K0 The key K after any necessary preprocessing to form a key of the proper
length.

ipad Is the constant X'36' repeated to form a string the same length as K0

opad Is the constant X'5C' repeated to form a string the same length as K0

text Is the text to be hashed.

|| Means concatenation

XOR Means bitwise exclusive OR

If the key K is equal in length to the input block size of the hash function (512 bits
for SHA-256), K0 is set to the value of K. Otherwise, K0 is formed from K by
hashing or padding.

The Key Derivation Function (KDF) specification calls for inputs optionally
including two byte strings, Label and Context. The Context will not be used. The
Label will contain information on the usage of this key, to distinguish it from other
derivations that CCA may use in the future for different purposes. Because the
security of the derivation process is rooted in the security of the derivation key
and in the HMAC and Key Derivation Functions (KDF) themselves, it is not
necessary for this label string to be of any particular minimum size. The separation
indicator byte of X'00' specified in the NIST document will follow the label.

The label value will be defined so that it is unique to derivation for this key
wrapping process. This means that any future designs that use the same KDF must
use a different value for the label. The label will be the 16 byte value consisting of
the following ASCII characters:

Chapter 3. AES, DES, and HMAC cryptography and verbs 39

ENHANCEDWRAP2010 (X’454E4841 4E434544 57524150 32303130')

The parameters for the counter mode KDF defined in NIST standard SP 800-108
are:

Fixed values:

h Length of output of PRF, 256 bits

r Length of the counter, in bits, 32. The counter is an unsigned
4-byte value.

Inputs:

v KI (input key) - The key we are deriving from.
v Label - The value shown above (ASCII ENHANCEDWRAP2010).
v Separator byte - X'00' following the label value.
v Context - A null string. No context is used.
v L - The length of the derived key to be produced, rounded up to the

next multiple of 256.
v PRF - HMAC-SHA256.

Variable length token (AESKW method)
The wrapping method for the variable-length key tokens with AESKW is defined
in standard ANSI X9.102.

The wrapping of the payload of a variable length key (*K) using an AES *MK is
defined as:
e*MK(*K) = eAESKW*MK(P)
P = ICV || Pad length || Hash length || Hash options || Data hash || *K || Padding

Where:

ICV Is the 6 byte constant X'A6A6A6A6A6A6'.

Pad length
Is the length of the padding in bits.

Hash length
Is the length of the Data Hash in bytes.

Hash options
Is a 4-byte field.

Data hash
Is the hash of the associated data block.

Padding
Is the number of bytes of X'00' used to make the overall length of P a
multiple of 16.

eAESKW
Means encryption using the AESKW method.

Control vector
A unique control vector exists for each type of CCA key.

For an internal key token, the coprocessor XORs the master key with the control
vector associated with the type of key the master key will encipher. The control
vector ensures that an operational key is used only in cryptographic functions for

40 Common Cryptographic Architecture Application Programmer's Guide

which it is intended. For example, the control vector for an input PIN-encrypting
key ensures that such a key can be used only in the Encrypted PIN Translate and
Encrypted PIN Verify functions.

Types of keys
The cryptographic keys are grouped into the following categories based on the
functions that they perform.

Symmetric keys master key (SYM-MK)
The SYM-MK master key is a triple-length (192-bit) key that is used only to
encrypt other DES keys on the coprocessor. The administrator installs and
changes the SYM-MK master key using the panel.exe utility, the clear key
entry panels, the z/OS® clear key entry panels, or the optional Trusted Key
Entry (TKE) workstation. The master key always remains within the secure
boundary of the coprocessor. It is used only to encipher and decipher keys
that are in operational form.

Note: If the coprocessor is shared with z/OS, the SYM-MK key must be a
double-length (128-bit) key. This means that the first 64 bits and the last 64
bits of the key must be identical. If the master key is loaded by z/OS CCA
or from a TKE workstation, it will automatically be a double-length key.

AES keys master key (AES-MK)
The AES-MK master key is a 256-bit key that is used to encrypt other AES
keys and HMAC keys on the coprocessor. The administrator installs and
changes the AES-MK master key using the panel.exe utility, the clear key
entry panels, the z/OS clear key entry panels, or the optional Trusted Key
Entry (TKE) workstation. The master key always remains within the secure
boundary of the coprocessor. It is used only to encipher and decipher keys
that are in operational form.

Asymmetric keys master key (ASYM-MK)
The ASYM-MK is a triple-length (192-bit) key that is used to protect RSA
private keys on the coprocessor. The administrator installs and changes the
ASYM-MK master key using the panel.exe utility, the clear key entry
panels, the z/OS clear key entry panels, or the optional Trusted Key Entry
(TKE) workstation. The master key always remains within the secure
boundary of the coprocessor. It is used only to encipher and decipher keys
that are in operational form.

AES CIPHER keys
The AES cipher keys are 128-bit, 192-bit, and 256-bit keys that protect data
privacy. If you intend to use a cipher key for an extended period, you can
store it in key storage so that it will be re-enciphered if the master key is
changed.

AES PKA master key (APKA-MK)
The APKA-MK key, introduced to CCA beginning with Release 4.1.0, is
used to encrypt and decrypt the Object Protection Key (OPK) that is itself
used to wrap the key material of an Elliptic Curve Cryptography (ECC)
key. ECC keys are asymmetric. The APKA-MK is a 256-bit (32-byte) value.
The administrator installs and changes the APKA-MK master key using the
panel.exe utility, the clear key entry panels, the z/OS clear key entry
panels, or the optional Trusted Key Entry (TKE) workstation.

Data-encrypting keys
The data-encrypting keys are single-length DES (64-bit), double-length DES
(128-bit), or triple-length DES (192-bit) keys, or 128-bit, 192-bit or 256-bit

Chapter 3. AES, DES, and HMAC cryptography and verbs 41

AES keys that protect data privacy. Single-length DES data-encrypting keys
can also be used to encode and decode data and authenticate data sent in
messages. If you intend to use a data-encrypting key for an extended
period of time, you can store it in the CCA key storage file so that it will
be re-enciphered if the master key is changed.

You can use single-length DES data-encrypting keys in the Encipher and
Decipher verbs to manage data, and also in the MAC Generate and MAC
Verify verbs. Double-length DES and triple-length DES data-encrypting
keys can be used in the Encipher and Decipher verbs for more secure data
privacy. DATAC is also a double-length DES data encrypting key.

AES data-encrypting keys can be used in services similar to DES
data-encrypting key services.

DES CIPHER keys
These consist of CIPHER, ENCIPHER, and DECIPHER keys. They are
single and double length DES keys for enciphering and deciphering data.

Ciphertext translation keys
These ciphertext translation keys consist of CIPHERXI, CIPHERXL, and
CIPHERXO keys. They protect data that is transmitted through
intermediate systems when the originator and receiver do not share a
common key. Data that is enciphered under one ciphertext translation key
is re-enciphered under another ciphertext translation key on the
intermediate node. During this process, the data never appears in the clear.
These keys are double-length.

HMAC keys
HMAC keys are variable-length symmetric keys. The length is in the range
of 80 - 2024. HMAC keys are used to generate and verify HMACs using
the FIPS-198 algorithm, with the HMAC Generate and HMAC Verify verbs.
v Operational keys will be encrypted under the AES master key
v HMAC keys can be imported and exported under an RSA key.
v HMAC keys will be stored in the AES key storage file. The AES master

key must be active.

For more information about HMAC keys and verb processing, see
Chapter 10, “Verifying data integrity and authenticating messages,” on
page 417.

MAC keys
The MAC keys are single-length DES (64-bits - DATAM, DATAMV, MAC,
and MACVER,) and double-length DES (128-bits - DATAM, DATAMV,
MAC, and MACVER) keys used for the verbs that generate and verify
MACs.

PIN keys
The personal identification number (PIN) is a basis for verifying the
identity of a customer across financial industry networks. PIN keys are
used in cryptographic functions to generate, translate, and verify PINs, and
protect PIN blocks. They are all double-length DES (128 bits) keys. PIN
keys are used in the Clear PIN Generate, Encrypted PIN Verify, and
Encrypted PIN Translate verbs.

For installations that do not support double-length DES 128-bit keys,
effective single-length DES keys are provided. For a single-length DES key,
the left key half of the key equals the right key half.

42 Common Cryptographic Architecture Application Programmer's Guide

“Processing personal identification numbers” on page 56 gives an overview
of the PIN algorithms you need to know to write your own application
programs.

AES transport keys (or key-encrypting keys)
Transport keys are also known as key-encrypting keys. They are used to
protect AES and HMAC keys when you distribute them from one system
to another.

There are two types of AES transport keys:

Exporter key-encrypting key
This type of key protects keys of any type that are sent from your
system to another system. The exporter key at the originator is the
same key as the importer key of the receiver.

Importer key-encrypting key
This type of key protects keys of any type that are sent from
another system to your system. It also protects keys that you store
externally in a file that you can import to your system at another
time. The importer key at the receiver is the same key as the
exporter key at the originator.

DES transport keys (or key-encrypting keys)
Transport keys are also known as key-encrypting keys. They are
double-length (128 bits) DES keys used to protect keys when you distribute
them from one system to another.

There are several types of DES transport keys:

Exporter or OKEYXLAT key-encrypting key
This type of key protects keys of any type that are sent from your
system to another system. The exporter key at the originator is the
same key as the importer key of the receiver.

Importer or IKEYXLAT key-encrypting key
This type of key protects keys of any type that are sent from
another system to your system. It also protects keys that you store
externally in a file that you can import to your system later. The
importer key at the receiver is the same key as the exporter key at
the originator.

NOCV importers and exporters
These keys are key-encrypting keys used to exchange keys with
systems that do not recognize key-encrypting key variants. There
are some requirements and restrictions for the use of NOCV
key-encrypting keys:
v The use of NOCV IMPORTERs and EXPORTERs is controlled by

access control points in the coprocessor's role-based access
control system.

v Only programs in system or supervisor state can use the NOCV
key-encrypting key in the form of tokens in verbs. Any program
can use NOCV key-encrypting keys with label names from the
key storage.

v Access to NOCV key-encrypting keys should be carefully
controlled, because use of these keys can reduce security in your
key management process.

v NOCV key-encrypting key can be used to encrypt single or
double length DES keys with standard CVs for key types DATA,

Chapter 3. AES, DES, and HMAC cryptography and verbs 43

DATAC, DATAM , DATAMV, DATAXLAT, EXPORTER,
IKEYXLAT, IMPORTER, IPINENC, single-length MAC,
single-length MACVER, OKEYXLAT, OPINENC, PINGEN and
PINVER.

v NOCV key-encrypting keys can be used with triple length DATA
keys. Because DATA keys have 0 CVs, processing will be the
same as if the key-encrypting keys are standard key-encrypting
keys (not the NOCV key-encrypting key).

Note: A key-encrypting key should be as strong or stronger than
the key that it is wrapping.

You use key-encrypting keys to protect keys that are transported using any
of the following verbs: Data Key Export, Key Export, Key Import, Clear
Key Import, Multiple Clear Key Import, Key Generate, Key Generate2, Key
Translate and Key Translate2.

For installations that do not support double-length key-encrypting keys,
effective single-length keys are provided. For an effective single-length key,
the clear key value of the left key half equals the clear key value of the
right key half.

Key-generating keys
Key-generating keys are double-length keys used to derive other keys. This
is often used in smart card applications.

Clear keys
A clear key is the base value of a key, and is not encrypted under another
key. Encrypted keys are keys whose base value has been encrypted under
another key.

To convert a clear key to an encrypted data key in operational form, use
either the Clear Key Import verb or the Multiple Clear Key Import verb.

Table 6 describes the key types.

Table 6. Key types

Key type Description

AESDATA Data encrypting key. Use the AES 128-bit, 192-bit, or 256-bit key to encipher and decipher data.

AESTOKEN Can contain an AES key.

CIPHER AES This 128-bit, 192-bit, or 256-bit key is used to encrypt or decrypt data. It can be used in
the Symmetric Algorithm Decipher and Symmetric Algorithm Encipher verbs.

DES This single or double-length key is used to encrypt or decrypt data. It can be used in the
Encipher and Decipher verbs

Used only to encrypt or decrypt data. This is a single or double length key and can be used in
the Encipher or Decipher verbs.

CIPHERXI Usable with the Cipher Text Translate2 verb (translate inbound key only)

CIPHERXL Usable with the Cipher Text Translate2 verb (translate inbound or outbound key)

CIPHERXO Usable with the Cipher Text Translate2 verb (translate outbound key only)

CLRAES Data encrypting key. The key value is not encrypted. Use this AES 128-bit, 192-bit, or 256-bit key
to encipher and decipher data.

CVARDEC The cryptographic variable decipher service, which is available in some CCA implementations,
uses a CVARDEC key to decrypt plaintext by using the Cipher Block Chaining (CBC) method.
This is a single-length key.

44 Common Cryptographic Architecture Application Programmer's Guide

Table 6. Key types (continued)

Key type Description

CVARENC The cryptographic variable encipher service, which is available in some CCA implementations,
uses a CVARENC key to encrypt plaintext by using the Cipher Block Chaining (CBC) method.
This is a single-length key.

CVARPINE Used to encrypt a PIN value for decryption in a PIN-printing application. This is a single-length
key.

CVARXCVL Used to encrypt special control values in DES key management. This is a single-length key.

CVARXCVR Used to encrypt special control values in DES key management. This is a single-length key.

DATA Data encrypting key. Use this DES single-length, double-length, or triple-length key to encipher
and decipher data. Use the AES 128-bit, 192-bit, or 256-bit key to encipher and decipher data.

DATAC Used to specify a DATA-class key that will perform in the Encipher and Decipher verbs, but not
in the MAC Generate or MAC Verify verbs. This is a double-length key. Only available with a
CEX*C.

DATAM Key-encrypting keys that have a control vector with this attribute formerly could only be used to
transport keys with a key type of DATA, CIPHER, ENCIPHER, DECIPHER, MAC, and
MACVER. The meaning of this keyword has been discontinued and its usage is allowed for
backward compatibility reasons only.

DATAMV Used to specify a DATA-class key that performs in the MAC Verify verb, but not in the MAC
Generate, Encipher, or Decipher verbs.

DATAXLAT Data translation key. Use this single-length key to reencipher text from one DATA key to another.

DECIPHER Used only to decrypt data. DECIPHER keys cannot be used in the Encipher (CSNBENC) verb.
This is a single-length key.

This is a single or double length key and can be used in the Decipher verb.

DKYGENKY Used to generate a diversified key based on the key-generating key. This is a double-length key.

ENCIPHER Used only to encrypt data. ENCIPHER keys cannot be used in the Decipher (CSNBDEC) verb.
This is a single-length key.

This is a single or double length key and can be used in the Encipher verb.

EXPORTER Exporter key-encrypting key. Use this double-length DES key or 128-bit, 192-bit or 256-bit AES
key to convert a key from operational form into exportable form.

HMAC Variable-length HMAC generation key. Use this key to generate or verify a Message
Authentication Code using the keyed-hash MAC algorithm.

HMACVER Variable-length HMAC verification key. Use this key to verify a Message Authentication Code
using the keyed-hash MAC algorithm.

IKEYXLAT Used to decrypt an input key in the Key Translate and Key Translate2 verbs. This is a
double-length key.

IMPORTER Importer key-encrypting key. Exporter key-encrypting key. Use this double-length DES key or
128-bit, 192-bit or 256-bit AES key to convert a key from importable form into operational form.

IMP-PKA Double-length limited-authority importer key used to encrypt PKA private key values in PKA
external tokens.

IPINENC Double-length input PIN-encrypting key. PIN blocks received from other nodes or automatic
teller machine (ATM) terminals are encrypted under this type of key. These encrypted PIN blocks
are the input to the Encrypted PIN Translate, Encrypted PIN Verify, and Clear PIN Generate
Alternate verbs.

KEYGENKY Used to generate a key based on the key-generating key. This is a double-length key.

MAC Single, double-length, or variable-length MAC generation key. Use this key to generate a message
authentication code.

Chapter 3. AES, DES, and HMAC cryptography and verbs 45

Table 6. Key types (continued)

Key type Description

MACVER Single, double-length, or variable-length MAC verification key. Use this key to verify a message
authentication code.

OKEYXLAT Used to encrypt an output key in the Key Translate and Key Translate2 verbs. This is a
double-length key.

OPINENC Output PIN-encrypting key. Use this double-length output key to translate PINs. The output PIN
blocks from the Encrypted PIN Translate, Encrypted PIN Generate, and Clear PIN Generate
Alternate verbs are encrypted under this type of key.

PINGEN PIN generation key. Use this double-length key to generate PINs.

PINVER PIN verification key. Use this double-length key to verify PINs.

SECMSG Used to encrypt PINs or keys in a secure message. This is a double-length key.

TOKEN A key token that might contain a key.

Table 7 lists key subtypes passed in the rule_array keyword.

Table 7. Key subtypes specified by the rule_array keyword

rule_array
keyword Description

AMEX-CSC A MAC key that can be used for the AMEX CSC transaction validation process MAC calculation
method, used with the Transaction Validation (CSNBTRV) verb.

ANSIX9.9 A MAC key that can be used for the ANSI X9.9 MAC calculation method, either for MAC
Generate (CSNBMGN), MAC Verify (CSNBMVR), or Transaction Validation (CSNBTRV). Other
Control Vector bits could limit these usages.

ANY Key-encrypting keys that have a control vector with this attribute can be used to transport any
type of key. The meaning of this keyword has been discontinued, and its usage is allowed for
backward compatibility reasons only.

ANY-MAC Can be used with any function or MAC calculation method that uses a MAC key, such as MAC
Generate (CSNBMGN), MAC Verify (CSNBMVR), or Transaction Validation (CSNBTRV). This is
the default configuration for a MAC key control vector.

CVVKEY-A Can be used as 'Key A' in either the CVV Generate (CSNBCSG) or CVV Verify (CSNBCSV) verbs,
as controlled by the CVV generation and verification Control Vector bits (bits 20 and 21
respectively).

CVVKEY-B Can be used as 'Key B' in either the CVV Generate (CSNBCSG) or CVV Verify (CSNBCSV) verbs,
as controlled by the CVV generation and verification Control Vector bits (bits 20 and 21
respectively).

DATA Data encrypting key. Use this 8-byte, 16-byte or 24-byte DES key or 16-byte, 24-byte or 32-byte
AES key to encipher and decipher data.

EPINGENA Legacy key subtype, used to turn on bit 19 of a PIN Generating Key Control Vector. The default
PIN Generating Key type will have this bit on. No PIN generating or processing behavior is
currently influenced by this key subtype parameter. EPINGENA is no longer supported,
although the bit retains this definition for compatibility There is no Encrypted Pin Generate
Alternate verb

LMTD-KEK Key-encrypting keys that have a control vector with this attribute formerly could only be used to
exchange keys with key-encrypting keys that carry NOT-KEK, PIN, or DATA key-type ciphering
restrictions. The usage of this keyword has been discontinued and its usage is allowed for
backward compatibility reasons only.

NOT-KEK Key-encrypting keys that have a control vector with this attribute formerly could not be used to
transport key-encrypting keys. The meaning of this keyword has been discontinued and its usage
is allowed for backward compatibility reasons only.

46 Common Cryptographic Architecture Application Programmer's Guide

Table 7. Key subtypes specified by the rule_array keyword (continued)

rule_array
keyword Description

PIN Key-encrypting keys that have a control vector with this attribute formerly could only be used to
transport keys with a key type of PINVER, IPINENC, and OPINENC. The usage of this
keyword has been discontinued and its usage is allowed for backward compatibility reasons only.

Chapter 3. AES, DES, and HMAC cryptography and verbs 47

├─Key type─┤ ├─Key subtype─┤ ├─Key usage──┤

→→┬─MAC ─────┐ Note: ANY-MAC is default Note: XPORT─OK
├─MACVER───┴─────────────────┬──────────┐ is default
├─DATA─────┐ ├─ANY-MAC──┤ ┌──┬──────────┐
├─CIPHER───┤ ├─ANSIX9.9─┤ │ ├─XPORT─OK─┤
├─ENCIPHER─┤ ├─CVVKEY─A─┤ │ └─NO-XPORT─┤
├─DECIPHER─┤ ├─CVVKEY─B─┤ Note: SINGLE │ │
├─CVARDEC──┤ └─AMEX─CSC─┴───────────┐ is default │ ┌──────────┘
├─CVARPINE─┤ │ and DOUBLE-O │ │
├─CVARENC──┤ │ is Release │ ├──────────┐
├─CVARXCVL─┤ │ 4.4 or later. │ └─KEY─PART─┤
├─CVARXCVR─┴──┴─────────────────────┬──────────┐ │ │
│ Note: DKYL0 Note: DMAC ├─SINGLE───┤ │ ┌──────────┘
│ is default is default ├─KEYLN8───┤ │ │
├─DKYGENKY───┬─────────┐ ┌──┬──────────┐ ├─DOUBLE───┤ │ ├──────────┐
│ ├─DKYL0───┤ │ ├─DMAC─────┤ ├─DOUBLE-O─┤ │ └─ENH-ONLY─┤
│ ├─DKYL1───┤ │ ├─DDATA────┤ ├─KEYLN16──┤ │ │
│ ├─DKYL2───┤ │ ├─DMV──────┤ └─MIXED────┴────┤ ┌──────────┘
│ ├─DKYL3───┤ │ ├─DIMP─────┤ ↑ │
│ ├─DKYL4───┤ │ ├─DEXP─────┤ │ │ Note: T31XPTOK
│ ├─DKYL5───┤ │ ├─DPVR─────┤ │ │ is default
│ ├─DKYL6───┤ │ ├─DMKEY────┤ │ ├──────────┐
│ └─DKYL7───┴──┘ ├─DMPIN────┤ │ ├─T31XPTOK─┤
│ └─DALL─────┴──────────────────────────────────┐ │ └─NOT31XPT─┴──→→
├─SECMSG─────────────────────┬─SMKEY────┐ │ │
├─DATAC────┐ └─SMPIN────┴──────────────────────────────────┤ │
├─DATAM────┤ │ │
├─DATAMV───┴───┤ │
├─KEYGENKY───────────────────┬─CLR8─ENC─┐ │ │
├─IKEYXLAT─┐ └─UKPT─────┴──────────────────────────────────┤ │
├─OKEYXLAT─┴──────────────────────────────────┐ │ │
├─IMPORTER────────────────┬────Note 1─────┐ │ │ │
│ │ ┌───────────┐ │ │ │ │
│ │ ↓ │ │ │ │ │
│ └──┬─OPIM─────┤ │ │ │ │
│ ├─IMEX─────┤ │ │ │ │
│ ├─IMIM─────┤ │ │ │ │
│ └─IMPORT───┴─┤ │ │ │
├─EXPORTER────────────────┬────Note 1─────┤ │ │ │
│ │ ┌───────────┐ │ │ │ │
│ │ ↓ │ │ │ │ │
│ └──┬─OPEX─────┤ │ │ │ │
│ ├─IMEX─────┤ │ │ │ │
│ ├─EXEX─────┤ │ │ │ │
│ └─EXPORT───┴─┴───┴──────┬───────┐ │ │
│ └─XLATE─┴─────────────┤ │
├─PINVER──┐ │ │
├─PINGEN──────────────────┬────Note 1─────┐ │ │ │
│ │ ┌───────────┐ │ │ │ │
│ │ ↓ │ │ │ │ │
│ └──┬─CPINGEN──┤ │ │ │ │
│ ├─CPINGENA─┤ │ │ │ │
│ ├─EPINGEN──┤ │ │ │ │
│ ├─EPINGENA─┤ │ │ │ │
│ └─EPINVER──┴─┴───────┤ │ │
├─IPINENC─────────────────┬────Note 1─────┐ │ Note: NO─SPEC │ │
│ │ ┌───────────┐ │ │ is default │ │
│ │ ↓ │ │ ├──────────┐ │ │
│ └──┬─CPINGENA─┤ │ ├─NO─SPEC──┤ │ │
│ ├─EPINVER──┤ │ ├─IBM─PIN──┤ │ │
│ ├─REFORMAT─┤ │ ├─GBP─PIN──┴──┬──────────┤ │
│ └─TRANSLAT─┴─┴───┐ ├─IBM─PINO─┐ └─NOOFFSET─┤ │
├─OPINENC─────────────────┬────Note 1─────┐ │ ├─GBP─PINO─┤ │ │
│ │ ┌───────────┐ │ │ ├─VISA─PVV─┤ │ │
│ │ ↓ │ │ │ └─INBK─PIN─┴─────────────┤ │
│ └──┬─CPINENC──┤ │ │ │ │
│ ├─EPINGEN──┤ │ │ │ │
│ ├─REFORMAT─┤ │ │ │ Note 2 │
│ └─TRANSLAT─┴─┴───┴────────────────────────────┼──────────┐ │
├─CIPHERXI─┐ ├─DOUBLE───┤ │
├─CIPHERXL─┤ ├─DOUBLE-O─┤ │
└─CIPHERXO─┴───┐ ├─KEYLN16──┤ │

│ └─MIXED────┴───┤
Note: │ Note: DOUBLE-O │
1. All keywords in the list below are defaults unless │ is default. │

one or more keywords in the list are specified. └─────┬──────────┐ │
2. DOUBLE is the default. DOUBLE-O is only Release 4.4 or later. └─DOUBLE-O─┴───┘

Figure 3. Control Vector Generate and Key Token Build CV keyword combinations for fixed-length DES key tokens

48 Common Cryptographic Architecture Application Programmer's Guide

Table 8. DES control vector key-subtype and key-usage keywords

Keyword Meaning

Key-encrypting keys

OPIM IMPORTER keys that have a control vector with this attribute can be used in the Key Generate
verb when the key form is OPIM.

IMEX IMPORTER and EXPORTER keys that have a control vector with this attribute can be used in
the Key Generate verb when the key form is IMEX.

IMIM IMPORTER keys that have a control vector with this attribute can be used in the Key Generate
verb when the key form is IMIM.

IMPORT IMPORTER keys that have a control vector with this attribute can be used to import a key in
the Key Import verb.

OPEX EXPORTER keys that have a control vector with this attribute can be used in the Key Generate
verb when the key form is OPEX.

EXEX EXPORTER keys that have a control vector with this attribute can be used in the Key Generate
verb when the key form is EXEX.

EXPORT EXPORTER keys that have a control vector with this attribute can be used to export a key in
the Key Export verb.

XLATE IMPORTER and EXPORTER keys that have a control vector with this attribute can be used in
the Key Translate or Key Translate2 verbs.

ANY Key-encrypting keys that have a control vector with this attribute can be used to transport any
type of key. The meaning of this keyword has been discontinued, and its usage is allowed for
backward compatibility reasons only.

NOT-KEK Key-encrypting keys that have a control vector with this attribute formerly could not be used
to transport key-encrypting keys. The meaning of this keyword has been discontinued and its
usage is allowed for backward compatibility reasons only.

DATA Key-encrypting keys that have a control vector with this attribute formerly could only be used
to transport keys with a key type of DATA, CIPHER, ENCIPHER, DECIPHER, MAC, and
MACVER. The meaning of this keyword has been discontinued and its usage is allowed for
backward compatibility reasons only.

PIN Key-encrypting keys that have a control vector with this attribute formerly could only be used
to transport keys with a key type of PINVER, IPINENC, and OPINENC. The meaning of this
keyword has been discontinued and its usage is allowed for backward compatibility reasons
only.

LMTD-KEK Key-encrypting keys that have a control vector with this attribute formerly could only be used
to exchange keys with key-encrypting keys that carry NOT-KEK, PIN, or DATA key-type
ciphering restrictions. The meaning of this keyword has been discontinued and its usage is
allowed for backward compatibility reasons only.

MAC keys

ANY-MAC Any MAC verb can use this key.

ANSIX9.9 The meaning of this keyword has been discontinued and its usage is allowed for backward
compatibility reasons only.

CVVKEY-A Restricts the usage to single-length key-A key or double-length key-A and key-B keys for the
CVV Generate and CVV Verify verbs.

CVVKEY-B Restricts the usage to single-length key-B key for the CVV Generate and CVV Verify verbs.

Data operation keys

SMKEY Enable the encryption of keys in an EMV secure message.

SMPIN Enable the encryption of PINs in an EMV secure message.

PIN keys

NO-SPEC The control vector does not require a specific PIN-calculation method.

Chapter 3. AES, DES, and HMAC cryptography and verbs 49

Table 8. DES control vector key-subtype and key-usage keywords (continued)

Keyword Meaning

IBM-PIN Select the IBM 3624 PIN-calculation method.

IBM-PINO Select the IBM 3624 PIN-calculation method with offset processing.

GBP-PIN Select the IBM German Bank Pool PIN-calculation method.

GBP-PINO Select the IBM German Bank Pool PIN-calculation method with institution-PIN input or output.

VISA-PVV Select the Visa PVV PIN-calculation method.

INBK-PIN Select the InterBank PIN-calculation method.

NOOFFSET Indicates that a PINGEN or PINVER key cannot participate in the generation or verification of
a PIN when an offset process is requested.

CPINGEN The key can participate in the Clear PIN Generate verb.

CPINGENA The key can participate in the Clear PIN Generate Alternate verb.

EPINGEN The key can participate in the Encrypted PIN Generate verb.

EPINVER The key can participate in the Encrypted PIN Verify verb.

CPINENC The key can participate in the Clear PIN Encrypt verb.

REFORMAT The key can participate in the Encrypted PIN Translate verb in the Reformat mode.

TRANSLAT The key can participate in the Encrypted PIN Translate verb in the translate mode.

Key-generating keys

CLR8-ENC The key can be used to multiply encrypt eight bytes of clear data with a generating key.

DALL The key can be used to generate keys with the following key types: DATA, DATAC, DATAM,
DATAMV, DMKEY, DMPIN, EXPORTER, IKEYXLAT, IMPORTER, MAC, MACVER,
OKEYXLAT, and PINVER.

DDATA The key can be used to generate a single-length or double-length DATA or DATAC key.

DEXP The key can be used to generate an EXPORTER or an OKEYXLAT key.

DIMP The key can be used to generate an IMPORTER or an IKEYXLAT key.

DMAC The key can be used to generate a MAC or DATAM key.

DMKEY The key can be used to generate a SECMSG with SMKEY secure messaging key for encrypting
keys.

DMPIN The key can be used to generate a SECMSG with SMPIN secure messaging key for encrypting
PINs.

DMV The key can be used to generate a MACVER or DATAMV key.

DPVR The key can be used to generate a PINVER key.

DKYL0 A DKYGENKY key with this subtype can be used to generate a key based on the key-usage
bits.

DKYL1 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a
subtype of DKYL0.

DKYL2 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a
subtype of DKYL1.

DKYL3 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a
subtype of DKYL2.

DKYL4 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a
subtype of DKYL3.

DKYL5 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a
subtype of DKYL4.

50 Common Cryptographic Architecture Application Programmer's Guide

Table 8. DES control vector key-subtype and key-usage keywords (continued)

Keyword Meaning

DKYL6 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a
subtype of DKYL5.

DKYL7 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a
subtype of DKYL6.

Key lengths

MIXED Indicates that the key can be either a replicated single-length key or a double-length key with
two different, random 8-byte values.

SINGLE, KEYLN8 Specifies the key as a single-length key.

DOUBLE,
KEYLN16

Specifies the key as a double-length key.

Miscellaneous attributes

XPORT-OK Permits the key to be exported by Key Export or Data Key Export. Also permits the key to be
exported by the Key Export to TR31 verb, unless NOT31XPT is set (CV bit 27 = B'1').

NO-XPORT Prohibits the key from being exported by Key Export or Data Key Export.

KEY-PART Specifies the control vector is for a key part.

ENH-ONLY Prohibits the key from being wrapped with the legacy method once it has been wrapped with
the enhanced method.

T31XPTOK Permits the key to be exported by the Key Export to TR31 verb.

NOT31XPT Prohibits the key from being exported by the Key Export to TR31 verb.

Verbs for managing AES and DES key storage files
CCA provides API functions to allow application programs to manage the AES and
DES key storage file, where key tokens are stored when the program references
them by key label name.

The following verbs are used to manage the AES and DES key storage files:
v AES Key Record Create (CSNBAKRC)
v AES Key Record Delete (CSNBAKRD)
v AES Key Record List (CSNBAKRL)
v AES Key Record Read (CSNBAKRR)
v AES Key Record Write (CSNBAKRW)
v DES Key Record Create (CSNBKRC)
v DES Key Record Delete (CSNBKRD)
v DES Key Record List (CSNBKRL)
v DES Key Record Read (CSNBKRR)
v DES Key Record Write (CSNBKRW)

Verbs for managing the PKA key storage file and PKA keys in the
cryptographic engine

The PKA key storage file is a repository for RSA keys, similar to the AES and DES
key storage files.

Chapter 3. AES, DES, and HMAC cryptography and verbs 51

An application can store keys in the key storage file and refer to them by label
when using any of the verbs which accept RSA key tokens as input. The following
verbs are used to manage the PKA key storage file, or PKA keys stored in the
cryptographic engine:
v PKA Key Record Create (CSNDKRC)
v PKA Key Record Delete (CSNDKRD)
v PKA Key Record List (CSNDKRL)
v PKA Key Record Read (CSNDKRR)
v PKA Key Record Write (CSNDKRW)
v Retained Key Delete (CSNDRKD)
v Retained Key List (CSNDRKL)

EC Diffie-Hellman key agreement models
You can specify an EC Diffie-Hellman agreement model, or obtain the shared secret
value without deriving a key.

Token agreement scheme

The caller must have both the required key tokens and both party's identifiers,
including a randomly generated nonce.

Combine the exchanged nonce and Party Info into the party identifier. (Both
parties must combine this information in the same format.) Then call the EC
Diffie-Hellman verb, where “EC” means Elliptic Curve. Specify a skeleton token or
the label of a skeleton token as the output key identifier to be used as a container
for the computed symmetric key material. Note, both parties must specify the
same key type in their skeleton key tokens.
v Specify rule-array keyword DERIV01 to denote the Static Unified Model key

agreement scheme.
v Specify an ECC token as the private key identifier containing this party's ECC

public-private key pair.
v Optionally specify a private KEK key identifier, if the key pair is in an external

key token.
v Specify an ECC token as the public key identifier containing the other party's

ECC public key part.
v Specify a skeleton token as the output key identifier to be used as a container

for the computed symmetric key material.
v Optionally specify an output KEK key identifier, if the output key is to be in an

external key token.
v Specify the combined party info (including nonce) as the party identifier.
v Specify the desired size of the key to be derived (in bits) as the key bit length.

Obtaining the raw "Z" value

The caller must then derive the final key material using a method of their choice.
Do not specify any party info.
v Specify rule array keyword PASSTHRU to denote no key agreement scheme.
v Specify an ECC token as the private key identifier containing this party's ECC

public-private key pair.

52 Common Cryptographic Architecture Application Programmer's Guide

v Optionally specify a private KEK key identifier, if the key pair is in an external
key token.

v Specify an ECC token as the public key identifier containing the other party's
ECC public key part.

v The output key identifier will be populated with the resulting shared secret
material.

Improved remote key distribution
New methods have been added for securely transferring symmetric encryption
keys to remote devices, such as Automated Teller Machines (ATMs), PIN-entry
devices, and point of sale terminals.

These methods can also be used to transfer symmetric keys to another
cryptographic system of any type, such as a different kind of Hardware Security
Module (HSM) in an IBM or non IBM computer server.

This change replaces expensive human operations with network transactions that
can be processed quickly and inexpensively. This method makes significant
interoperability improvements to related cryptographic key-management functions.

In “Remote key loading,” an ATM scenario illustrates the operation of the new
methods. Other uses of this method are also possible.

Remote key loading
Remote key loading is the process of installing symmetric encryption keys into a
remotely located device from a central administrative site.

This encompasses two phases of key distributions:
v Distribution of initial key encrypting keys (KEKs) to a newly installed device. A

KEK is a type of symmetric encryption key that is used to encrypt other keys so
that they can be securely transmitted over unprotected paths.

v Distribution of operational keys or replacement KEKs, enciphered under a KEK
currently installed in the device.

Access control points are assigned to roles to control keyword usage in the services
provided for ATM remote key loading. Table 9 lists the access control points used
by the ATM remote key loading function.

Table 9. Access control points used by ATM remote key loading

Verb name Entry point Offset Access Control Point name and comments

Trusted Block Create CSNDTBC X'030F' Trusted Block Create - Create Block in inactive form

Trusted Block Create CSNDTBC X'0310' Trusted Block Create - Activate an inactive block

PKA Key Import CSNDPKI X'0311' PKA Key Import - Import an external trusted block

Convert a trusted block from external to internal format

PKA Key Import CSNDPKI X'0104' PKA Key Import

Remote Key Export CSNDRKX X'0312' Remote Key Export - Gen or export a non-CCA node key

Chapter 3. AES, DES, and HMAC cryptography and verbs 53

Table 9. Access control points used by ATM remote key loading (continued)

Verb name Entry point Offset Access Control Point name and comments

Key Generate
Remote Key Export

CSNBKGN
CSNDRKX

X'00DB' Key Generate - SINGLE-R

Replication of a single-length source key (which is either an
RKX token or a CCA token) if the output symmetric
encryption result is to be a CCA token, and the CV in the
trusted block's Common Export Key Parameters TLV Object
is 16 bytes with key form bits 'fff' set to X'010' for the left
half and X'001' for the right half.

Key Import CSNBKIM X'027B' Key Import - Unrestricted

The importer key identifier in the initial code release must
have unique halves.

Key Export CSNBKEX X'0276' Key Export - Unrestricted

The transport key identifier in the initial code release must
have unique halves.

Remote key loading methods

New remote key loading methods have been developed to overcome some of the
shortcomings of the old manual key loading methods.

These new methods define acceptable techniques using public key cryptography to
load keys remotely. Using these new methods, initial KEKs can be loaded without
sending people to the remote device. This will reduce labor costs, be more reliable,
and be much less expensive to install and change keys.

The new cryptographic features provide new methods for the creation and use of
the special key forms needed for remote key distribution of this type. In addition,
the new cryptographic features provide ways to solve long-standing barriers to
secure key exchange with non-IBM cryptographic systems.

After an ATM is in operation, new keys can be installed as needed, by sending
them enciphered under a KEK installed previously. This is straightforward in
concept, but the cryptographic architecture in ATMs is often different from that of
the host system that is sending the keys, and it is difficult to export the keys in a
form understood by the ATM. For example, cryptographic architectures often
enforce key-usage restrictions in which a key is bound to data describing
limitations on how it can be used (for encrypting data, for encrypting keys, for
operating on Message Authentication Codes (MACs), and so forth). The encoding
of these restrictions and the method used to bind them to the key itself differs
among cryptographic architectures, and it is often necessary to translate the format
to that understood by the target device prior to a key being transmitted. It is
difficult to do this without reducing security in the system; typically it is done by
making it possible to arbitrarily change key-usage restrictions.

The methods described here provide a mechanism through which the system
owner can securely control these translations, preventing the majority of attacks
that could be mounted by modifying usage restrictions.

A data structure called a trusted block is defined to facilitate the remote key loading
methods. The trusted block is the primary vehicle supporting these new methods.
See “Trusted blocks” on page 968.

54 Common Cryptographic Architecture Application Programmer's Guide

Verbs supporting Secure Sockets Layer (SSL)
The Secure Sockets Layer (SSL) protocol, developed by Netscape Development
Corporation, provides communications privacy over the Internet. Client/server
applications can use the SSL protocol to provide secure communications and
prevent eavesdropping, tampering, or message forgery.

CCA provides verbs that support the RSA encryption and decryption of PKCS
1.2-formatted symmetric key data to produce symmetric session keys. These
session keys can then be used to establish an SSL session between the sender and
receiver. The verbs provide SSL support:
v PKA Decrypt (CSNDPKD)
v PKA Encrypt (CSNDPKE)

Managing data integrity and message authentication
To ensure the integrity of transmitted messages and stored data, CCA provides
DES-based Message Authentication Code (MAC) functions and several hashing
functions, including Modification Detection Code (MDC), SHA-1, RIPEMD-160 and
MD5.

See Chapter 14, “Using digital signatures,” on page 675 for an alternate method of
message authentication using digital signatures.

The choice of verb depends on the security requirements of the environment in
which you are operating. If you need to ensure the authenticity of the sender and
also the integrity of the data, consider Message Authentication Code processing. If
you need to ensure the integrity of transmitted data in an environment where it is
not possible for the sender and the receiver to share a secret cryptographic key,
consider hashing functions.

Processing message authentication code
The process of verifying the integrity and authenticity of transmitted messages is
called message authentication.

Message authentication code (MAC) processing allows you to verify that a
message was not altered or a message was not fraudulently introduced onto the
system. You can check that a message you have received is the same one sent by
the message originator. The message itself can be in clear or encrypted form. The
comparison is performed within the cryptographic coprocessor. Because both the
sender and receiver share a secret cryptographic key used in the MAC calculation,
the MAC comparison also ensures the authenticity of the message.

In a similar manner, MACs can be used to ensure the integrity of data stored on
the system or on removable media, such as tape.

CCA key typing makes it possible to give one party a key that can only be used to
generate a MAC, and to give another party a corresponding key that can only be
used to verify the MAC. This ensures that the second party cannot impersonate the
first by generating MACs with their version of the key.

The coprocessor provides support for both single-length and double-length MAC
generation and MAC verification keys. With the ANSI X9.9-1 single key algorithm,
use the single-length MAC and MACVER keys.

Chapter 3. AES, DES, and HMAC cryptography and verbs 55

CCA provides support for the use of data-encrypting keys in the MAC Generate
and MAC Verify verbs, and also the use of a MAC generation key in the MAC
Verify verb. This support permits CCA MAC verbs to interface more smoothly
with non-CCA key distribution system.

HMAC codes are computed using the FIPS-198 Keyed-Hash Message
Authentication Code method. See Chapter 10, “Verifying data integrity and
authenticating messages,” on page 417.

These verbs are used to process MACs:
v MAC Generate (CSNBMGN)
v MAC Verify (CSNBMVR)

Hashing functions
Hashing functions are provided by two verbs.

These verbs are:
v MDC Generate (CSNBMDG)
v One-Way Hash (CSNBOWH)

Processing personal identification numbers
The process of validating personal identities in a financial transaction system is
called personal authentication.

The personal identification number (PIN) is the basis for verifying the identity of a
customer across the financial industry networks. The financial industry needs
functions to generate, translate, and verify PINs. These functions prevent
unauthorized disclosures when organizations handle personal identification
numbers.

The coprocessor supports the following algorithms for generating and verifying
personal identification numbers:
v IBM 3624
v IBM 3624 PIN offset
v IBM German Bank Pool
v IBM German Bank Pool PIN Offset (GBP-PINO)
v VISA PIN validation value
v Interbank

You can translate PIN blocks from one format to another without the PIN being
exposed in cleartext form. The coprocessor supports the following formats:
v ANSI X9.8
v ISO formats 0, 1, 2, 3
v VISA formats 1, 2, 3, 4
v IBM 4704 Encrypting PINPAD format
v IBM 3624 formats
v IBM 3621 formats
v ECI formats 1, 2, 3

56 Common Cryptographic Architecture Application Programmer's Guide

With the capability to translate personal identification numbers into different PIN
block formats, you can use personal identification numbers on different systems.

Secure messaging
The following verbs assist applications in encrypting secret information such as
clear keys and PIN blocks in a secure message.

These verbs execute within the secure boundary of the cryptographic coprocessor:
v Secure Messaging for Keys (CSNBSKY)
v Secure Messaging for PINs (CSNBSPN)

Trusted Key Entry support
The Trusted Key Entry workstation (TKE) provides a secure method of initializing
and administering cryptographic coprocessors.

It is an optional IBM Z feature, but it is mandatory if z/OS and CCA are not
available on your system. Initialization of the coprocessor can be done through
CCA for both the z/OS and Linux environments, either with or without TKE.

TKE Version 6.0 or higher is required in order to administer the CEX*C
coprocessor features earlier than CEX5C. You can use the TKE workstation to load
DES master keys, PKA master keys, and operational keys in a secure way. TKE
Version 6.0 and 7.0 can also set AES master keys on a CEX*C coprocessor earlier
than CEX5C. For CEX5C, TKE 8.0 is required. For CEX6C, TKE 9.0 is required,
especially for exploiting PCI-HSM 2016 compliance mode.

You can load keys remotely and for multiple coprocessors, which can be in a single
machine or in multiple machines. The TKE workstation eases the administration
for using one coprocessor as a production machine and as a test machine at the
same time, while maintaining security and reliability.

The TKE workstation can be used for enabling and disabling access control points
for verbs executed on the cryptographic coprocessor. See Chapter 24, “Access
control points and verbs,” on page 1047 for additional information.

For complete details about the TKE workstation, see z/OS Cryptographic Services
ICSF Trusted Key Entry Workstation User’s Guide.

Typical sequences of CCA verbs
View some sample sequences in which CCA verbs might be called.

Combination A (DATA keys only)

1. Random number generate
2. Clear key import or multiple clear key import
3. Encipher/decipher
4. Data key export or key export (optional step)

Combination B

1. Random number generate
2. Secure key import or multiple secure key import
3. Any service

Chapter 3. AES, DES, and HMAC cryptography and verbs 57

|
|

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm

4. Data key export for DATA keys, or key export in the general case
(optional step)

Combination C

1. Key generate (OP form only)
2. Any service
3. Key export (optional)

Combination D

1. Key generate (OPEX form)
2. Any service

Combination E

1. Key Generate (IM form only)
2. Key Import
3. Any service
4. Key Export (optional)

Combination F

1. Key Generate (IMEX form)
2. Key Import
3. Any service

Combination G

1. Key Generate
2. AES or DES Key Record Create
3. AES or DES Key Record Write
4. Any service (passing label of the key just generated)

Combination H

1. Key Import
2. AES or DES Key Record Create
3. AES or DES Key Record Write
4. Any service (passing label of the key just generated)

Notes
1. An example of “any service” is CSNBENC.
2. These combinations exclude verbs that can be used on their own; for example,

Key Export or encode, or using the Key Generate verb to generate an
exportable key.

3. These combinations do not show key communication, or the transmission of
any output from an CCA verb.

The key forms are described in Chapter 20, “Key forms and types used in the Key
Generate verb,” on page 985 and “Key Generate (CSNBKGN)” on page 211.

Using the CCA node and master key management verbs
Use these verbs for the CCA node and master key management functions.
v Cryptographic Facility Query (CSUACFQ)
v Cryptographic Facility Version (CSUACFV)
v Cryptographic Resource Allocate (CSUACRA)

58 Common Cryptographic Architecture Application Programmer's Guide

v Cryptographic Resource Deallocate (CSUACRD)
v Cryptographic Variable Encipher (CSNBCVE)
v Data Key Export (CSNBDKX)
v Data Key Import (CSNBDKM)
v Diversified Key Generate (CSNBDKG)
v EC Diffie-Hellman (CSNDEDH)
v Key Export (CSNBKEX)
v Key Generate (CSNBKGN)
v Key Import (CSNBKIM)
v Key Part Import (CSNBKPI)
v Key Storage Initialization (CSNBKSI)
v Key Test (CSNBKYT)
v Key Test Extended (CSNBKYTX)
v Key Token Build (CSNBKTB)
v Key Token Change (CSNBKTC)
v Key Token Parse (CSNBKTP)
v Key Token Parse2 (CSNBKTP2)
v Key Translate (CSNBKTR)
v Master Key Process (CSNBMKP)
v Multiple Clear Key Import (CSNBCKM)
v Prohibit Export (CSNBPEX)
v Prohibit Export Extended (CSNBPEXX)
v Random Number Generate (CSNBRNG)
v Random Number Generate Long (CSNBRNGL)
v Random Number Tests (CSUARNT)
v Symmetric Key Export (CSNDSYX)
v Symmetric Key Generate (CSNDSYG)
v Symmetric Key Import (CSNDSYI)
v Symmetric Key Import2 (CSNDSYI)

Summary of the CCA nodes and resource control verbs
A table of the CCA nodes and resource control verbs, including references to the
verb descriptions.

Table 10. Summary of CCA nodes and resource control verbs

Entry point Verb name Description Topic/Page

Chapter 7, “Using the CCA nodes and resource control verbs,” on page 89

CSUAACM Access Control Maintenance Queries or controls installed roles. “Access Control
Maintenance
(CSUAACM)” on page 89

CSUAACT Access Control Tracking Tracks the usage of ACPs for a defined
span of time, and also queries that
tracking information.

“Access Control Tracking
(CSUAACT)” on page 93

CSUACFQ Cryptographic Facility Query Retrieves information about the
coprocessor and the CCA application
program in that coprocessor.

“Cryptographic Facility
Query (CSUACFQ)” on
page 100

Chapter 3. AES, DES, and HMAC cryptography and verbs 59

Table 10. Summary of CCA nodes and resource control verbs (continued)

Entry point Verb name Description Topic/Page

CSUACFV Cryptographic Facility Version Retrieve the Security Application
Program Interface (SAPI) version and
build date.

“Cryptographic Facility
Version (CSUACFV)” on
page 143

CSUACRA Cryptographic Resource
Allocate

Allocates specific CCA coprocessor for
use by the thread or process, depending
on the scope of the verb.

“Cryptographic Resource
Allocate (CSUACRA)” on
page 144

CSUACRD Cryptographic Resource
Deallocate

De-allocates a specific CCA coprocessor
that is allocated by the thread or
process, depending on the scope of the
verb.

“Cryptographic Resource
Deallocate (CSUACRD)”
on page 147

CSNBKSI Key Storage Initialization This verb initializes a key-storage file
using the current symmetric or
asymmetric master-key. The initialized
key storage does not contain any
preexisting key records. The name and
path of the key storage data and index
file are established differently in each
operating environment. Note that
HMAC keys are not supported for key
storage.

“Key Storage Initialization
(CSNBKSI)” on page 149

CSUALGQ Log Query This verb retrieves system log
(SYSLOG) message data and CCA log
message data from the coprocessor.
SYSLOG data is available for one of the
five latest boot cycles (current boot
cycle and up to four previous boot
cycles). CCA log message data is
optionally available during the current
boot cycle. The verb supports service
personnel and developers in testing and
debugging issues.

“Log Query (CSUALGQ)”
on page 152

CSNBMKP Master Key Process Operates on the three master-key
registers: new, current, and old.

This verb is used to clear the new and
the old master-key registers, generate a
random master-key value in the new
master-key register, XOR a clear value
as a key part into the new master-key
register, and set the master key, which
transfers the current master-key to the
old master-key register and the new
master-key to the current master-key
register.

“Master Key Process
(CSNBMKP)” on page 157

CSUARNT Random Number Tests Invokes the USA NIST FIPS PUB 140-1
specified cryptographic operational
tests. These tests, selected by a
rule_array keyword, consist of
known-answer tests of DES, RSA, and
SHA-1 processes and, for random
numbers, monobit test, poker test, runs
test, and log-run test.

“Random Number Tests
(CSUARNT)” on page 161

60 Common Cryptographic Architecture Application Programmer's Guide

Summary of the AES, DES, and HMAC verbs
Hash Message Authentication Code (HMAC) support was added in CCA Release
4.1.0. All of the HMAC verbs and features listed in this summary require CCA
4.1.0 or CCA 4.2.0 in order to run.

Table 11 lists the AES, DES, and HMAC verbs described in this document. The
table also references the chapter that describes the verb.

Table 11. Summary of CCA AES, DES, and HMAC verbs

Entry point Verb name Description Topic/Page

Chapter 8, “Managing AES, DES, and HMAC
cryptographic keys,” on page 165

CSNBCKI Clear Key Import Imports an 8-byte clear DATA key,
enciphers it under the master key, and
places the result into an internal key
token. This verb converts the clear key
into operational form as a DATA key.

“Clear Key Import
(CSNBCKI)” on page 166

CSNBCKM Multiple Clear Key Import Imports a single-length, double-length,
or triple-length clear DATA key that is
used to encipher or decipher data. It
accepts a clear key and enciphers the
key under the host master key,
returning an encrypted DATA key in
operational form in an internal key
token.

“Multiple Clear Key
Import (CSNBCKM)” on
page 167

CSNBCVG Control Vector Generate Builds a control vector from keywords
specified by the key_type and rule_array
parameters.

“Control Vector Generate
(CSNBCVG)” on page 170

CSNBCVT Control Vector Translate Changes the control vector used to
encipher an external DES key.

“Control Vector Translate
(CSNBCVT)” on page 174

CSNBCVE Cryptographic Variable
Encipher

Encrypts plaintext using a CVARENC
key to produce ciphertext using the
Cipher Block Chaining (CBC) method.

“Cryptographic Variable
Encipher (CSNBCVE)” on
page 178

CSNBDKX Data Key Export Re-enciphers a DATA key from
encryption under the master key to
encryption under an exporter
key-encrypting key, making it suitable
for export to another system.

“Data Key Export
(CSNBDKX)” on page 180

CSNBDKM Data Key Import Imports an encrypted source DES
single-length or double-length DATA
key and creates or updates a target
internal key token with the master key
enciphered source key.

“Data Key Import
(CSNBDKM)” on page
181

CSNBDKG Diversified Key Generate Generates a key based upon the
key-generating key, the processing
method, and the parameter data that is
supplied. The control vector of the
key-generating key also determines the
type of target key that can be
generated.

“Diversified Key Generate
(CSNBDKG)” on page 183

CSNBDKG2 Diversified Key Generate2 Generates an AES key based on a
function of a key-generating key, the
process rule, and data that you supply.

“Diversified Key
Generate2 (CSNBDKG2)”
on page 189

Chapter 3. AES, DES, and HMAC cryptography and verbs 61

Table 11. Summary of CCA AES, DES, and HMAC verbs (continued)

Entry point Verb name Description Topic/Page

CSNDEDH EC Diffie-Hellman Creates symmetric key material from a
pair of Elliptic Curve Cryptography
(ECC) keys using the Elliptic Curve
Diffie-Hellman (ECDH) protocol.

“EC Diffie-Hellman
(CSNDEDH)” on page
195

CSNBKEX Key Export Re-enciphers a key from encryption
under a master key variant to
encryption under the same variant of
an exporter key-encrypting key, making
it suitable for export to another system.

“Key Export (CSNBKEX)”
on page 209

CSNBKGN Key Generate Generates a 64-bit, 128-bit, 192-bit, or
256-bit odd parity key, or a pair of
keys; and returns them in encrypted
forms (operational, exportable, or
importable). Key Generate does not
produce keys in plaintext.

“Key Generate
(CSNBKGN)” on page 211

CSNBKGN2 Key Generate2 Generates either one or two HMAC
keys. This verb does not produce keys
in clear form and all keys are returned
in encrypted form. When two keys are
generated, each key has the same clear
value, although this clear value is not
exposed outside the secure
cryptographic feature.

This verb returns variable-length CCA
key tokens and uses the AESKW
wrapping method. Operational keys
will be encrypted under the AES master
key.

“Key Generate2
(CSNBKGN2)” on page
221

CSNBKIM Key Import Re-enciphers a key from encryption
under an importer key-encrypting key
to encryption under the master key. The
re-enciphered key is in the operational
form.

“Key Import (CSNBKIM)”
on page 234

CSNBKPI Key Part Import Combines the clear key parts of any
key type and returns the combined key
value in an internal key token or an
update to the CCA key storage file.

“Key Part Import
(CSNBKPI)” on page 237

CSNBKPI2 Key Part Import2 Combines the clear key parts of any
HMAC key type from an internal
variable-length symmetric key-token,
and returns the combined key value in
an internal variable-length symmetric
key-token or an update to the CCA key
storage file.

“Key Part Import2
(CSNBKPI2)” on page 241

CSNBKYT Key Test Generates or verifies (depending on
keywords in the rule_array) a secure
verification pattern for keys. This verb
requires the tested key to be in the clear
or encrypted under the master key.

“Key Test (CSNBKYT)”
on page 245

62 Common Cryptographic Architecture Application Programmer's Guide

Table 11. Summary of CCA AES, DES, and HMAC verbs (continued)

Entry point Verb name Description Topic/Page

CSNBKYT2 Key Test2 Generates or verifies (depending on
keywords in the rule_array) a secure
cryptographic verification pattern for
keys contained in a variable-length
symmetric key-token. The key to test
can be in the clear or encrypted under a
master key. Requires the tested key to
be in the clear or encrypted under the
master key.

“Key Test2 (CSNBKYT2)”
on page 249

CSNBKYTX Key Test Extended This verb is essentially the same as Key
Test, except for the following:
v In addition to operating on internal

keys and key parts, this verb also
operates on external keys and key
parts.

v This verb does not operate on clear
keys, and does not accept rule_array
keywords CLR-A128, CLR-A192,
CLR-A256, KEY-CLR, and
KEY-CLRD.

“Key Test Extended
(CSNBKYTX)” on page
254

CSNBKTB Key Token Build Builds an internal or external token
from the supplied parameters. You can
use this verb to build CCA key tokens
for all key types that CCA supports.
The resulting token can be used as
input to the Key Generate, and Key
Part Import verbs.

“Key Token Build
(CSNBKTB)” on page 259

CSNBKTB2 Key Token Build2 Builds variable-length internal or
external key tokens for all key types
that the coprocessor supports. The key
token is built based on parameters that
you supply. The resulting token can be
used as input to the Key Generate2,
and Key Part Import2 verbs. A clear
key token built by this verb can be
used as input to the Key Test2 verb.

This verb supports internal HMAC
tokens, both as clear key tokens and as
skeleton tokens containing no key.

“Key Token Build2
(CSNBKTB2)” on page
264

CSNBKTC Key Token Change Re-enciphers a DES key from
encryption under the old master key to
encryption under the current master
key, and to update the keys in internal
DES key-tokens.

“Key Token Change
(CSNBKTC)” on page 301

CSNBKTC2 Key Token Change2 Re-enciphers a variable-length HMAC
key from encryption under the old
master key to encryption under the
current master key. This verb also
updates the keys in internal HMAC
key-tokens.

“Key Token Change2
(CSNBKTC2)” on page
304

Chapter 3. AES, DES, and HMAC cryptography and verbs 63

Table 11. Summary of CCA AES, DES, and HMAC verbs (continued)

Entry point Verb name Description Topic/Page

CSNBKTP Key Token Parse Disassembles a key token into separate
pieces of information. This verb can
disassemble an external key-token or an
internal key-token in application
storage.

“Key Token Parse
(CSNBKTP)” on page 307

CSNBKTP2 Key Token Parse2 Disassembles a variable-length
symmetric key-token into separate
pieces of information. The verb can
disassemble an external or internal
variable-length symmetric key-token in
application storage. The verb returns
some of the key-token information in a
set of variables identified by individual
parameters, and returns the remaining
information as keywords in the rule
array.

“Key Token Parse2
(CSNBKTP2)” on page
311

CSNBKTR Key Translate Uses one key-encrypting key to
decipher an input key and then
enciphers this key using another
key-encrypting key within the secure
environment.

“Key Translate
(CSNBKTR)” on page 321

CSNBKTR2 Key Translate2 Uses one key-encrypting key to
decipher an input key and then
enciphers this key using another
key-encrypting key within the secure
environment. This verb differs from the
Key Translate verb in that Key
Translate2 can process both fixed-length
and variable-length symmetric key
tokens.

“Key Translate2
(CSNBKTR2)” on page
323

CSNDPKD PKA Decrypt Uses an RSA private key to decrypt the
RSA-encrypted key value and return
the clear key value to the application.

“PKA Decrypt
(CSNDPKD)” on page 327

CSNDPKE PKA Encrypt Encrypts a supplied clear key value
under an RSA public key. The supplied
key can be formatted using the PKCS
1.2 or ZERO-PAD methods prior to
encryption.

“PKA Encrypt
(CSNDPKE)” on page 330

CSNBPEX Prohibit Export Modifies the control vector of a CCA
key token so that the key cannot be
exported. This verb operates only on
internal key tokens.

“Prohibit Export
(CSNBPEX)” on page 334

CSNBPEXX Prohibit Export Extended Modifies an external DES key-token so
that the key can no longer be exported
after it has been imported. This verb
operates only on internal key tokens.

“Prohibit Export
Extended (CSNBPEXX)”
on page 335

CSNBRKA Restrict Key Attribute Modifies an operational variable-length
key so that it cannot be exported.

“Restrict Key Attribute
(CSNBRKA)” on page 337

64 Common Cryptographic Architecture Application Programmer's Guide

Table 11. Summary of CCA AES, DES, and HMAC verbs (continued)

Entry point Verb name Description Topic/Page

CSNBRNG Random Number Generate Generates an 8-byte
cryptographic-quality random number
suitable for use as an encryption key or
for other purposes. The output can be
specified in three forms of parity:
RANDOM, ODD, and EVEN.

“Random Number
Generate (CSNBRNG)” on
page 341

CSNBRNGL Random Number Generate
Long

Generates a cryptographic-quality
random number suitable for use as an
encryption key or for other purposes,
ranging from 1 - 8192 bytes in length.
The output can be specified in three
forms of parity: RANDOM, ODD, and
EVEN.

“Random Number
Generate Long
(CSNBRNGL)” on page
342

CSNDSYX Symmetric Key Export Transfer an application-supplied
symmetric key (a DATA key) from
encryption under the AES, DES or
HMAC master key to encryption under
an application-supplied RSA public key.
The application-supplied DATA key
must be an AES, DES or HMAC
internal key token, or the label of an
AES or DES key token in the CCA key
storage file. The Symmetric Key Import
and Symmetric Key Import2 verb can
import the PKA-encrypted key form at
the receiving node. Support for HMAC
key was added beginning with CCA
4.1.0.

“Symmetric Key Export
(CSNDSYX)” on page 344

CSNDSXD Symmetric Key Export with
Data

Export a symmetric key, along with
some application supplied data,
encrypted using an RSA key.

“Symmetric Key Export
with Data (CSNDSXD)”
on page 350

CSNDSYG Symmetric Key Generate Generate a symmetric key (a DATA
key) and return the key in two forms:
DES-encrypted and encrypted under an
RSA public key. The DES-encrypted key
can be an internal token encrypted
under a host DES master key, or an
external form encrypted under a KEK.
(You can use the Symmetric Key Import
verb to import the PKA-encrypted
form.)

“Symmetric Key Generate
(CSNDSYG)” on page 353

CSNDSYI Symmetric Key Import Import a symmetric AES or DES DATA
key enciphered under an RSA public
key into operational form enciphered
under a DES master key.

“Symmetric Key Import
(CSNDSYI)” on page 358

Chapter 3. AES, DES, and HMAC cryptography and verbs 65

Table 11. Summary of CCA AES, DES, and HMAC verbs (continued)

Entry point Verb name Description Topic/Page

CSNDSYI2 Symmetric Key Import2 Use this verb to import an HMAC key
that has been previously formatted and
enciphered under an RSA public key by
the Symmetric Key Export verb. The
formatted and RSA-enciphered key is
contained in an external variable-length
symmetric key-token. The key is
deciphered using the associated RSA
private-key. The recovered HMAC key
is re-enciphered under the AES
master-key. The re-enciphered key is
then returned in an internal
variable-length symmetric key-token.
The key algorithm for this verb is
HMAC.

“Symmetric Key Import2
(CSNDSYI2)” on page 362

CSNBUKD Unique Key Derive Performs the key derivation process as
defined in ANSI X9.24 Part 1. The
process derives keys from two values:
the base derivation key and the
derivation data. Rule array keywords
determine the types and number of
keys derived on a particular call.

Chapter 9, “Protecting data,” on page 379

CSNBDEC Decipher Deciphers data using cipher block
chaining mode of DES. The result is
called plaintext.

“Decipher (CSNBDEC)”
on page 381

CSNBENC Encipher Enciphers data using the cipher block
chaining mode of DES. The result is
called ciphertext.

“Encipher (CSNBENC)”
on page 385

CSNBSAD Symmetric Algorithm
Decipher

Deciphers data using the AES cipher
block chaining mode.

“Symmetric Algorithm
Decipher (CSNBSAD)” on
page 390

CSNBSAE Symmetric Algorithm
Encipher

Enciphers data using the AES cipher
block chaining mode

“Symmetric Algorithm
Encipher (CSNBSAE)” on
page 397

CSNBCTT2 Cipher Text Translate2 Deciphers encrypted data (ciphertext)
under one ciphertext translation key
and re-enciphers it under another
ciphertext translation key without
having the data appear in the clear
outside the cryptographic coprocessor.

“Cipher Text Translate2
(CSNBCTT2)” on page
404

Chapter 10, “Verifying data integrity and
authenticating messages,” on page 417

CSNBHMG HMAC Generate Generates a keyed hash message
authentication code (HMAC) for the
text string provided as input. See
Chapter 10, “Verifying data integrity
and authenticating messages,” on page
417.

“HMAC Generate
(CSNBHMG)” on page
419

66 Common Cryptographic Architecture Application Programmer's Guide

Table 11. Summary of CCA AES, DES, and HMAC verbs (continued)

Entry point Verb name Description Topic/Page

CSNBHMV HMAC Verify Verifies a keyed hash message
authentication code (HMAC) for the
text string provided as input. See
Chapter 10, “Verifying data integrity
and authenticating messages,” on page
417.

“HMAC Verify
(CSNBHMV)” on page
423

CSNBMGN MAC Generate Generates a 4, 6, or 8-byte Message
Authentication Code (MAC) for a text
string that the application program
supplies. The MAC is computed using
either the ANSI X9.9-1 algorithm or the
ANSI X9.19 optional double key
algorithm and padding could be
applied according to the EMV
specification.

“MAC Generate
(CSNBMGN)” on page
426

CSNBMGN2 MAC Generate2 Generates a keyed hash message
authentication code (HMAC) or a
ciphered message authentication code
(CMAC) for the message string
provided as input. A MAC key with
key usage that can be used for generate
is required to calculate the MAC.

“MAC Generate2
(CSNBMGN2)” on page
430

CSNBMVR MAC Verify Verifies a 4, 6, or 8-byte Message
Authentication Code (MAC) for a text
string that the application program
supplies. The MAC is computed using
either the ANSI X9.9-1 algorithm or the
ANSI X9.19 optional double key
algorithm and padding could be
applied according to the EMV
specification. The computed MAC is
compared with a user-supplied MAC.

“MAC Verify
(CSNBMVR)” on page
433

CSNBMVR2 MAC Verify2 Verifies a keyed hash message
authentication code (HMAC) or a
ciphered message authentication code
(CMAC) for the message text provided
as input. A MAC key with key usage
that can be used for verify is required
to verify the MAC.

“MAC Verify2
(CSNBMVR2)” on page
438

CSNBMDG MDC Generate Creates a 128-bit hash value
(Modification Detection Code) on a
data string whose integrity you intend
to confirm.

“MDC Generate
(CSNBMDG)” on page
441

CSNBOWH One-Way Hash Generates a one-way hash on specified
text.

“One-Way Hash
(CSNBOWH)” on page
445

Chapter 12, “Financial services,” on page 491

CSNBAPG Authentication Parameter
Generate

Generates an authentication parameter
(AP) and returns it encrypted using the
key supplied in an input parameter.

“Authentication
Parameter Generate
(CSNBAPG)” on page 508

Chapter 3. AES, DES, and HMAC cryptography and verbs 67

Table 11. Summary of CCA AES, DES, and HMAC verbs (continued)

Entry point Verb name Description Topic/Page

CSNBCPE Clear PIN Encrypt Formats a PIN into a PIN block format
and encrypts the results. You can also
use this verb to create an encrypted
PIN block for transmission. With the
RANDOM keyword, you can have the
verb generate random PIN numbers.

“Clear PIN Encrypt
(CSNBCPE)” on page 511

CSNBPGN Clear PIN Generate Generates a clear personal identification
number (PIN), a PIN verification value
(PVV), or an offset using one of the
following algorithms:
v IBM 3624 (IBM-PIN or IBM-PINO)
v IBM German Bank Pool (GBP-PIN or

GBP-PINO)
v VISA PIN validation value

(VISA-PVV)
v Interbank PIN (INBK-PIN)

“Clear PIN Generate
(CSNBPGN)” on page 515

CSNBCPA Clear PIN Generate Alternate Generates a clear VISA PIN validation
value (PVV) from an input encrypted
PIN block. The PIN block might have
been encrypted under either an input
or output PIN encrypting key. The
IBM-PINO algorithm is supported to
produce a 3624 offset from a customer
selected encrypted PIN. The PIN block
must be encrypted under either an
input PIN-encrypting key (IPINENC) or
output PIN-encrypting key (OPINENC).

“Clear PIN Generate
Alternate (CSNBCPA)” on
page 518

CSNBCSG CVV Generate Generates a VISA Card Verification
Value (CVV) or a MasterCard Card
Verification Code (CVC) as defined for
track 2.

“CVV Generate
(CSNBCSG)” on page 523

CSNBCKC CVV Key Combine Combine two single-length operational
DES keys that are suitable for use with
the CVV (card-verification value)
algorithm into one operational TDES
key.

“CVV Key Combine
(CSNBCKC)” on page 526

CSNBCSV CVV Verify Verifies a VISA Card Verification Value
(CVV) or a MasterCard Card
Verification Code (CVC) as defined for
track 2.

“CVV Verify (CSNBCSV)”
on page 531

CSNBEPG Encrypted PIN Generate Generates and formats a PIN and
encrypts the PIN block.

“Encrypted PIN Generate
(CSNBEPG)” on page 535

68 Common Cryptographic Architecture Application Programmer's Guide

Table 11. Summary of CCA AES, DES, and HMAC verbs (continued)

Entry point Verb name Description Topic/Page

CSNBPTR Encrypted PIN Translate Re-enciphers a PIN block from one
PIN-encrypting key to another and,
optionally, changes the PIN block
format. UKPT keywords are supported.
You must identify the input
PIN-encrypting key that originally
enciphers the PIN. You also need to
specify the output PIN-encrypting key
that you want the verb to use to
encipher the PIN. If you want to
change the PIN block format, specify a
different output PIN block format from
the input PIN block format.

“Encrypted PIN Translate
(CSNBPTR)” on page 539

CSNBPTRE Encrypted PIN Translate
Enhanced

Reformats a PIN into a different
PIN-block format using an enciphered
PAN field. You can use this verb in an
interchange-network application, or to
change the PIN block to conform to the
format and encryption key used in a
PIN-verification database.

“Encrypted PIN Translate
Enhanced (CSNBPTRE)”
on page 545

CSNBPVR Encrypted PIN Verify Verifies a supplied PIN using one of the
following algorithms:
v IBM 3624 (IBM-PIN or IBM-PINO)
v IBM German Bank Pool (GBP-PIN or

GBP-PINO)
v VISA PIN validation value

(VISA-PVV)
v Interbank PIN (INBK-PIN)

UKPT keywords are supported.

“Encrypted PIN Verify
(CSNBPVR)” on page 555

CSNBFPED FPE Decipher Decrypts payment card data for the
Visa Data Secure Platform (VDSP)
processing.

“FPE Decipher
(CSNBFPED)” on page
560

CSNBFPEE FPE Encipher Encrypts payment card data for the
Visa Data Secure Platform (VDSP)
processing.

“FPE Encipher
(CSNBFPEE)” on page
568

CSNBFPET FPE Translate Translates payment data from
encryption under one key to encryption
under another key with a possibly
different format.

“FPE Translate
(CSNBFPET)” on page
575

CSNBPCU PIN Change/Unblock Supports the PIN change algorithms
specified in the VISA Integrated Circuit
Card Specification; available only on an
IBM z890 or IBM z990 with May 2004
or later version of Licensed Internal
Code (LIC).

“PIN Change/Unblock
(CSNBPCU)” on page 583

CSNBPFO Recover PIN from Offset Calculates the encrypted
customer-entered PIN from a PIN
generating key, account information,
and an IBM-PINO Offset.

“Recover PIN from Offset
(CSNBPFO)” on page 591

CSNBSKY Secure Messaging for Keys Encrypts a text block, including a clear
key value decrypted from an internal or
external DES token.

“Secure Messaging for
Keys (CSNBSKY)” on
page 595

Chapter 3. AES, DES, and HMAC cryptography and verbs 69

Table 11. Summary of CCA AES, DES, and HMAC verbs (continued)

Entry point Verb name Description Topic/Page

CSNBSPN Secure Messaging for PINs Encrypts a text block, including a clear
PIN block recovered from an encrypted
PIN block.

“Secure Messaging for
PINs (CSNBSPN)” on
page 599

CSNBTRV Transaction Validation Supports the generation and validation
of American Express card security
codes; available only on an IBM z890 or
IBM z990 with May 2004 or later
version of Licensed Internal Code (LIC).

“Transaction Validation
(CSNBTRV)” on page 603

70 Common Cryptographic Architecture Application Programmer's Guide

Chapter 4. Introducing PKA cryptography and using PKA
verbs

Read the provided introduction to Public Key Algorithms (PKA) and Elliptic Curve
Cryptography (ECC). When you use the CCA PKA verbs, take note of these
programming considerations, such as the PKA key token structure and key
management.

You can use PKA support to exchange symmetric (secret) keys securely, and to
compute digital signatures for authenticating messages to users.

The preceding chapters focused on AES or DES cryptography or secret-key
cryptography. This cryptography is symmetric (senders and receivers use the same
key, which must be exchanged securely in advance, to encipher and decipher data).

Public key cryptography does not require exchanging a secret key. It is asymmetric
(the sender and receiver each have a pair of keys, a public key and a different but
corresponding private key).

PKA key algorithms
Public key cryptography uses a key pair consisting of a public key and a private
key.

The PKA public key uses one of the following algorithms:

Rivest-Shamir-Adleman (RSA)
The RSA algorithm is the most widely used and accepted of the public key
algorithms. It uses three quantities to encrypt and decrypt text: a public
exponent (PU), a private exponent (PR), and a modulus (M). Given these
three and some cleartext data, the algorithm generates ciphertext as
follows:
ciphertext = cleartextPU (modulo M)

Similarly, the following operation recovers cleartext from ciphertext:
cleartext = ciphertextPR (modulo M)

Elliptic Curve Digital Signature Algorithm (ECDSA)
The ECDSA algorithm uses elliptic curve cryptography (an encryption
system based on the properties of elliptic curves) to provide a variant of
the Digital Signature Algorithm.

PKA master keys
On the cryptographic coprocessor, PKA keys are protected by the Asymmetric-Keys
Master Key (ASYM-MK).

The ASYM-MK is a triple-length DES key used to protect PKA private keys. On the
cryptographic coprocessor, the ASYM-MK protects RSA private keys.

There are two PKA master keys: the ASYM-MK mentioned above, and the 256-bit
AES PKA Master Key (APKA-MK), used to protect ECC private keys stored in
ECC key tokens.

© Copyright IBM Corp. 2007, 2018 71

In order for PKA verbs to function on the processor, the hash pattern of the
ASYM-MK must match the hash pattern of the SYM-MK on the cryptographic
coprocessor. The administrator installs the PKA master keys and the ASYM-MK on
the cryptographic coprocessor by using either the pass phrase initialization routine,
the Clear Master Key Entry panels, or the optional Trusted Key Entry workstation
(TKE).

Operational private keys

Operational private keys are protected under two layers of DES encryption.

They are encrypted under an Object Protection Key (OPK) that in turn is encrypted
under the ASYM-MK. You dynamically generate the OPK for each private key at
import time or when the private key is generated on a CEX*C. CCA provides a
public key storage file for the storage of application PKA keys. Although you
cannot change PKA master keys dynamically, the PKA Key Token Change verb can
be run to change a private PKA token (RSA or ECC) from encryption under the
old ASYM-MK (or APKA-MK) to encryption under the current ASYM-MK (or
APKA-MK).

PKA verbs
The CEX*C features provide application programming interfaces to PKA functions.

These PKA functions are:
v RSA digital signature functions
v Key management and key generation functions
v DES key distribution functions
v Data encryption functions
v ECC digital signature functions
v ECC key management and key generation functions
v ECC-based and RSA-based services for:

– DES and AES key derivation
– Diffie-Hellman key agreement for DES and AES
– Key distribution functions for DES and AES keys

Starting with the CEX3C feature, the CEX*C adapters add application
programming interfaces to the following PKA functions:
v ECC digital signature functions
v ECC key management and key generation functions
v ECC-based and RSA-based services for:

– DES and AES key derivation
– Diffie-Hellman key agreement for DES and AES
– Key distribution functions for DES and AES keys

Verbs supporting digital signatures
CCA provides verbs that support digital signatures.

These verbs are:
v Digital Signature Generate (CSNDDSG)
v Digital Signature Verify (CSNDDSV)

72 Common Cryptographic Architecture Application Programmer's Guide

PKA key management
You can generate RSA and ECC keys using the PKA Key Generate verb
(CSNDPKG), or a comparable product from another vendor..

You can use the PKA Key Generate verb to generate internal and external PKA
tokens. You can also generate RSA keys on another system and then import them
to the cryptographic coprocessor. To input a clear RSA key, create the token with
the PKA Key Token Build verb and import it using the PKA Key Import verb. To
input an encrypted RSA key, use the PKA Key Import verb.

In either case, use the PKA Key Token Build verb to create a skeleton key token as
input (see “PKA Key Token Build (CSNDPKB)” on page 699).

The PKA Key Import verb uses the clear token from the PKA Key Token Build
verb or a clear or encrypted token from the CCA system to securely import the key
token into operational form for the coprocessor to use. CCA does not permit the
export of the imported PKA key.

The PKA Public Key Extract verb builds a public key token from a private key
token.

Application RSA public and private keys can be stored in the PKA key storage file.

Encrypted external
key token from

other CCA system

Clear key values Skeleton key token

PKA Key Token Build

Cleartext external
key token

PKA Key Generate

Encrypted external

key token

PKA Key Import

Internal key token

Figure 4. PKA key management

Chapter 4. PKA cryptography and PKA verbs 73

Verbs for PKA key management

CCA provides the following verbs for PKA key management:
v PKA Key Generate (CSNDPKG)
v PKA Key Import (CSNDPKI)
v PKA Key Token Build (CSNDPKB)
v PKA Key Token Change (CSNDKTC)
v PKA Key Translate (CSNDPKT)
v PKA Public Key Extract (CSNDPKX)
v Remote Key Export (CSNDRKX)
v Trusted Block Create (CSNDTBC)

Key identifier for PKA key token
A key identifier for a PKA key token is a variable length (maximum allowed size is
2500 bytes) area that contains either a key label or a key token.
v A key label identifies keys that are in the PKA key storage file.
v A key token can be either an internal key token, an external key token, or a null

key token. Key tokens are generated by an application (for example, using the
PKA Key Generate verb), or received from another system that can produce
external key tokens.
An internal key token can be used only on the local system, because the PKA
master key encrypts the key value. Internal key tokens contain keys in
operational form only.
An external key token can be exchanged with other systems because a transport
key that is shared with the other system encrypts the key value. External key
tokens contain keys in either exportable or importable form.
A null key token consists of eight bytes of binary zeros. The PKA Key Record
Create verb can be used to write a null token to the key storage file. This record
can subsequently be identified as the target token for the PKA Key Import or
PKA Key Generate verb.

The term key identifier is used when a parameter could be one of the above items,
and indicates that different inputs are possible. For example, you might want to
specify a specific parameter as either an internal key token or a key label. The key
label is, in effect, an indirect reference to a stored internal key token.

Key label
If the first byte of the key identifier is greater than X'20' but less than X'FF', the
field is considered to be holding a key label.

The contents of a key label are interpreted as the identifier of a key entry in the
PKA storage file. The key label is an indirect reference to an internal key token.

If the first byte of the key identifier is X'FF', the identifier is not valid. If the first
byte is less than X'20', the identifier is treated as a key token as described below.

A key label is specified on verbs with the key_identifier parameter as a 64-byte
character string, left-aligned, and padded on the right with blanks. In most cases,
the verb does not check the syntax of the key label other than the first byte.

A key label has the following form:

74 Common Cryptographic Architecture Application Programmer's Guide

Offset Length Data
00 - 63 64 Key label name

Key token
A key token is a variable length (maximum allowed size is 3500 bytes) field
composed of key value and control information.

PKA keys can be either public or private RSA, or ECC keys. Each key token can be
either an internal key token (the first byte of the key identifier is X'1F'), an external
key token (the first byte of the key identifier is X'1E'), or a null PKA private key
token (the first byte of the key identifier is X'00').

For descriptions of the PKA key tokens and for debugging information, see
Chapter 19, “Key token formats,” on page 847.

Internal key token

An internal key token is a token that can be used only on the system that created it
or another system with the same PKA master key.

It contains a key that is encrypted under the PKA master key.

An application obtains an internal key token by using one of the verbs such as
those listed below. The verbs are described in detail in Chapter 15, “Managing
PKA cryptographic keys,” on page 689.
v PKA Key Generate
v PKA Key Import

The PKA Key Token Change verb can re-encipher private internal tokens from
encryption under the old ASYM-MK to encryption under the current ASYM-MK.
PKA key storage Re-encipher/Activate options are available to re-encipher RSA
and ECC internal tokens in the PKA key storage when the SYM-MK/ASYM-MK
(or APKA-MK) keys are changed.

PKA master keys cannot be changed dynamically.

External key token

If the first byte of the key identifier is X'1E', the key identifier is interpreted as an
external key token.

An external PKA key token contains key (possibly encrypted) and control
information. By using the external key token, you can exchange keys between
systems.

An application obtains the external key token by using one of the verbs such as
those listed below. They are described in detail in Chapter 15, “Managing PKA
cryptographic keys,” on page 689.
v PKA Public Key Extract
v PKA Key Token Build
v PKA Key Generate

Chapter 4. PKA cryptography and PKA verbs 75

Null key token

If the first byte of the key identifier is X'00', the key identifier is interpreted as a
null key token.

Summary of the PKA verbs
Use this table of the PKA verbs to map them to their corresponding verb names
and descriptions.

The PKA verb names start with CSND. This table also references the topic that
describes the verb.

Table 12. Summary of PKA verbs

Entry point Verb name Description Topic/Page

Chapter 14, “Using digital signatures,” on page 675

CSNDDSG Digital Signature Generate Generates a digital signature using an
RSA or ECC private key.

“Digital Signature
Generate (CSNDDSG)” on
page 675

CSNDDSV Digital Signature Verify Verifies a digital signature using an
RSA or ECC public key.

“Digital Signature Verify
(CSNDDSV)” on page 680

Chapter 15, “Managing PKA cryptographic keys,” on page 689

CSNDPKG PKA Key Generate Generates an RSA or ECC
public-private key-pair

“PKA Key Generate
(CSNDPKG)” on page 689

CSNDPKI PKA Key Import Imports a key token containing either a
clear key or an RSA or ECC key
enciphered under a transport key.

“PKA Key Import
(CSNDPKI)” on page 696

CSNDPKB PKA Key Token Build Creates an external PKA key token
containing a clear private RSA key.
Using this token as input to the PKA
Key Import verb returns an operational
internal token containing an enciphered
private key. Using PKA Key Token
Build on a clear public RSA key, returns
the public key in a token format that
other PKA verbs can directly use. PKA
Key Token Build can also be used to
create a skeleton token for input to the
PKA Key Generate verb for the
generation of an internal RSA key
token.

“PKA Key Token Build
(CSNDPKB)” on page 699

CSNDKTC PKA Key Token Change Changes PKA key tokens from
encipherment with the old
asymmetric-keys master key to
encipherment with the current
asymmetric-keys master key. This verb
changes only private internal tokens.

“PKA Key Token Change
(CSNDKTC)” on page 710

CSNDPKT PKA Key Translate Translates PKA key tokens from
encipherment under the old
Asymmetric-Keys Master Key to
encipherment under the current
Asymmetric-Keys Master Key. This verb
changes only Private Internal PKA Key
Tokens.

“PKA Key Translate
(CSNDPKT)” on page 713

76 Common Cryptographic Architecture Application Programmer's Guide

|
|

Table 12. Summary of PKA verbs (continued)

Entry point Verb name Description Topic/Page

CSNDPKX PKA Public Key Extract Extracts a PKA public key token from a
supplied PKA internal or external
private key token. Performs no
cryptographic verification of the PKA
private token.

“PKA Public Key Extract
(CSNDPKX)” on page 720

CSNDRKX Remote Key Export Secure transport of DES keys using
asymmetric techniques from a security
module (for example, the CEX*C) to a
remote device such as an Automated
Teller Machine (ATM).

“Remote Key Export
(CSNDRKX)” on page 722

CSNDTBC Trusted Block Create Creates an external trusted block under
dual control. A trusted block is an
extension of CCA PKA key tokens
using new section identifiers.

“Trusted Block Create
(CSNDTBC)” on page 734

Chapter 4. PKA cryptography and PKA verbs 77

78 Common Cryptographic Architecture Application Programmer's Guide

Chapter 5. TR-31 symmetric key management

X9 TR-31 is defined in X9 TR-31 2010: Interoperable Secure Key Exchange Block
Specification for Symmetric Algorithms.

The provided information is an extension of Chapter 8, “Managing AES, DES, and
HMAC cryptographic keys,” on page 165. For additional information on symmetric
keys, including DES control vectors, see Chapter 8, “Managing AES, DES, and
HMAC cryptographic keys,” on page 165.

The TR-31 key block is a format defined by the ANSI Standards Committee to
support interchange of symmetric keys in a secure manner and with key attributes
included in the exchanged data. Currently, this format supports only DES keys.
AES keys are not supported.

TR-31 is a Technical Report. This is different from a standard, which is a
mandatory set of rules that must be followed. A Technical Report is not mandatory,
but provides guidance to those who are using the standards. In this case, TR-31 is
a companion to the standard X9.24-1, which defines requirements for key
management performed using symmetric key techniques. TR-31 shows a method
that complies with the various requirements that are defined in X9.24-1, and
because no other specific method has been defined by the standards committee, the
TR-31 method is becoming the apparent standard through which financial
organizations will exchange keys.

Prior to TR-31, there were problems with the interchange of symmetric keys. In the
banking environment, it is very important that each symmetric key have a specific
set of attributes attached to it, specifying such things as the cryptographic
operations for which that key can be used. CCA implements these attributes in the
form of the control vector (CV), but other vendors implement attributes in their
own proprietary ways. Thus, if you are exchanging keys between CCA systems,
you can securely pass the attributes using CCA functions and data structures. If,
however, that same key were sent to a non-CCA system, there would be no secure
way to do that. This is because the two cryptographic architectures have no
common key format that could be used to pass both the key and its attributes. As
a result, the normal approach has been to strip the attributes and send just the
encrypted key, then attach attributes again at the receiving end.

The above scenario has major security problems because it allows an insider to
obtain the key without its designated attributes. The insider can then attach other
attributes to it, thereby compromising the security of the system. For example,
assume the exchanged key is a key-encrypting key (KEK). The attributes of a KEK
should restrict its use to key management functions that are designed to prevent
exposure of the keys that the KEK is used to encrypt. If that KEK is transmitted
without any attributes, an attacker on the inside can turn the key into a type used
for data decryption. Such a key can then be used to decipher all of the keys that
were previously protected using the KEK. It is clearly very desirable to have a way
of exchanging keys that prevents this modification of the attributes. TR-31 provides
such a method.

The TR-31 key block has a set of defined key attributes. These attributes are
securely bound to the key so that they can be transported together between any
two systems that both understand the TR-31 format. This is much of the reason for

© Copyright IBM Corp. 2007, 2018 79

its gain in popularity. There are two supported cryptographic methods for
protecting the key block. The original version of TR-31 defined a method that
encrypted the key field in CBC mode and computed a TDES MAC over the header
and key field. The encryption and MAC operations used different keys, created by
applying predefined variants to the input key block protection key. This method is
identified by a Key Block Version ID value of A (X'41'). An update to TR-31 adds a
more modern method, identified by a Key Block Version ID value of B (X'42') or C
(X'43'). The B method uses an authenticated encryption scheme and uses
cryptographic key derivation methods to produce the encryption and MAC keys.
The C method is exactly the same as the A method in terms of wrapping keys.
However, the field values are expected to conform to the updated standard.

Not surprisingly, TR-31 uses some key attributes that are different from those in
the CCA control vector. In some cases, there is a one-to-one correspondence
between CCA and TR-31 attributes. For these cases, conversion is simple and
straightforward. In other cases, the correspondence is one-to-many or many-to-one
and the application program must provide information to help the CCA verbs
decide how to perform the translation between CCA and TR-31 attributes. There
are also CCA attributes that simply cannot be represented using TR-31. CCA keys
with those attributes are not eligible for conversion to TR-31 format.

The TR-31 key block has these two important features:
1. The key is protected in such a way that it meets the key bundling requirements

of various standards. These standards state that the individual 8-byte blocks of
a double-length or triple-length TDES key must be bound in such a way that
they cannot be individually manipulated. TR-31 accomplishes this mainly by
computation of a MAC across the entire structure, excluding the MAC value
itself.

2. Key usage attributes, defined to control how the key can be used, are securely
bound to the key itself. This makes it possible for a key and its attributes to be
securely transferred from one party to another while assuring that the attributes
of the key cannot be modified to suit the needs of an attacker.

CCA supports the management of DES keys using TR-31. Table 13 lists the verbs
described in this book. See Chapter 16, “TR-31 symmetric key management verbs,”
on page 755 for a detailed description of the verbs.

Note: CCA 6.0 introduces compliance-tagged key support for domains that enter
compliance mode. Compliance-tagged DES keys may be converted to or from
TR-31 key blocks. The wrapping key encrypting key (KEK) must be
compliance-tagged as well as the key to be exported or imported. A
compliance-tagged KEK cannot be used to import or export a key that is not
compliance-tagged.

Table 13. TR-31 symmetric key management verbs

Verb Page Service Entry point
Service
location

Key Export to TR31 “Key Export
to TR31
(CSNBT31X)”
on page 755

Exports a CCA external or internal
fixed-length symmetric key-token,
converting it into an external X9 TR-31
key block format.

CSNBT31X cryptographic
engine

TR31 Key Import “TR31 Key
Import
(CSNBT31I)”
on page 781

Imports an external X9 TR-31 key block,
converting it into a CCA external or
internal fixed-length symmetric
key-token.

CSNBT31I cryptographic
engine

80 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|
|

Table 13. TR-31 symmetric key management verbs (continued)

Verb Page Service Entry point
Service
location

TR31 Key Token Parse “TR31 Key
Token Parse
(CSNBT31P)”
on page 804

Parses the information from the standard
predefined fields of the TR-31 key block
header without importing the key.

CSNBT31P security API
host software

TR31 Optional Data Build “TR31
Optional
Data Build
(CSNBT31O)”
on page 808

Constructs the optional blocks of a TR-31
key block, one block at a time.

CSNBT31O security API
host software

TR31 Optional Data Read “TR31
Optional
Data Read
(CSNBT31R)”
on page 811

Obtains the contents of any optional
fields of a TR-31 key block header.

CSNBT31R security API
host software

Chapter 5. TR-31 symmetric-key management 81

82 Common Cryptographic Architecture Application Programmer's Guide

Chapter 6. Understanding and managing master keys

In a CCA node, AES, DES, APKA, and PKA master keys are used to wrap or
unwrap working keys. These master keys are also used to wrap or unwrap the
object protection keys (OPKs) of the working keys that have an OPK defined.
These keys are used by the node and can appear outside of the cryptographic
engine, and therefore need wrapping.

The ECC keys are wrapped by using 32-byte AES keys. The DES and RSA working
keys are wrapped using Triple-DES encryption. DES working keys can be wrapped
by a more secure method of Triple-DES by using CBC mode. This method is called
the enhanced key-wrapping method. These methods of securing keys enable a
node to operate on an unlimited number of working keys, without concern for
storage space within the confines of the secured cryptographic engine.

The CCA design supports a set of three master-key registers for each master key:
new, current, and old. While a master key is being assembled, it is accumulated in
the new-master-key register. Then the Master Key Process verb is used to transfer the
contents of the new-master-key register to the current-master-key register.

Working keys are normally encrypted by their associated current master key. To
facilitate continuous operations, CCA also has an old-master-key register. When a
new master key is transferred to the current-master-key register, the preexisting
contents, if any, of the current-master-key register are transferred to the old-master-key
register. Whenever a working key must be decrypted by the master key in CCA,
the master key verification pattern information that is included in the key token is
used to determine whether the current or the old master key must be used to
recover the working key. Special status (return code 0, reason code 10001) is
returned if the old master key is used. Thus, application programs can arrange to
update the working key by encryption with the current master key (with the help
of the Key Token Change and PKA Key Token Change verbs). Whenever a
working key is encrypted for local use, the key or its OPK is wrapped with the
current master key.

Symmetric and asymmetric master keys
Read the contained information on how CCA handles symmetric and asymmetric
master keys.

CCA incorporates the following sets of master-key registers:
v The DES master-key register set is used to wrap and unwrap DES (symmetric)

working keys.
v The PKA master-key register set is used to wrap and unwrap RSA (asymmetric)

private working keys, or the object protection keys (OPKs) of the RSA working
keys that have an OPK defined, excluding private key sections X'30' and X'31',
which have their OPKs wrapped and unwrapped by the APKA master key.

v The AES master-key register set is used to wrap and unwrap AES (symmetric)
fixed-length, and AES and HMAC variable-length, symmetric working keys.

v The APKA master-key register set is used to wrap and unwrap the Object
Protection Key (OPK) that is itself used to wrap the key material of an Elliptic
Curve Cryptography (ECC) key or the OPK of RSA private key sections X'30'
and X'31'. ECC keys are asymmetric.

© Copyright IBM Corp. 2007, 2018 83

The verbs that operate on the master keys permit you to specify a register set (with
keywords AES-MK, APKA-MK, SYM-MK and ASYM-MK). For DES and PKA
master keys, if applications that modify these master-key registers never explicitly
select a register set, the master keys in the two register sets are modified in the
same way and contain the same keys. However, if at any time you modify only
one of the DES or PKA register sets, applications thereafter need to manage the
two register sets independently.

Establishing master keys
The preferred and most secure method of establishing master keys in the
coprocessor is to use a Trusted Key Entry (TKE) workstation. The TKE leverages
user smart cards to establish a secure connection all the way to the firmware in the
coprocessor, with a unique session key. Your key parts are secured from the smart
card all the way to the target coprocessor with this solution.

An AES master key is established from clear key parts (components). An APKA
master key is also established from clear key parts.

DES and PKA master keys, on the other hand, are established in one of these
ways:
v from clear key parts
v through random generation internal to the coprocessor

Establishing a master key from clear information

Individual key parts are supplied as clear information, and the parts are
exclusive-ORed within the cryptographic engine. Knowledge of a single part gives
no information about the final key when multiple, random-valued parts are
exclusive-ORed.

A common technique is to record the values of the parts (typically on paper or
diskette) and independently store these values in locked safes. When installing the
master key, individuals trusted to not share the key-part information, retrieve the
parts and enter the information into the cryptographic engine. Use the Master Key
Process verb for this operation.

Entering the first and subsequent parts is authorized by two different control
points so that a cryptographic engine, the coprocessor, can enforce that two
different roles, and thus profiles, are activated to install the master-key parts. This
requires that roles exist that enforce this separation of responsibility.

Setting the master key uses a unique command with its own control point. You can
set up the access-control system to require the participation of at least three
individuals or three groups of individuals.

You can check the contents of any of the master-key registers, and the key parts as
they are entered into the new-master-key register, using the Key Test verb. The
verb performs a one-way function on the key-of-interest, the result of which is
either returned or compared to a known correct result.

84 Common Cryptographic Architecture Application Programmer's Guide

Establishing a DES or PKA master key from an internally
generated random value

The Master Key Process verb can be used to randomly generate a new DES or
PKA master key within the cryptographic engine. The value of the new master-key
is not available outside of the cryptographic engine. The verb does not support
random generation of an AES master key.

This random method, which is a separately authorized command invoked through
use of the Master Key Process verb, ensures that no one has access to the value of
the master key. Randomly generating a master key is useful when keys shared
with other nodes are distributed using public key techniques, or when DES
transport keys are established between nodes. In these cases, there is no need to
reestablish a master key with the same value. In general, IBM does not recommend
to use a random master key, because workload sharing and backup solutions
become very difficult.

Chapter 6. Understanding master keys 85

86 Common Cryptographic Architecture Application Programmer's Guide

Part 2. CCA verbs

CCA verbs implement a variety of cryptographic processes and data-security
techniques. Each available verb is documented in detail in a separate topic.

For each documented verb, a Java Native Interface (JNI) is defined that you can
use for JNI work.

Note: In this JNI, a new data type hikmNativeLong is replacing the old type
hikmNativeInteger since CCA version 5.2. Both types inherit from an abstract class
hikmNativeNumber. Thus, type hikmNativeInteger is still supported, so you can
run existing applications with this deprecated data type. However, start using type
hikmNativeLong for new applications instead, because hikmNativeInteger may be
removed in the future.

The following topics are contained:
v Chapter 7, “Using the CCA nodes and resource control verbs,” on page 89

describes how to use the CCA resource control verbs.
v Chapter 8, “Managing AES, DES, and HMAC cryptographic keys,” on page 165

describes the verbs for generating and maintaining AES, DES, and HMAC
cryptographic keys, the Random Number Generate verb (which generates 8-byte
random numbers), the Random Number Generate Long verb (which generates
up to 8192 bytes of random content), and the Secure Sockets Layer (SSL) security
protocol. This chapter also describes utilities to build DES and AES tokens,
generate and translate control vectors, and describes the PKA verbs that support
DES and AES key distribution.

v Chapter 9, “Protecting data,” on page 379 describes the verbs for enciphering
and deciphering data.

v Chapter 10, “Verifying data integrity and authenticating messages,” on page 417
describes the verbs for generating and verifying Message Authentication Codes
(MACs), generating Modification Detection Codes (MDCs) and generating
hashes (SHA-1, MD5, RIPEMD-160).

v Chapter 11, “Key storage mechanisms,” on page 449 describes the use of key
storage, key tokens, and associated verbs.

v Chapter 12, “Financial services,” on page 491 describes the verbs for use in
support of finance-industry applications. This includes several categories.
– Verbs for generating, verifying, and translating personal identification

numbers (PINS).
– Verbs that generate and verify VISA card verification values and American

Express card security codes.
– Verbs to support smart card applications using the EMV (Europay

MasterCard Visa) standards.
v Chapter 13, “Financial services for DK PIN methods,” on page 609 contains

information on financial services that are based on the PIN methods and
requirements specified by the German Banking Industry Committee (Deutsche
Kreditwirtschaft (DK)).

v Chapter 14, “Using digital signatures,” on page 675 describes the verbs that
support using digital signatures to authenticate messages.

v Chapter 15, “Managing PKA cryptographic keys,” on page 689 describes the
verbs that generate and manage PKA keys.

© Copyright IBM Corp. 2007, 2018 87

v Chapter 16, “TR-31 symmetric key management verbs,” on page 755 describes
the verbs that manage TR-31 functions.

v Chapter 17, “Utility verbs,” on page 817 describes the Code Conversion
(CSNBXEA) utility. Use this verb to convert text strings from ASCII to EBCDIC
or from EBCDIC to ASCII.

88 Common Cryptographic Architecture Application Programmer's Guide

Chapter 7. Using the CCA nodes and resource control verbs

Use these verbs to control CCA nodes and their resources.

The following verbs are described:
v “Access Control Maintenance (CSUAACM)”
v “Access Control Tracking (CSUAACT)” on page 93
v “Cryptographic Facility Query (CSUACFQ)” on page 100
v “Cryptographic Facility Version (CSUACFV)” on page 143
v “Cryptographic Resource Allocate (CSUACRA)” on page 144
v “Cryptographic Resource Deallocate (CSUACRD)” on page 147
v “Key Storage Initialization (CSNBKSI)” on page 149
v “Log Query (CSUALGQ)” on page 152
v “Master Key Process (CSNBMKP)” on page 157
v “Random Number Tests (CSUARNT)” on page 161

Access Control Maintenance (CSUAACM)
Use the Access Control Maintenance verb to query or control installed roles.

You can use this verb to perform the following services:
v Retrieve a list of the installed roles.
v Retrieve the non-secret data for a selected role.

You select which service to perform by specifying the corresponding keyword in
the input rule-array. You can only perform one of these services per verb call.

Chapter 25, “Access control data structures,” on page 1073 describes the roles and
role structures and provides examples of access control data structures for the
roles.

Note: You can also perform the services provided by the CSUAACM verb with the
help of the panel.exe utility. Refer to “panel.exe default syntax as of CCA 6.0” on
page 1121 and to “Using panel.exe to show the active role and ACPs” on page
1129.

Format
The format of CSUAACM.

CSUAACM(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
name,
output_data_length,
output_data)

© Copyright IBM Corp. 2007, 2018 89

Parameters
The parameter definitions for CSUAACM.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Direction: Input
Type: String array

The rule_array parameter is a pointer to a string variable containing an array
of keywords. The keywords are eight bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords are
described in Table 14.

Table 14. Keywords for Access Control Maintenance control information

Keyword Description

Service to perform (one required)

LSTROLES Retrieves a list of the roles installed in the coprocessor.

GET-ROLE Retrieves the non-secret part of a role definition from the
coprocessor.

name

Direction: Input
Type: String

The name parameter is a pointer to a string variable containing the name of a
role or user profile which is the target of the request.

The manner in which this variable is used depends on the service being
performed.

Table 15. Meaning of the name parameter

Rule-array keyword Contents of name parameter

LSTROLES The name parameter is unused.

GET-ROLE The name parameter contains the 8-character role ID for the role
definition that is to be retrieved or deleted. A role ID cannot
start with a space character.

output_data_length

Direction: Input/Output
Type: Integer

The output_data_length parameter is a pointer to an integer variable
containing the number of bytes of data in the output_data variable. The value
must be a multiple of four bytes.

Access Control Maintenance (CSUAACM)

90 Common Cryptographic Architecture Application Programmer's Guide

On input, the output_data_length parameter must be set to the total size of the
variable pointed to by the output_data parameter. On output, this variable
contains the number of bytes of data returned by the verb in the output_data
variable.

output_data

Direction: Output
Type: String

The output_data parameter is a pointer to a string variable containing data
returned by the verb. Any integer value returned in the output_data variable is
in big-endian format; the high-order byte of the value is in the
lowest-numbered address in storage. Authentication data structures are
described in Chapter 25, “Access control data structures,” on page 1073.

The manner in which this variable is used depends on the function being
performed.

Table 16. Meaning of the output_data parameter

Rule-array keyword Contents of output_data parameter

LSTROLES Contains a list of the role IDs for all the roles stored in the
coprocessor.

Access Control Maintenance (CSUAACM)

Chapter 7. CCA nodes and resource control 91

Table 16. Meaning of the output_data parameter (continued)

Rule-array keyword Contents of output_data parameter

GET-ROLE The variable contains the non-secret portion of the selected role.
This includes the following data, in the order listed.

Role version
Two bytes containing 2 one-byte integer values, where
the first byte contains the major version number and
the second byte contains the minor version number.

Comment
A 20-character variable padded on the right with
spaces, containing a comment which describes the role.
This variable is not X'00' terminated.

Required authentication-strength level
A 2-byte integer defining how secure the user
authentication must be in order to authorize this role.

Lower time-limit
The earliest time of day that this role can be used. The
time limit consists of two 1-byte integer values, a
1-byte hour, followed by a 1-byte minute. The hour can
range from 0 - 23, and the minute can range from 0 -
59.

Upper time-limit
The latest time of day that this role can be used. The
format is the same as the Lower time-limit.

Valid days of the week
A 1-byte variable defining which days of the week this
role can be used. Seven bits of the byte are used to
represent Sunday through Saturday, where a 1 bit
means that the day is allowed, while a 0 bit means it is
not.

The first bit (most significant bit, MSB) is for Sunday,
and the last significant bit (LSB) is unused and is set to
B'0'.

Access-control-point list
The access-control-point bit map defines which
functions a user with this role is permitted to run.

Restrictions
The restrictions for CSUAACM.

None.

Required commands
The CSUAACM required commands.

The Access Control Maintenance verb requires the shown command to be enabled
in the active role, based on the following rule_array keywords:

Rule-array keyword Offset Command

LSTROLES,
GET-ROLE

X'0116' Access Control Manager - Read role

Access Control Maintenance (CSUAACM)

92 Common Cryptographic Architecture Application Programmer's Guide

Usage notes
Usage notes for CSUAACM.

Only roles relevant to the domain which originates the command are listed or
returned.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSUAACMJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSUAACMJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] name,
hikmNativeNumber output_data_length,
byte[] output_data);

Access Control Tracking (CSUAACT)
The Access Control Tracking verb allows you to track the usage of ACPs for a
defined span of time, and also allows you to query that tracking information.

Use the Access Control Tracking verb to start or stop tracking of access control
points (ACPs) that are queried by applications. You can also use this verb to
maintain ACP tracking information. Some key points to consider are:
v Tracking is started, stopped, and maintained on a per role basis, for one or more

role IDs at a time.
v Tracking of ACPs occurs between START and STOP requests.
v Whenever an application, that is running under a role ID that is being tracked,

causes an ACP to be queried, this ACP is tracked.
v ACP information is returned on the basis of the selected role ID.

– Data size: CSUAACT uses the same access-control-point list data structure
and transfer semantics as the Access Control Maintenance (CSUAACM) verb.
Both verbs also share the same transfer size limitations, if any. It is deemed
unlikely that role tracking data for one role passes the maximum data transfer
size for a platform since typically data for a single role is returned.

– If a SIZEDATA request for a given list of roles results in an error that
indicates the total size is too large to transfer, try reducing the size of the list
of roles by dividing it into multiple queries.

v Tracking configuration and data is retained inside the cryptographic coprocessor
until cleared by a specific request or re-initialization.

To use this verb, do the following:
1. Specify the desired function to perform in the rule array. Choose whether to

start or stop access control tracking, whether to retrieve collected tracking data
or the size of that data. You can also choose to query if tracking is enabled, or
clear tracking information.

Access Control Maintenance (CSUAACM)

Chapter 7. CCA nodes and resource control 93

2. Use the role_ID parameter to optionally identify one or more 8-character role
IDs to be tracked. If no role IDs are specified (that is, the role_ID_length
variable is 0), the verb operates on the default role, which all users may use.

3. Specify a buffer large enough to receive any output data.

Note:

1. Tracking of role IDs has minor performance implications. From the initialization
of a role ID tracking structure after a START until it is cleared, either by the
CLRDATA option of this verb or by a reinitialization of the CCA application in
the coprocessor, two identical copies of the tracking structure are maintained.
One is an in-memory copy, and the other is an in-storage copy. The in-memory
copy serves to provide the least impact on performance, while the in-storage
copy serves to survive a power outage. During the period that a role ID is
being tracked, any attempt by that role to access an ACP causes the role ID
access control point list of the in-memory copy to be checked. When an ACP
(offset) in the list is checked and found to be set to B'1' (at least one access
attempt for this ACP, whether successful or not, has been recorded), no further
processing is performed. Otherwise, the offset in both the in-memory and
in-storage lists is changed to B'1' from B'0'. This update to both lists only occurs
once per ACP accessed.

2. Chapter 25, “Access control data structures,” on page 1073 describes the roles
and role structures and provides examples of access control data structures for
the roles.

3. You can also perform ACP tracking with the help of the panel.exe utility. Refer
to “panel.exe default syntax as of CCA 6.0” on page 1121 and to “Using
panel.exe to control ACP tracking” on page 1131.

Format
The format of CSUAACT.

CSUAACT(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
role_ID_length,
role_ID,
output_data_length,
output_data,
reserved1_length,
reserved1,
reserved2_length,
reserved2)

Parameters
The parameter definitions for CSUAACT.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

Access Control Tracking (CSUAACT)

94 Common Cryptographic Architecture Application Programmer's Guide

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Direction: Input
Type: String array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords are
described in Table 17.

Table 17. Keywords for Access Control Tracking control information

Keyword Description

Function to perform (required). Setting the role_ID_length variable to 0 causes the function
to operate on the default role ID.

CLRDATA Specifies to clear ACP tracking information for the role IDs identified by
the role_ID parameter.
Note:

1. No data is returned in the buffer identified by the output_data
parameter.

2. This function does not start or stop tracking information. Use the
START or STOP keywords for this purpose.

3. It is possible for some data to be gathered after CLRDATA, but
before a subsequent STOP. To avoid this, use STOP before CLRDATA.

4. This function generates an ACP query which gets logged before any
tracking information is cleared.

GETDATA Note: Specifies to return the tracking information for the role IDs
identified by the role_ID parameter. This tracking information is
returned into the buffer identified by the output_data parameter,
provided that the buffer is large enough to receive all of the data.

1. This function does not clear tracking information. Use CLRDATA for
this purpose.

2. This function does not stop ACP tracking. Use STOP instead.

3. Use SIZEDATA to determine the minimum required size for the
buffer identified by the output_data parameter.

GETSTATE Specifies to return the state (either enabled or not enabled) of ACP
tracking for the role IDs identified by the role_ID parameter. The state is
returned into the buffer identified by the output_data parameter,
provided that the buffer is large enough to receive all of the data.
Note: This function does not start or stop ACP tracking. Use START or
STOP instead.

SIZEDATA Specifies to return the size of the data in bytes that GETDATA would
return as a single integer value into the output_data_length variable.
Note:

1. No data is returned in the buffer identified by the output_data
parameter.

2. The output_data_length variable can be greater on output than on
input.

3. Provide the same list of role IDs to be used for GETDATA.

Access Control Tracking (CSUAACT)

Chapter 7. CCA nodes and resource control 95

Table 17. Keywords for Access Control Tracking control information (continued)

Keyword Description

START Specifies to start ACP tracking for the role IDs identified by the role_ID
parameter.
Note:

1. No data is returned in the buffer identified by the output_data
parameter.

2. Use of this function for a role ID that is being tracked has no effect
and does not cause an error or warning.

STOP Specifies to stop ACP tracking for the role IDs identified by the role_ID
parameter.
Note:

1. No data is returned in the buffer identified by the output_data
parameter.

2. Use of this keyword on a role ID that is not being tracked has no
effect and does not cause an error or warning.

3. ACP tracking stops after the ACP check for the required commands
of this verb are recorded for the appropriate role ID.

role_ID_length

Direction: Input
Type: Integer

The role_ID_length parameter is a pointer to an integer variable containing
the number of bytes of data in the role_ID variable. This value must be greater
than or equal to 0 and a multiple of 8.

Note: Setting the role_ID_length variable to 0 causes the function to operate
on the default role ID.

role_ID

Direction: Input
Type: String

This parameter is a pointer to a string variable containing an optional array of
role IDs of the role definitions to process. The role IDs are 8 bytes in length
and must be left-aligned and padded on the right with space characters.

output_data_length

Direction: Input/Output
Type: Integer

This parameter is a pointer to an integer variable containing the number of
bytes of data in the output_data variable. For keyword SIZEDATA, this value
is allowed to be less on input than on output since no data is returned in the
buffer identified by the output_data parameter. Otherwise, set this value to at
least the number of data bytes to be returned in that buffer.

output_data

Direction: Output
Type: String

The output_data parameter is a pointer to a string variable containing data
returned by the verb. The size and content of the output data depends on the
function to perform based on the rule array. Only rule array keywords

Access Control Tracking (CSUAACT)

96 Common Cryptographic Architecture Application Programmer's Guide

GETDATA and GETSTATE return data in this variable (buffer). Keyword
SIZEDATA does not return any data in this buffer, even if the returned
output_data_length variable is greater than 0.

The GETSTATE option returns a concatenation of role tracking data headers,
one for each role ID identified by the role_ID parameter. Refer to Table 18. No
additional data follows the header for GETSTATE.

Table 18. Role tracking data header format

Offset (bytes) Length (bytes) Description

00 02 Role tracking data (RTD) header version (X'0100').

02 02 RTD length in bytes (big endian): rtdln. Length
includes this header (16 bytes) + length of data that
follows the header, if any.

04 08 Role ID of role tracking data

12 01 Role tracking flag byte for the role ID (value at offset
4)

Value Meaning

B'xxxx xxx0'
Tracking is not enabled.

B'0000 0001'
Tracking is enabled.

All unused bits are reserved and must be zero.

13 03 Reserved, binary zero.

Note:

1. For GETDATA, the returned output_data is a concatenation of a role tracking data
header and an ACP list pair, one for each role ID identified by the role_ID parameter.

2. For GETSTATE, the returned output_data is a concatenation of role tracking data
headers, one for each role ID identified by the role_ID parameter.

The GETDATA option returns a role tracking data header for each role ID, with
an additional ACP list concatenated to each header. Refer to Table 308 on page
1075. Table 19 provides the format of the output returned by the GETDATA
option.

Table 19. GETDATA output_data format

Offset (bytes) Length (bytes) Description

role_id 1 of n, where n = 1 for role_ID_length = 0. Otherwise n = role_ID_length / 8.

00 02 Role tracking data (RTD) header version (X'0100').

02 02 RTD length in bytes (big endian): rtdln#1. Length
includes this header (16 bytes) + length of ACP list
structure.

04 08 Role ID of role tracking data

Access Control Tracking (CSUAACT)

Chapter 7. CCA nodes and resource control 97

Table 19. GETDATA output_data format (continued)

Offset (bytes) Length (bytes) Description

12 01 Role tracking flag byte for the role ID (value at offset
4)

Value Meaning

B'xxxx xxx0'
Tracking is not enabled.

B'0000 0001'
Tracking is enabled.

All unused bits are reserved and must be zero.

13 03 Reserved, binary zero.

16 rtdln#1 - 16 Access-control-point list structure for role ID 1. Refer
to Table 308 on page 1075.

The meaning of each bit valued in the bit-map data
segments of the ACP list structure has the following
meaning for role tracking data:

Value Meaning

B'0' No recorded access attempt has been made.

B'1' This ACP has had at least one access
attempt while being tracked. The value
does not indicate the success of any access
attempt.

Note:

1. Use the Access Control Maintenance
(CSUAACM) verb with the GET-ROLE
rule-array keyword to determine which offsets
this role ID has enabled. Compare the
CSUAACM list of enabled ACPs to the tracking
list of the role ID to determine which ACP access
attempts were successful.

2. The gathering of data for a given role ID can be
impacted by multiple STARTs and STOPs. if
CLRDATA is not performed between a STOP and
a START.

role_ID 2 of n, for role_ID_length ≥ 2*8 where n = role_ID_length / 8

rtdln#1 02 RTD header version.

rtdln#1 + 02 02 RTD overall length in bytes (big endian): rtdln#2

rtdln#1 + 04 08 Role ID of role tracking data.

rtdln#1 + 12 01 Role tracking flag byte for role ID (value at offset
rtdln#n-1 + 4).

rtdln#1 + 13 03 Reserved, binary zero.

rtdln#1 + 16 rtdln#n - 16 Access-control-point list structure for role ID n

Note:

1. For GETDATA, the returned output_data is a concatenation of a role tracking data
header and ACP list pair, one for each role ID identified by the role_ID parameter.

2. All integer values returned in the output_data variable are in big-endian format.

Access Control Tracking (CSUAACT)

98 Common Cryptographic Architecture Application Programmer's Guide

The GETSTATE option returns a concatenation of role tracking data headers,
one for each role ID identified by the role_ID parameter. Refer to Table 20. No
additional data follows the header for GETSTATE.

Table 20. GETSTATE output_data format

Offset (bytes) Length (bytes) Description

00 02 Role tracking data (RTD) header version (X'0100').

02 02 RTD structure length in bytes (big endian). Length
includes this header (16 bytes) + length of data that
follows the header (zero for GETSTATE).

04 08 Role ID of role tracking data

12 01 Role tracking flag byte for the role ID (value at offset
4)

Value Meaning

B'xxxx xxx0'
Tracking is not enabled.

B'0000 0001'
Tracking is enabled.

All unused bits are reserved and must be zero.

13 03 Reserved, binary zero.

Note: For GETSTATE, the returned output_data is a concatenation of role tracking data
headers, one for each role ID identified by the role_ID parameter.

reserved1_length

Direction: Input/Output
Type: Integer

The reserved1_length parameter is a pointer to an integer variable containing
the number of bytes of data in the reserved1 variable. This value must be zero.

reserved1

Direction: Output
Type: String

The reserved1 parameter is a pointer to a string variable. This parameter is
reserved for future use.

reserved2_length

Direction: Input/Output
Type: Integer

The reserved2_length parameter is a pointer to an integer variable containing
the number of bytes of data in the reserved2 variable. This value must be zero.

reserved2

Direction: Output
Type: String

The reserved2 parameter is a pointer to a string variable. This parameter is
reserved for future use.

Access Control Tracking (CSUAACT)

Chapter 7. CCA nodes and resource control 99

Restrictions
The restrictions for CSUAACT.

None.

Required commands
The CSUAACT required commands.

The Access Control Tracking verb requires the following command to be enabled
in the active role, based on the following rule_array keywords:

Rule-array keyword Offset Command

CLRDATA, GETDATA,
SIZEDATA, START, or STOP

X'01CC' Access Control Tracking - Enable

Usage notes
Usage notes for CSUAACT.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSUAACTJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSUAACTJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber role_ID_length
byte[] role_ID,
hikmNativeNumber output_data_length,
byte[] output_data,
hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2);

Cryptographic Facility Query (CSUACFQ)
The Cryptographic Facility Query verb is used to retrieve information about the
coprocessor and the CCA application program in that coprocessor.

This information includes the following:
v General information about the coprocessor, its operating system, and CCA

application
v The Environment Identifier (EID)
v Diagnostic information from the coprocessor
v Export-control information from the coprocessor
v Time and date information from the coprocessor

Access Control Tracking (CSUAACT)

100 Common Cryptographic Architecture Application Programmer's Guide

v The contents and size of the authorized PIN decimalization tables loaded onto
the coprocessor

On input, you specify:
v A rule_array_count of 1 or 2
v Optionally, a rule_array keyword of ADAPTER1 (for backward compatibility)
v The class of information queried with a rule_array keyword

This verb returns information elements in the rule_array and sets the
rule_array_count variable to the number of returned elements.

Determining if a card is a CEX3C, CEX4C, CEX5C, or a CEX6C
Using the Cryptographic Facility Query, the output rule_array for option
STATCCA is the most accurate way to determine the cryptographic coprocessor
type.

An updated device driver might not be available yet for all distributions where the
current RPM is usable. The CCA host library uses this mechanism to determine
card version, and we recommend that the application developer also use this
method. Where this Cryptographic Facility Query output from the rule_array for
option STATCCA and the device driver disagree about the version of a particular
card, it is the device driver that will be out of date because the Cryptographic
Facility Query data is not interpreted in any way. It comes directly from the
adapter.
v If first character of the CCA application version field is a number 4 or greater,

then this card is a CEX3C or higher. For example, a 4 in the first character
indicates a CEX3C or CEX4C.

v If the first character of the CCA application version field is the number 5, then
this card is a CEX5C.

v If the first character of the CCA application version field is the number 6, then
this card is a CEX6C.

The commands ivp.e and panel.exe -x also tell you the cryptographic coprocessor
type, by calling the Cryptographic Facility Query verb for all available adapters.

For details about panel.exe, see “The panel.exe utility” on page 1121.

Format
The format of CSUACFQ.

CSUACFQ(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
verb_data_length,
verb_data)

Parameters
The parameter definitions for CSUACFQ.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 101

|

|
|

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. On input, this value must be 1 or 2.

On output, the verb sets the variable to the number of rule_array elements it
returns to the application program.

Tip: With this verb, the number of returned rule_array elements can exceed
the rule_array_count you specified on input. Be sure you allocate adequate
memory to receive all the information elements according to the information
class you select on input with the information-to-return keyword in the
rule_array.

rule_array

Direction: Input/Output
Type: String array

The rule_array parameter is a pointer to a string variable containing an array
of keywords. The keywords are eight bytes in length and must be left-aligned
and padded on the right with space characters.

On input, set the rule_array to specify the type of information to retrieve.
There are two input rule_array elements, as described in Table 21. This table
also indicates to which parameter, rule_array or verb_data, output data is
returned for each keyword.

Table 21. Keywords for Cryptographic Facility Query control information

Keyword Description
Output in
rule_array

Output in
verb_data

Adapter to use (Optional)

ADAPTER1 This keyword is ignored. It is accepted for backward compatibility. n/a n/a

Information to return (One required)

GETCOMPD Get compliance data. Returns official card and domain compliance
information. See the SIGNSTAT keyword later in this table for a
method to have the entire bundle hashed and signed by adapter
firmware outbound authentication firmware keys.

None. See
“GETCOMPD”
on page 117.

GET-UDX Obtains UDX identifiers.

This keyword applies only when using Linux on Z.

None. See
“GET-UDX”
on page 117.

Cryptographic Facility Query (CSUACFQ)

102 Common Cryptographic Architecture Application Programmer's Guide

||
|
|
|

||
|
|

Table 21. Keywords for Cryptographic Facility Query control information (continued)

Keyword Description
Output in
rule_array

Output in
verb_data

MOREMKS This keyword returns additional master key information. It is in a
second rule array class and used to signify that additional data is
to be returned with one or more existing keywords. This keyword
is only allowed when one of STATICSFB, STATCCA, or
STATCCAE is also present. Any other use results in an error
return code of (8 / 0x22 [34]).

When present, the reply rule array elements for the SYM and
ASYM master keys have additional bytes populated. The master
key status is still present in the same format in offset 0 of the
element.

When STATICSFB is present, an ASCII '1' is in offset 7 of the reply
rule array element if ACP '0x0330' was set when the master key
parts were loaded. This forces the user to enter 24-bytes of key
material. This is only present for the SYM MK.

Example output for STATICSFB MOREMKS
(truncated to show only the SYM reply):

Rule array kw 0: Card Serial Number
Rule array kw 1: “3 1“ SYM MK new mk reg is full and

24-bytes entered.
Rule array kw 2: “2 “ SYM MK valid (contains a key)

current mk.
Rule array kw 3: “2 “ SYM MK valid old mk.

NUM-DECT Returns the number of bytes of data required for the verb_data
variable when the STATDECT rule-array keyword is specified.
Note: A TKE is used to securely load PIN decimalization tables.

None. See
“NUM-DECT”
on page 122.

QPENDING TKE uses this rule_array keyword to request information about
pending changes previously submitted by this TKE or another
TKE to this adapter. Only TKE can submit changes to be stored in
the Pending Change Buffer queried with this command.

The keyword is available for normal users of Cryptographic
Facility Query, for informational or debugging reasons (no secrets
are exposed).

This keyword applies only when using Linux on Z.

See Table 22
on page 106.

None.

SIGNSTAT This keyword causes the returned data to have a signature
post-pended to the reply data which covers the reply data.

It works in combination with the GETCOMPD and STATOAHL
keywords.

It always returns data prefixed with a signed_data_t structure
that defines where the data is (following the signed_data_t) and
where an optional signature is, (after the data BLOB).

v If SIGNSTAT is not present, the signed_data_t beginning
structure is still returned, however the signature fields show
offset, length, and sig-type of 0x00.

v If SIGNSTAT is present, adapter firmware signs the data, puts a
signature after the data, and fixes the signature fields to allow
for the signature fields and payload.

None. See the
extension of
the
GETCOMPD
and
STATOAHL
ouput in
“GETCOMPD”
on page 117
and
“STATOAHL”
on page 133.

SIZEWPIN Get the number of bytes of storage required for the output of a
STATWPIN request.

None. See Table 24
on page 123.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 103

||
|

|
|

|
|
|

|
|
|

|
|
|

||
|
|
|
|
|
|
|
|
|
|
|

Table 21. Keywords for Cryptographic Facility Query control information (continued)

Keyword Description
Output in
rule_array

Output in
verb_data

STATAES Obtains status information on AES master-key registers and AES
key-length enablement.

See Table 22
on page 106.

None.

STATAPKA Obtains status information on APKA master-key registers and
APKA key-length enablement.

See Table 22
on page 106.

None.

STATCARD Obtains coprocessor-related basic status information. This
keyword is provided for backwards compatibility. The STATCRD2
should be used instead of STATCARD.

See Table 22
on page 106.

None.

STATCCA Obtains CCA-related status information. See Table 22
on page 106.

None.

STATCCAE Obtains CCA-related extended status information. See Table 22
on page 106.

None.

STATCRD2 Obtains extended basic status information about the coprocessor. See Table 22
on page 106.

None.

STATDECT Obtains the information on all of the authorized PIN
decimalization tables that are currently stored on the coprocessor.
Output is returned in the verb_data variable.
Note: A TKE is used to securely load PIN decimalization tables.

None. See
“STATDECT”
on page 123.

STATDIAG Obtains diagnostic information. See Table 22
on page 106.

None.

STATEID Obtains the Environment Identifier (EID). See Table 22
on page 106.

None.

STATEXPT Obtains function control vector-related status information. See Table 22
on page 106.

None.

STATICSA Obtains the indicated master key hash and verification patterns to
be returned for the master keys loaded in the current domain.

This keyword applies only when using Linux on Z.

See Table 22
on page 106.

See
“STATICSA”
on page 123.

STATICSB Obtains the indicated master key hash and verification patterns to
be returned for the master keys loaded in the current domain. See
“STATICSB” on page 126.

See Table 22
on page 106.

See
“STATICSB”
on page 126.

STATICSE Obtains the indicated master key hash and verification patterns to
be returned for the master keys loaded in the current domain.

This keyword applies only when using Linux on Z.

See Table 22
on page 106.

See
“STATICSE”
on page 128.

STATICSF This keyword returns the adapter serial number and status
information about the SYM (DES) and ASYM (RSA) master-key
registers, including whether a valid key is present in each of the
old, current, and new registers.

This keyword applies only when using Linux on Z.

See Table 22
on page 106.

None.

STATICSX Obtains the indicated master key hash and verification patterns to
be returned for the master keys loaded in the current domain.

This keyword applies only when using Linux on Z.

See Table 22
on page 106.

See
“STATICSX”
on page 130.

STATKPR Obtains non-secret information about an operational key part.

This keyword applies only when using Linux on Z.

None. See
“STATKPR” on
page 132.

STATKPRL Obtains the names of the operational key parts.

This keyword applies only when using Linux on Z.

None. “STATKPRL”
on page 133.

Cryptographic Facility Query (CSUACFQ)

104 Common Cryptographic Architecture Application Programmer's Guide

Table 21. Keywords for Cryptographic Facility Query control information (continued)

Keyword Description
Output in
rule_array

Output in
verb_data

STATMOFN Obtains master-key shares distribution information. See Table 22
on page 106.

None.

STATOAHL Returns the adapter health for firmware, with full bootloader
fields. This data structure matches the signed health_t structure,
which is returned by the secure bootloader of the HSM when a
QueryHealth command is issued. (Such a command is isssued by
low level IBM Z firmware which then caches the information for
the management console). Thus, this STATOAHL keyword returns
the same health_t structure through CCA, signed by an OA key.

Input:

The verb_data parameter holds the 32-byte nonce desired by the
user to be signed in the returned health_t structure.

Output:

The verb_data parameter holds the health_t structure.

Tip: Adding the SIGNSTAT keyword causes the returned data to
be signed. The signature returned from this call can be verified
using the public key returned by the CCA call to
CSUADPK:GET-CERT. Then pass the public key, signature, and
hash of the data to the CSNDDSV verb.

None. See
“STATOAHL”
on page 133.

STATVKPL Obtains the names of all the operational key parts for variable
length key token preparation.

This keyword applies only when using Linux on Z.

None. See
“STATVKPL”
on page 140.

STATVKPR Obtains non-secret information about an operational key part. This
is different from STATKPR in that a register for creating a key in a
variable length key token is described.

This keyword applies only when using Linux on Z.

None. See
“STATVKPR”
on page 140.

STATWPIN Returns the state information on all of the weak PIN entries that
are currently stored on the coprocessor.

None. See Table 33
on page 141.

TIMEDATE Reads the current date, time, and day of the week from the secure
clock within the coprocessor.

See Table 22
on page 106.

None.

TKESTATE Indicates whether TKE access is enabled or not.

This keyword applies only when using Linux on Z.

See Table 22
on page 106.

None.

WRAPMTHD Obtains the default key wrapping method. See Table 22
on page 106.

None.

Different sets of rule_array elements are returned, depending on the input
keyword. Table 22 on page 106 describes these rule_array elements for
keywords that result in output data in the rule_array parameter.

For rule_array elements that contain numbers, those numbers are represented
by numeric characters which are left-aligned and padded on the right with
space characters. For example, a rule_array element that contains the number
2 contains the character string “2 ” (the number 2 followed by seven
space characters).

For some keywords, there is output data in the verb_data variable. This output
data is described in “Verb data returned for CSUACFQ keywords” on page
117.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 105

||
|
|
|
|
|
|

|

|
|

|

|

|
|
|
|
|

||
|
|

Table 22. Cryptographic Facility Query information returned in the rule_array

Element number Name Description

Output rule_array for option QPENDING

1 Change type
(ASCII number)

An ASCII number that indicates the type of pending change stored in the
adapter (if there is one)

Value Description
none No pending change

1 Role load
2 Profile load
3 Role delete
4 Profile delete
5 Domain zeroize
6 Enable

2 user ID (string) A string of eight ASCII characters for the user ID of the user who initiated
the pending change.

Output rule_array for option STATAES

1 AES NMK status State of the AES new master key register:

Value Description
1 Register is clear
2 Register contains a partially complete key
3 Register contains a complete key

2 AES CMK status State of the AES current master key register:

Value Description
1 Register is clear
2 Register contains a key

3 AES OMK status State of the AES old master key register:

Value Description
1 Register is clear
2 Register contains a key

4 AES key length
enablement

The maximum AES key length that is enabled by the function control
vector. The value is 0 (if no AES key length is enabled in the function
control vector (FCV)), 128, 192, or 256.

Output rule_array for option STATAPKA

1 ECC NMK status The state of the ECC new master key register:

Value Description
1 Register is clear
2 Register contains a partially complete key
3 Register contains a complete key

2 ECC CMK status The state of the ECC current master key register:

Value Description
1 Register is clear
2 Register contains a key

3 ECC OMK status The state of the ECC old master key register:

Value Description
1 Register is clear
2 Register contains a key

4 ECC key length
enablement

The maximum ECC curve size that is enabled by the function control
vector. The value is 0 (if no ECC keys are enabled in the function control
vector (FCV)) and 521 for the maximum size.

Output rule_array for option STATCARD

Cryptographic Facility Query (CSUACFQ)

106 Common Cryptographic Architecture Application Programmer's Guide

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

1 Number of
installed adapters

A numeric character string containing the number of active coprocessors
installed in the machine. This includes only coprocessors that have CCA
software loaded (including those with CCA UDX software). Non-CCA
coprocessors are not included in this number.

2 DES hardware
level

A numeric character string containing an integer value identifying the
version of DES hardware on the coprocessor.

3 RSA hardware
level

A numeric character string containing an integer value identifying the
version of RSA hardware on the coprocessor.

4 POST version A character string identifying the version of the coprocessor's Power-On
Self Test (POST) firmware.

The first four characters define the POST0 version and the last four
characters define the POST1 version.

5 Coprocessor
operating system
name

A character string identifying the operating system firmware on the
coprocessor.

6 Coprocessor
operating system
version

A character string identifying the version of the coprocessor's operating
system firmware.

7 Coprocessor part
number

A character string containing the 8 character part number identifying the
version of the coprocessor.

8 Coprocessor EC
level

A character string containing the 8 character engineering change (EC) level
for this version of the coprocessor.

9 Miniboot version A character string identifying the version of the coprocessor's miniboot
firmware. This firmware controls the loading of programs into the
coprocessor.

The first four characters define the MiniBoot0 version and the last four
characters define the MiniBoot1 version.

10 CPU speed A numeric character string containing the operating speed of the
microprocessor chip, in megahertz.

11 Adapter ID (see
also element
number 15)

A unique identifier manufactured into the coprocessor. The coprocessor
adapter ID is an 8-byte binary value.

12 Flash memory size A numeric character string containing the size of the flash EPROM memory
on the coprocessor, in 64 KB increments.

13 DRAM memory
size

A numeric character string containing the size of the dynamic RAM
(DRAM) memory on the coprocessor, in kilobytes.

14 Battery-backed
memory size

A numeric character string containing the size of the battery-backed RAM
on the coprocessor, in kilobytes.

15 Serial number A character string containing the unique serial number of the coprocessor.
The serial number is factory installed.

Output rule_array for option STATCCA

1 NMK status The state of the new master-key register:

Value Description
1 The register is clear.
2 The register contains a partially complete key.
3 The register contains a key.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 107

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

2 CMK status The state of the current master-key register:

Value Description
1 The register is clear.
2 The register contains a key.

3 OMK status The state of the old master-key register:

Value Description
1 The register is clear.
2 The register contains a key.

4 CCA application
version

A character string that identifies the version of the CCA application
program running in the coprocessor.

If the first character of the CCA application version field is a number, such
as 4 or greater, then this card is a CEX3C or higher. For example, a 4 in the
first character indicates a CEX3C or CEX4C. A 5 in the first character
indicates a CEX5C. A 6 in the first character indicates a CEX6C.

The results of this query come directly from the card itself. If the host
device driver is not up to date, it could incorrectly identify a wrong
CEX*C. Therefore, looking at this field resolves all questions.

5 CCA application
build date

A character string containing the build date for the CCA application
program running in the coprocessor.

6 User role A character string containing the role identifier which defines the host
application user's current authority.

Output rule_array for option STATCCAE

1 Symmetric NMK
status

The state of the symmetric new master-key register:

Value Description
1 The register is clear.
2 The register contains a partially complete key.
3 The register contains a key.

2 Symmetric CMK
status

The state of the symmetric current master-key register:

Value Description
1 The register is clear.
2 The register contains a key.

3 Symmetric OMK
status

The state of the symmetric old master-key register:

Value Description
1 The register is clear.
2 The register contains a key.

4 CCA application
version

A character string that identifies the version of the CCA application
program that is running in the coprocessor.

5 CCA application
build date

A character string containing the build date for the CCA application
program that is running in the coprocessor.

6 User role A character string containing the role identifier which defines the host
application user's current authority.

7 Asymmetric NMK
status

The state of the asymmetric new master-key register:

Value Description
1 The register is clear.
2 The register contains a partially complete key.
3 The register contains a key.

Cryptographic Facility Query (CSUACFQ)

108 Common Cryptographic Architecture Application Programmer's Guide

|

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

8 Asymmetric CMK
status

The state of the asymmetric current master-key register:

Value Description
1 The register is clear.
2 The register contains a key.

9 Asymmetric OMK
status

The state of the asymmetric old master-key register:

Value Description
1 The register is clear.
2 The register contains a key.

Output rule_array for option STATCRD2

1 Number of
installed adapters

A numeric character string containing the number of active coprocessors
installed in the machine. This includes only coprocessors that have CCA
software loaded (including those with CCA UDX software). Non-CCA
coprocessors are not included in this number.

2 DES hardware
level

A numeric character string containing an integer value identifying the
version of DES hardware on the coprocessor.

3 RSA hardware
level

A numeric character string containing an integer value identifying the
version of RSA hardware on the coprocessor.

4 POST version A character string identifying the version of the coprocessor's Power-On
Self Test (POST) firmware.

The first four characters define the POST0 version and the last four
characters define the POST1 version.

5 Coprocessor
operating system
name

A character string identifying the operating system firmware on the
coprocessor.

6 Coprocessor
operating system
version

A character string identifying the version of the coprocessor's operating
system firmware.

7 Coprocessor part
number

A character string containing the 8 character part number identifying the
version of the coprocessor.

8 Coprocessor EC
level

A character string containing the 8 character engineering change (EC) level
for this version of the coprocessor.

9 Miniboot version A character string identifying the version of the coprocessor's miniboot
firmware. This firmware controls the loading of programs into the
coprocessor.

The first four characters define the MiniBoot0 version and the last four
characters define the MiniBoot1 version.

10 CPU speed A numeric character string containing the operating speed of the
microprocessor chip, in megahertz.

11 Adapter ID (see
also element
number 15)

A unique identifier manufactured into the coprocessor. The coprocessor
adapter ID is an 8-byte binary value.

12 Flash memory size A numeric character string containing the size of the flash EPROM memory
on the coprocessor, in 64 KB increments.

13 DRAM memory
size

A numeric character string containing the size of the dynamic RAM
(DRAM) memory on the coprocessor, in kilobytes.

14 Battery-backed
memory size

A numeric character string containing the size of the battery-backed RAM
on the coprocessor, in kilobytes.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 109

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

15 Serial number A character string containing the unique serial number of the coprocessor.
The serial number is factory installed.

16 POST2 version A character string identifying the version of the coprocessor's POST2
firmware. The first four characters define the POST2 version, and the last
four characters are reserved and valued to space characters.

Output rule_array for option STATDIAG

1 Battery state A numeric character string containing a value which indicates whether the
battery on the coprocessor needs to be replaced:

Value Description
1 The battery is good.
2 The battery should be replaced.

2 Intrusion latch
state

A numeric character string containing a value which indicates whether the
intrusion latch on the coprocessor is set or cleared:

Value Description
1 The latch is cleared.
2 The latch is set.

3 Error log status A numeric character string containing a value which indicates whether
there is data in the coprocessor CCA error log:

Value Description
1 The error log is empty.
2 The error log contains abnormal termination data, but is not yet

full.
3 The error log is full and cannot hold any more data.

4 Mesh intrusion A numeric character string containing a value to indicate whether the
coprocessor has detected tampering with the protective mesh that
surrounds the secure module. This indicates a probable attempt to
physically penetrate the module:

Value Description
1 No intrusion has been detected.
2 An intrusion attempt has been detected.

5 Low voltage
detected

A numeric character string containing a value to indicate whether a
power-supply voltage was below the minimum acceptable level. This might
indicate an attempt to attack the security module:

Value Description
1 Only acceptable voltages have been detected.
2 A voltage has been detected below the low-voltage tamper

threshold.

6 High voltage
detected

A numeric character string containing a value indicates whether a
power-supply voltage was greater than the maximum acceptable level. This
might indicate an attempt to attack the security module:

Value Description
1 Only acceptable voltages have been detected.
2 A voltage has been detected greater than the high-voltage tamper

threshold.

7 Temperature range
exceeded

A numeric character string containing a value to indicate whether the
temperature in the secure module was outside of the acceptable limits. This
might indicate an attempt to attack the security module:

Value Description
1 The temperature is acceptable.
2 The temperature has been detected outside of an acceptable limit.

Cryptographic Facility Query (CSUACFQ)

110 Common Cryptographic Architecture Application Programmer's Guide

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

8 Radiation detected A numeric character string containing a value to indicate whether radiation
was detected inside the secure module. This might indicate an attempt to
attack the security module:

Value Description
1 No radiation has been detected.
2 Radiation has been detected.

9, 11, 13, 15, 17 Last 5 commands
run

These five rule_array elements contain the last five commands that were
run by the coprocessor CCA application. They are in chronological order,
with the most recent command in element 9. Each element contains the
security API command code in the first four characters and the
subcommand code in the last four characters. See Table 317 on page 1135.

10, 12, 14, 16, 18 Last 5 return
codes

These five rule_array elements contain the security API return codes and
reason codes corresponding to the five commands in rule_array elements 9,
11, 13, 15, and 17. Each element contains the return code in the first four
characters and the reason code in the last four characters.

Output rule_array for option STATEID

1, 2 EID The two elements, when concatenated, provide the 16-byte Environment
Identifier (EID) value.

Output rule_array for option STATEXPT, when a function control vector (FCV) is loaded. Returns space characters in
each of the six rule array elements if an FCV is not loaded.

1 Base CCA services
availability

A numeric character string containing a value to indicate whether base
CCA services are available:

Value Description
0 Base CCA services are not available.
1 Base CCA services are available.

3 56-bit DES
availability

A numeric character string containing a value to indicate whether 56-bit
DES encryption is available:

Value Description
0 56-bit DES encryption is not available.
1 56-bit DES encryption is available.

4 Triple-DES
availability

A numeric character string containing a value to indicate whether
Triple-DES encryption is available:

Value Description
0 Triple-DES encryption is not available.
1 Triple-DES encryption is available.

5 SET services
availability

A numeric character string containing a value to indicate whether SET
(secure electronic transaction) services are available:

Value Description
0 SET services are not available.
1 SET services are available.

Note: The SET services are not supported in the Linux on Z environment.

6 Maximum
modulus for
symmetric key
encryption

A numeric character string containing the maximum modulus size enabled
for the encryption of symmetric keys. This defines the longest public-key
modulus that can be used for key management of symmetric-algorithm
keys.

Output rule_array for option STATICSA

This keyword also has verb data returned in the verb_data field. See “Verb data returned for CSUACFQ keywords”
on page 117.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 111

|
|

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

1 Card serial
number

Eight ASCII characters for the adapter serial number

2 DES new
master-key register
state

An ASCII number showing the state of the DES new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

3 DES current
master-key register
state

An ASCII number showing the state of the DES current master-key register:

Value Description
1 Invalid
2 Valid

4 DES old
master-key register
state

An ASCII number showing the state of the DES old master-key register:

Value Description
1 Invalid
2 Valid

5 PKA new
master-key register
state

An ASCII number showing the state of the PKA new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

6 PKA current
master-key register
state

An ASCII number showing the state of the PKA current master-key
register:

Value Description
1 Invalid
2 Valid

7 PKA old
master-key register
state

An ASCII number showing the state of the PKA old master-key register:

Value Description
1 Invalid
2 Valid

8 AES new
master-key register
state

An ASCII number showing the state of the AES new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

9 AES current
master-key register
state

An ASCII number showing the state of the AES current master-key register:

Value Description
1 Invalid
2 Valid

10 AES old
master-key register
state

An ASCII number showing the state of the AES old master-key register:

Value Description
1 Invalid
2 Valid

Output rule_array for option STATICSB

This keyword also has verb data returned in the verb_data field. See “Verb data returned for CSUACFQ keywords”
on page 117.

1 Card serial
number

Eight ASCII characters for the adapter serial number

Cryptographic Facility Query (CSUACFQ)

112 Common Cryptographic Architecture Application Programmer's Guide

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

2 DES new
master-key register
state

An ASCII number showing the state of the DES new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

3 DES current
master-key register
state

An ASCII number showing the state of the DES current master-key register:

Value Description
1 Invalid
2 Valid

4 DES old
master-key register
state

An ASCII number showing the state of the DES old master-key register:

Value Description
1 Invalid
2 Valid

5 PKA new
master-key register
state

An ASCII number showing the state of the PKA new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

6 PKA current
master-key register
state

An ASCII number showing the state of the PKA current master-key
register:

Value Description
1 Invalid
2 Valid

7 PKA old
master-key register
state

An ASCII number showing the state of the PKA old master-key register:

Value Description
1 Invalid
2 Valid

8 APKA new
master-key register
state

An ASCII number showing the state of the APKA new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

9 APKA current
master-key register
state

An ASCII number showing the state of the APKA current master-key
register:

Value Description
1 Invalid
2 Valid

10 APKA old
master-key register
state

An ASCII number showing the state of the APKA old master-key register:

Value Description
1 Invalid
2 Valid

Output rule_array for option STATICSE

This keyword also has verb data returned in the verb_data field. See “Verb data returned for CSUACFQ keywords”
on page 117.

1 Card serial
number

Eight ASCII characters for the adapter serial number

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 113

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

2 DES new
master-key register
state

An ASCII number showing the state of the DES new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

3 DES current
master-key register
state

An ASCII number showing the state of the DES current master-key register:

Value Description
1 Invalid
2 Valid

4 DES old
master-key register
state

An ASCII number showing the state of the DES old master-key register:

Value Description
1 Invalid
2 Valid

5 PKA new
master-key register
state

An ASCII number showing the state of the PKA new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

6 PKA current
master-key register
state

An ASCII number showing the state of the PKA current master-key
register:

Value Description
1 Invalid
2 Valid

7 PKA old
master-key register
state

An ASCII number showing the state of the PKA old master-key register:

Value Description
1 Invalid
2 Valid

Output rule_array for option STATICSF

1 Card serial
number

Eight ASCII characters for the adapter serial number

2 DES new
master-key register
state

An ASCII number showing the state of the DES new master-ky register:

Value Description
1 Empty
2 Partially full
3 Full

3 DES current
master-key register
state

An ASCII number showing the state of the DES current master-key register:

Value Description
1 Invalid
2 Valid

4 DES old
master-key register
state

An ASCII number showing the state of the DES old master-key register:

Value Description
1 Invalid
2 Valid

Cryptographic Facility Query (CSUACFQ)

114 Common Cryptographic Architecture Application Programmer's Guide

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

5 PKA new
master-key register
state

An ASCII number showing the state of the PKA new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

6 PKA current
master-key register
state

An ASCII number showing the state of the PKA current master-key
register:

Value Description
1 Invalid
2 Valid

7 PKA old
master-key register
state

An ASCII number showing the state of the PKA old master-key register:

Value Description
1 Invalid
2 Valid

Output rule_array for option STATICSX

This keyword also has verb data returned in the verb_data field. See “Verb data returned for CSUACFQ keywords”
on page 117.

1 Card serial
number

Eight ASCII characters for the adapter serial number

2 DES new
master-key register
state

An ASCII number showing the state of the DES new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

3 DES current
master-key register
state

An ASCII number showing the state of the DES current master-key register:

Value Description
1 Invalid
2 Valid

4 DES old
master-key register
state

An ASCII number showing the state of the DES old master-key register:

Value Description
1 Invalid
2 Valid

5 PKA new
master-key register
state

An ASCII number showing the state of the PKA new master-key register:

Value Description
1 Empty
2 Partially full
3 Full

6 PKA current
master-key register
state

An ASCII number showing the state of the PKA current master-key
register:

Value Description
1 Invalid
2 Valid

7 PKA old
master-key register
state

An ASCII number showing the state of the PKA old master-key register:

Value Description
1 Invalid
2 Valid

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 115

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

Output rule_array for option STATMOFN

Elements 1 and 2 are treated as a 16-byte string, as are elements 3 and 4, with the high-order 15 bytes containing
meaningful information and the 16th byte containing a space character. Each byte provides status information about
the ith share, 1 ≤ i ≤ 15, of master-key information.

1, 2 Master-key shares
generation

The 15 individual bytes are set to one of these character values:

Value Description
0 Cannot be generated
1 Can be generated
2 Has been generated but not distributed
3 Generated and distributed once
4 Generated and distributed more than once

3, 4 Master-key shares
reception

The 15 individual bytes are set to one of these character values:

Value Description
0 Cannot be received
1 Can be received
3 Has been received
4 Has been received more than once

5 m The minimum number of shares required to instantiate a master key
through the master-key-shares process. The value is returned in two
characters, valued from 01 – 15, followed by six space characters.

6 n The maximum number of distinct shares involved in the master-key shares
process. The value is returned in two characters, valued from 01 - 15,
followed by six space characters.

Output rule_array for option TIMEDATE

1 Date The current date is returned as a character string of the form YYYYMMDD,
where:
YYYY Represents the year.
MM Represents the month (01 - 12).
DD Represents the day of the month (01 - 31).

2 Time The current UTC time of day is returned as a character string of the form
HHMMSS, where:
HH Represents the hour (0 - 23).
MM Represents the minute (0 - 59).
SS Represents second (0 - 59).

3 Day of the week The day of the week is returned as a number between 1 (Sunday) and 7
(Saturday).

Output rule_array for option TKESTATE

1 TKE access
enabled

Indicates whether a TKE can be used to administer this CEX*C. Values are:
TKEPERM

Allowed
TKEDENY

Not allowed

Output rule_array for option WRAPMTHD

1 Internal tokens Default wrapping method for internal tokens.

Value Description
0 Keys are be wrapped with the original method.
1 Keys are be wrapped with the enhanced X9.24 method.

Cryptographic Facility Query (CSUACFQ)

116 Common Cryptographic Architecture Application Programmer's Guide

Table 22. Cryptographic Facility Query information returned in the rule_array (continued)

Element number Name Description

2 External tokens Default wrapping method for external tokens.

Value Description
0 Keys are wrapped with the original method.
1 Keys are wrapped with the enhanced X9.24 method.

verb_data_length

Direction: Input/Output
Type: Integer

The verb_data_length parameter is a pointer to an integer variable containing
the number of bytes of data in the verb-data variable.

verb_data

Direction: Input/Output
Type: String

A pointer to a string variable containing output data that is returned for some
of the keywords specified in the rule_array variable. This output is described
in a separate section for each keyword in “Verb data returned for CSUACFQ
keywords.”

Verb data returned for CSUACFQ keywords
Some keywords return specific data in the verb_data parameter, and update the
verb_data_length field with the count of bytes returned.

The verb_data buffer must be large enough to receive the data (see
keyword-specific sizes below) and the verb_data_length parameter as passed in to
Cryptographic Facility Query (CSUACFQ) must indicate that size (or a larger
value). If either the verb_data or verb_data_length fields are not valid, no data is
returned at all. In this case, a return code of 8 and a reason code of 72 is returned.

GET-UDX
This rule_array keyword causes a variable length list of 2-byte UDX identifiers to
be returned.

The identifiers represent the authorized UDX verb IDs for the adapter. A UDX is a
set of one or more custom CCA APIs added to the adapter, using the installable
code feature. Unless the programming source has also provided an updated host
library, these UDX calls are not accessible from the IBM Z Linux host library. If an
updated host library is provided, refer to the accompanying documentation for
usage.

The maximum number of names to be returned is 100. Using this number, the
maximum size buffer is 6400 bytes.

GETCOMPD
This rule_array keyword causes all data to be returned in one VUD block. The
described structure also comprises extra data fields that contains output if the
SIGNSTAT keyword is specified.

The VUD block header and data has a layout as described in Table 23 on page 118:

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 117

|
|
|
|

|

Table 23. Output data format for the GETCOMPD keyword

Offset Size Field Subordinate data type Description

Begin outer templating

4 1 Struct name Signed_data_t Structure name
Type: binary integer
Value:
mbif_types.h:118:#define SIGNED_DATA_T 0x82

5 1 Struct version Signed_data_t Structure version
Type: binary integer
Value: 0x00

6 4 Signed data len Signed_data_t Length of entire Signed_data_t structure, including
appended data and signature

Type: binary integer, big-endian

10 4 Data offset Signed_data_t Offset from start of the data sub-struct (here) to the
start of the actual data payload.

Type: binary integer, big-endian
Value: 0x14

14 4 Data len Signed_data_t Length of the data payload
Type: binary integer, big-endian

18 4 Sig offset Signed_data_t Offset from start of the signature sub-structure
(here) to the start of the actual signature.

Type: binary integer, big-endian

22 4 Sig len Signed_data_t Length of the signature
Type: binary integer, big-endian

26 4 Sig type Signed_data_t Type of the signature
Type: binary integer, big-endian
Value: 0x04 (ECDSA over SHA-512 hash with

ECC P521, raw format)
0x00 (no signature)

Begin payload

30 7 VE xcVpd_t:VE field Card secure part number field from VPD
Type: ASCII, not NULL terminated

37 1 Reserved1 n/a Reserved field Type: binary integer

38 7 EC xcVpd_t:EC field Card EC field from VPD
Type: ASCII, not NULL terminated

45 1 Reserved1 n/a Reserved field Type: binary integer

46 12 SN xcVpd_t:[sn_hdr | sn] fields Card serial number header and serial number
concatenated; making up a 12 byte quantity.

Type: ASCII, not NULL terminated

Cryptographic Facility Query (CSUACFQ)

118 Common Cryptographic Architecture Application Programmer's Guide

||

|||||

|

|||||
|
|
|

|||||
|
|

|||||
|

|

|||||
|

|
|

|||||
|

|||||
|

|

|||||
|

|||||
|
|
|
|

|

|||||
|

|||||

|||||
|

|||||

|||||
|

|

Table 23. Output data format for the GETCOMPD keyword (continued)

Offset Size Field Subordinate data type Description

58 16 Current_clock Cca_gentime_t structure The current card clock time maintained by the RTC
hardware.

Type: ASCII characters for the date in the following
layout of 14 characters, with 2 NULL characters at
the end since the day-of-week is not returned.

YYYYMMDDHHMMSS\0\0

Note: This is similar to ASN.1 Generalized Time
format for Local time. Since the adapter reports
whatever time it has been set to, and has no
external reference for timezone verification, it is not
appropriate to have a Z indicating UTC or to
specify an offset from UTC.

74 8 Cca_version Same value reported for other CSUACFQ calls that
report the CCA version

Type: ASCII, not NULL terminated

82 8 Udx_version1 Ccax_version1 UDX supplied version field (first), should be none
for PCI-HSM 2016 capable firmware

Type: ASCII, not NULL terminated

90 8 Udx_version2 Ccax_version2 UDX supplied version field (second), should be
none for PCI-HSM 2016 capable firmware

Type: ASCII, not NULL terminated

98 16 Build_date Cca_gentime_t structure Build time_date: Local Date and time on machine
where firmware was built.

Type: ASCII characters for the date in the following
layout of 14 characters, with 2 NULL characters at
the end since the day-of-week is not returned.

YYYYMMDDHHMMSS\0\0

Note: This is similar to ASN.1 Generalized Time
format for “Local time”. Since the adapter reports
whatever time it has been set to, and has no
external reference for timezone verification, it is not
appropriate to have a Z indicating UTC or to
specify an offset from UTC.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 119

|

|||||

|||||
|

|
|
|

|

|
|
|
|
|
|

|||||
|

|

|||||
|

|

|||||
|

|

|||||
|

|
|
|

|

|
|
|
|
|
|

Table 23. Output data format for the GETCOMPD keyword (continued)

Offset Size Field Subordinate data type Description

114 4 Card_action cmp_srdi_hdr_t:action_flags Card scope action flags
Type: binary integer, big-endian

1. CARD_ZEROIZE_START 0x8000_0000
a. Flag Name: Card-wide zeroize started
b. one bit flag to indicate that card

zeroize is starting.
c. Default value is 0b0, which indicates

that a card zeroize is NOT in progress
2. CARD_CLOCK_SET 0x4000_0000

a. Flag Name:
Card-wide system clock has been set

b. one bit flag to indicate if the card
has seen a valid SETCLOCK operation
(from the TKE) in the time covered by
the current SRDI files.

c. Set once and never un-set or zeroed
except for card-scope zeroize events.

d. Default value: 0b0
3. RESERVED (all bits not defined above)

118 4 Comp_issues DRAM variable
CCA_comp_issue_flags

Returns any issues with compliance: reasons the
card cannot support a compliance setting.

Type: binary integer, big-endian
Flags are defined:

1. CMPIF_CERT_NO_ISSUES 0x00000000
2. CMPIF_FW_UDX 0x80000000

This value indicates a UDX was detected
3. CMPIF_FW_SIM 0x40000000

This value indicates code is a simulator
4. Remaining values: reserved

Devault value: 0b0

122 4 Sec_log_max Not in a structure Maximum count of events for this domain, this is
not a byte count. This is the same for the life of a
card, but the API will live beyond one card.

Type: binary integer, big-endian

126 2 Sec_log_event
_size

Not in a structure Maximum size of one event in bytes. This is the
same for the life of a card, but the API will live
beyond one card.

Type: binary integer, big-endian

128 2 Dmn_kdf Kdf value from DRAM KDF value that maps to the compliance flags.

Type: binary integer, big-endian

130 4 Dmn_action cmp_srdi_mbr_t:action_flags Domain scope action flags.

Type: binary integer, big-endian
(description continued in next row)

Cryptographic Facility Query (CSUACFQ)

120 Common Cryptographic Architecture Application Programmer's Guide

|

|||||

|||||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||||
|
|
|

|
|

|
|
|
|
|
|
|

|||||
|
|

|

|||
|
||
|
|

|

|||||

|

|||||

|
|

Table 23. Output data format for the GETCOMPD keyword (continued)

Offset Size Field Subordinate data type Description

Description continued for Dmn_action:

1. DOMAIN_ZERO_START 0x8000_0000

a. Flag Name: domain-scope zeroize has started

b. one bit flag to indicate the beginning of work to zero-ize a domain

c. Default value is 0b0

2. DOMAIN_IMPRINT_START 0x4000_0000
a. Flag Name: This domain has started transition to Imprint mode
b. one bit flag to indicate start of internal preparation for imprint mode transition.
c. Default value is 0b0, which indicates a zero-ize is NOT in progress

3. DOMAIN_IMPRINT_ACTIVE 0x2000_0000
a. Flag Name: This domain is in Imprint mode
b. one bit flag to indicate domain is in imprint mode for the compliance mode

indicated by the compliance flags
c. Default value is 0b0, which indicates the domain is NOT in imprint mode

4. DOMAIN_COMP_ACTIVE 0x1000_0000
a. Flag Name: This domain has 1 or more compliance modes active
b. one bit flag to indicate the compliance flags field is in force
c. Default value is 0b0, which indicates the compliance flags field is not in force

5. DOMAIN_COMP_REMOVE_START 0x0800_0000
a. Flag Name: This domain has started removal of 1 or more compliance modes
b. one bit flag to indicate the beginning of work to un-set a compliance mode
c. Default value is 0b0

6. DOMAIN_COMP_MIGRATION 0x0400_0000
a. Flag Name:

This domain is in migration mode as a reduced mode of an active compliance mode
b. one bit flag to indicate that migration mode is active.
c. In this mode Comp-tagged keys may be created from qualified non-tagged keys.
d. If this bit is active then the domain is within the 30 minute inactivity timeout

window. After 30 minutes of not receiving any migration work (applying a comp-tag
to a non-comp-tag key) then the domain will revert to compliance mode and the flag
is automatically turned to 0b0.

e. Default value is 0b0
7. (reserved) 0x0200_0000

a. Flag is reserved
b. Default value is 0b0

8. DOMAIN_SLOG_ENAB 0x0000_8000
a. Flag Name: This domain has Secure Log enabled
b. one bit flag to indicate that Secure Log is enabled for this domain
c. This flag will be 0b1 for every case where DOMAIN_IMPRINT_ACTIVE flag or

DOMAIN_COMP_ACTIVE flag are active, however this flag may be 0b1 when
neither flag is active.
This means that a domain can have Secure Log active even if it is not in
imprint mode or compliant mode.

d. Default value is 0b0
9. DOMAIN_SLOG_NOWRAP 0x0000_4000

a. Flag Name: This domain has Secure Log configured for NOT WRAP when the Log fills
b. one bit flag to indicate that Secure Log is configured to NOT WRAP for this domain.
c. This flag is meaningful only if the DOMAIN_SLOG_ENAB flag is 0b1, all other times

it is set to 0b0.
d. Similar to DOMAIN_SLOG_ENAB, this flag will be 0b1 for every case where

DOMAIN_IMPRINT_ACTIVE flag or DOMAIN_COMP_ACTIVE flag are active, however
this flag may be 0b1 when neither flag is active. This means that No Wrap
is a required feature of the Secure Log if the domain is in Imprint mode or
Compliant Mode, and No Wrap is an optional feature of the Secure Log otherwise.

e. Default value is 0b0
10. (Reserved) all remaining bits

Default value 0b0

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 121

|

|||||

|||

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 23. Output data format for the GETCOMPD keyword (continued)

Offset Size Field Subordinate data type Description

134 4 Dmn_compl cmp_srdi_mbr_t:compl_flags Domain scope compliance flags

Type: binary integer, big-endian
(description continued in next row)

Description continued for Dmn_compl:

1. COMPF_PCI_HSM_2016 0x8000_0000
a. Flag Name: This domain has the PCI-HSM v3.0 (June 2016) mode active
b. one bit flag to indicate domain has PCI_HSM_2016 enabled.
c. Default value is 0b0, which indicates PHM is *disabled*

2. (Reserved) all remaining bits
Default value 0b0

138 4 Sec_log_cnt Not in a structure Current count of events for this domain, this is not
a byte count.

Type: binary integer, big-endian

Will be 0x00000000 if Secure Log is not enabled at
domain scope.

142 2 Owner2 Rom_status_t:owner2 Type: binary integer, big-endian
two byte owner-ID field.

144 2 Owner3 Rom_status_t:owner3 Type: binary integer, big-endian
two byte owner-ID field.

146 4 Miniboot
versions

xcMB_Version_t Type: binary integer, big-endian
two bytes for miniboot 0,
two bytes for miniboot 1

150 4 Adapter type Adapter_type : CardRevId
from xcAdapterInfo_t

Type: binary integer, big-endian
four byte field from adapter info

Begin signature section sig-section (if SIGNSTAT passed)

X signature Raw r and s values for
signature over SHA-512 hash
of the payload

Length X is given in signed_data_t:sig len field at
the beginning of returned data.

X will always be 132 bytes.
r and s are 66 bytes each, r is first.

64 Payload hash Raw hash value Raw SHA-512 hash over the payload. This is the
value used for calculating the signature.

NUM-DECT
This rule_array keyword causes a 4-byte binary number to be returned.

This is the number of bytes required for the verb_data variable when the
STATDECT rule-array keyword is specified.

SIZEWPIN
For the CSUACFQ verb, the SIZEWPIN and STATWPIN keywords are added to
the rule array to query the size and to obtain the state information of the weak
PIN table. The SIZEWPIN rule_array keyword returns the size of the weak PIN
table.

Cryptographic Facility Query (CSUACFQ)

122 Common Cryptographic Architecture Application Programmer's Guide

|

|||||

|||||

|
|

|||

|
|
|
|
|
|

|||||
|

|

|
|

|||||
|

|||||
|

|||
|
||
|
|

||||
|
|
|

|

||||
|
|

|
|

|
|

|||||
|
|

|

Table 24. Output data format for the SIZEWPIN keyword

Field name
Length in
bytes Description

weak_PIN_table_length 4 Integer value of the number of bytes of data that the verb_data
requires when the STATWPIN rule-array keyword is specified.

STATDECT
This rule_array keyword causes a table of up to 100 PIN decimalization tables to be
returned.

Table 25 shows the data format for a decimalization table.

Table 25. Output data format for the STATDECT keyword

Field Length in bytes Description

number 3 PIN decimalization table identifier in ASCII digits 001 - 100 (X'303031' -
X'313030').

state 1 Table state in ASCII:

Code Description
A (X'41')

Active
L (X'4C')

Loaded

table 16 PIN decimalization table. Contains ASCII digits 0 - 9 (X'30' - X'39'), in the
clear.

Total byte count
Depends on the number of returned decimalization tables. There are 20 byte for each
decimalization table. The total byte count is returned for the NUM-DECT keyword.

STATICSA
This rule_array keyword causes the indicated master key hash and verification
patterns to be returned for the master keys loaded in the current domain.

The status variables for the various master key registers returned in the rule_array
will indicate which of these verification pattern structures returned contain useful
data. An empty master key register cannot have a meaningful verification pattern.
However, the data structures are returned for all registers indicated, so that
interpretation is reliable.

The output data format for STATICSA operational key parts is given in Table 26 on
page 124.

Note:

1. The fields will be returned in the order given, however the *_ID fields should
be used for verification.

2. The verb_data_length parameter will indicate the total size at the bottom of the
table describing the verb_data.

3. Multiple byte fields are stored in Big-Endian format, as is typical for CEX*C
communication.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 123

Table 26. Output data format for STATICSA operational key parts

Field name
Length in
bytes

Field
value Description

SYM_OMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_OMK_MDC4_ID 2 X'0F02' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_OMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key old master-key register,
calculated using the MDC4 algorithm.

SYM_CMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_CMK_MDC4_ID 2 X'0F01' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_CMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key current master-key
register, calculated using the MDC4 algorithm.

SYM_NMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_NMK_MDC4_ID 2 X'0F00' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_NMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key new master-key register,
calculated using the MDC4 algorithm.

ASYM_OMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_OMK_MDC4_ID 2 X'0F05' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_OMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key old master-key register,
calculated using the MDC4 algorithm.

ASYM_CMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_CMK_MDC4_ID 2 X'0F04' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_CMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key current master-key
register, calculated using the MDC4 algorithm.

ASYM_NMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_NMK_MDC4_ID 2 X'0F03' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_NMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key new master-key
register, calculated using the MDC4 algorithm.

SYM_OMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_OMK_VP_ID 2 X'0F08' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

Cryptographic Facility Query (CSUACFQ)

124 Common Cryptographic Architecture Application Programmer's Guide

Table 26. Output data format for STATICSA operational key parts (continued)

Field name
Length in
bytes

Field
value Description

SYM_OMK_VP 8 variable Verification pattern over the Symmetric Key old master-key
register calculated using the default algorithm.

SYM_CMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_CMK_VP_ID 2 X'0F07' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_CMK_VP 8 variable Verification pattern over the Symmetric Key current master-key
register, calculated using the default algorithm.

SYM_NMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_NMK_VP_ID 2 X'0F06' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_NMK_VP 8 variable Verification pattern over the Symmetric Key new master-key
register, calculated using the default algorithm.

SYM_NMK_MKAP_LEN 2 12 Length in bytes of this Authentication pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Authentication pattern).

SYM_NMK_MKAP_ID 2 X'0F09' Hexadecimal identifier indicating the contents of the following
Authentication pattern field.

SYM_NMK_MKAP 8 variable Authentication pattern over the Symmetric Key new master-key
register, calculated using the ICSF specified algorithm.

AES_OMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

AES_OMK_VP_ID 2 X'0F0C' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

AES_OMK_VP 8 variable Verification pattern over the AES Key old master-key register,
calculated using the SHA-256 algorithm.

AES_CMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

AES_CMK_VP_ID 2 X'0F0B' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

AES_CMK_VP 8 variable Verification pattern over the AES Key current master-key
register calculated using the SHA-256 algorithm.

AES_NMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

AES_NMK_VP_ID 2 X'0F0A' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

AES_NMK_VP 8 variable Verification pattern over the AES Key new master-key register,
calculated using the SHA-256 algorithm.

Total byte count 204

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 125

STATICSB
This rule_array keyword causes the indicated master key hash and verification
patterns to be returned for the master keys loaded in the current domain.

The status variables for the various master-key registers returned in the rule_array
indicate which of these verification pattern structures returned contain useful data.
An empty master-key register cannot have a meaningful verification pattern.
However, the data structures are returned for all registers indicated, so that
interpretation is reliable.

The output data format for STATICSB operational key parts is given in Table 27.

Note:

1. The fields will be returned in the order given, however the *_ID fields should
be used for verification.

2. The verb_data_length parameter indicates the total size at the bottom of the
table describing the verb_data.

3. Multiple byte fields are stored in Big-Endian format, as is typical for CEX*C
communication.

Table 27. Output data format for STATICSB operational key parts

Field name
Length in
bytes

Field
value Description

SYM_OMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_OMK_MDC4_ID 2 X'0F02' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_OMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key old master-key register,
calculated using the MDC4 algorithm.

SYM_CMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_CMK_MDC4_ID 2 X'0F01' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_CMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key current master-key
register, calculated using the MDC4 algorithm.

SYM_NMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_NMK_MDC4_ID 2 X'0F00' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_NMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key new master-key register,
calculated using the MDC4 algorithm.

ASYM_OMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_OMK_MDC4_ID 2 X'0F05' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_OMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key old master-key register,
calculated using the MDC4 algorithm.

Cryptographic Facility Query (CSUACFQ)

126 Common Cryptographic Architecture Application Programmer's Guide

Table 27. Output data format for STATICSB operational key parts (continued)

Field name
Length in
bytes

Field
value Description

ASYM_CMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_CMK_MDC4_ID 2 X'0F04' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_CMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key current master-key
register, calculated using the MDC4 algorithm.

ASYM_NMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_NMK_MDC4_ID 2 X'0F03' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_NMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key new master-key
register, calculated using the MDC4 algorithm.

SYM_OMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_OMK_VP_ID 2 X'0F08' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_OMK_VP 8 variable Verification pattern over the Symmetric Key old master-key
register calculated using the default algorithm.

SYM_CMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_CMK_VP_ID 2 X'0F07' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_CMK_VP 8 variable Verification pattern over the Symmetric Key current master-key
register, calculated using the default algorithm.

SYM_NMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_NMK_VP_ID 2 X'0F06' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_NMK_VP 8 variable Verification pattern over the Symmetric Key new master-key
register, calculated using the default algorithm.

SYM_NMK_MKAP_LEN 2 12 Length in bytes of this Authentication pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Authentication pattern).

SYM_NMK_MKAP_ID 2 X'0F09' Hexadecimal identifier indicating the contents of the following
Authentication pattern field.

SYM_NMK_MKAP 8 variable Authentication pattern over the Symmetric Key new master-key
register, calculated using the ICSF specified algorithm.

AES_OMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern)

AES_OMK_VP_ID 2 X'0F0C' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 127

Table 27. Output data format for STATICSB operational key parts (continued)

Field name
Length in
bytes

Field
value Description

AES_OMK_VP 8 variable Verification pattern over the Symmetric Key old master-key
register, calculated using the SHA-256 algorithm.

AES_CMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

AES_CMK_VP_ID 2 X'0F0B' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

AES_CMK_VP 8 variable Verification pattern over the Symmetric Key current master-key
register, calculated using the SHA-256 algorithm.

AES_NMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Authentication pattern).

AES_NMK_VP_ID 2 X'0F0A' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

AES_NMK_VP 8 variable Verification pattern over the Symmetric Key new master-key
register, calculated using the SHA-256 algorithm.

APKA_OMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern)

APKA_OMK_VP_ID 2 X'0F0F' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

APKA_OMK_VP 8 variable Verification pattern over the Symmetric Key old master-key
register, calculated using the SHA-256 algorithm.

APKA_CMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

APKA_CMK_VP_ID 2 X'0F0E' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

APKA_CMK_VP 8 variable Verification pattern over the Symmetric Key current master-key
register, calculated using the SHA-256 algorithm.

APKA_NMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Authentication pattern).

APKA_NMK_VP_ID 2 X'0F0D' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

APKA_NMK_VP 8 variable Verification pattern over the Symmetric Key new master-key
register, calculated using the SHA-256 algorithm.

Total byte count 240

This keyword was introduced with CCA 4.1.0.

STATICSE
This rule_array keyword returns the indicated master key hash and verification
patterns for the master keys loaded in the current domain.

The status variables for the various master-key registers returned in the rule_array
indicate which of these verification pattern structures returned contain useful data.

Cryptographic Facility Query (CSUACFQ)

128 Common Cryptographic Architecture Application Programmer's Guide

An empty master-key register cannot have a meaningful verification pattern.
However, the data structures are returned for all registers indicated, so that
interpretation is reliable.

The output data format for STATICSE operational key parts is given in Table 28.

Note:

1. The fields will be returned in the order given, however the *_ID fields should
be used for verification.

2. The verb_data_length parameter will indicate the total size at the bottom of the
table describing the verb_data.

3. Multiple byte fields are stored in Big-Endian format, as is typical for CEX*C
communication.

Table 28. Output data format for STATICSE operational key parts

Field name
Length in
bytes

Field
value Description

SYM_OMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_OMK_MDC4_ID 2 X'0F02' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_OMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key old master-key register,
calculated using the MDC4 algorithm.

SYM_CMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_CMK_MDC4_ID 2 X'0F01' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_CMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key current master-key
register, calculated using the MDC4 algorithm.

SYM_NMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_NMK_MDC4_ID 2 X'0F00' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_NMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key new master-key register,
calculated using the MDC4 algorithm.

ASYM_OMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_OMK_MDC4_ID 2 X'0F05' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_OMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key old master-key register,
calculated using the MDC4 algorithm.

ASYM_CMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_CMK_MDC4_ID 2 X'0F04' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_CMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key current master-key
register, calculated using the MDC4 algorithm.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 129

Table 28. Output data format for STATICSE operational key parts (continued)

Field name
Length in
bytes

Field
value Description

ASYM_NMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_NMK_MDC4_ID 2 X'0F03' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_NMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key new master-key
register, calculated using the MDC4 algorithm.

SYM_OMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_OMK_VP_ID 2 X'0F08' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_OMK_VP 8 variable Verification pattern over the Symmetric Key old master-key
register calculated using the default algorithm.

SYM_CMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_CMK_VP_ID 2 X'0F07' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_CMK_VP 8 variable Verification pattern over the Symmetric Key current master-key
register, calculated using the default algorithm.

SYM_NMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_NMK_VP_ID 2 X'0F06' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_NMK_VP 8 variable Verification pattern over the Symmetric Key new master-key
register, calculated using the default algorithm.

SYM_NMK_MKAP_LEN 2 12 Length in bytes of this Authentication pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Authentication pattern).

SYM_NMK_MKAP_ID 2 X'0F09' Hexadecimal identifier indicating the contents of the following
Authentication pattern field.

SYM_NMK_MKAP 8 variable Authentication pattern over the Symmetric Key new master-key
register, calculated using the ICSF specified algorithm.

Total byte count 168

STATICSX
This rule_array keyword returns the indicated master key hash and verification
patterns for the master keys loaded in the current domain.

The status variables for the various master key registers returned in the rule_array
will indicate which of these verification pattern structures returned contain useful
data. An empty master key register cannot have a meaningful verification pattern.
However, the data structures are returned for all registers indicated, so that
interpretation is reliable.

Cryptographic Facility Query (CSUACFQ)

130 Common Cryptographic Architecture Application Programmer's Guide

The output data format for STATICSX operational key parts is given in Table 29.

Note:

1. The fields will be returned in the order given, however the *_ID fields should
be used for verification.

2. The verb_data_length parameter will indicate the total size at the bottom of the
table describing the verb_data.

3. Multiple byte fields are stored in Big-Endian format, as is typical for CEX*C
communication.

Table 29. Output data format for STATICSX operational key parts

Field name
Length in
bytes

Field
value Description

SYM_OMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_OMK_MDC4_ID 2 X'0F02' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_OMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key old master-key register,
calculated using the MDC4 algorithm.

SYM_CMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_CMK_MDC4_ID 2 X'0F01' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_CMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key current master-key
register, calculated using the MDC4 algorithm.

SYM_NMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

SYM_NMK_MDC4_ID 2 X'0F00' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

SYM_NMK_MDC4_HP 16 variable Hash pattern over the Symmetric Key new master-key register,
calculated using the MDC4 algorithm.

ASYM_OMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_OMK_MDC4_ID 2 X'0F05' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_OMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key old master-key register,
calculated using the MDC4 algorithm.

ASYM_CMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

ASYM_CMK_MDC4_ID 2 X'0F04' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_CMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key current master-key
register, calculated using the MDC4 algorithm.

ASYM_NMK_MDC4_LEN 2 20 Length in bytes of this Hash pattern block in the verb_data
(comprising this length field, the following ID field, and the
field for the Hash pattern).

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 131

Table 29. Output data format for STATICSX operational key parts (continued)

Field name
Length in
bytes

Field
value Description

ASYM_NMK_MDC4_ID 2 X'0F03' Hexadecimal identifier indicating the contents of the following
Hash pattern field.

ASYM_NMK_MDC4_HP 16 variable Hash pattern over the Asymmetric Key new master-key
register, calculated using the MDC4 algorithm.

SYM_OMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_OMK_VP_ID 2 X'0F08' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_OMK_VP 8 variable Verification pattern over the Symmetric Key old master-key
register calculated using the default algorithm.

SYM_CMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_CMK_VP_ID 2 X'0F07' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_CMK_VP 8 variable Verification pattern over the Symmetric Key current master-key
register, calculated using the default algorithm.

SYM_NMK_VP_LEN 2 12 Length in bytes of this Verification pattern block in the
verb_data (comprising this length field, the following ID field,
and the field for the Verification pattern).

SYM_NMK_VP_ID 2 X'0F06' Hexadecimal identifier indicating the contents of the following
Verification pattern field.

SYM_NMK_VP 8 variable Verification pattern over the Symmetric Key new master-key
register, calculated using the default algorithm.

Total byte count 156

STATKPR
This keyword returns non-secret information about a particular named operational
key part loaded by the TKE to the user.

The structures for various key types are given under section “STATKPR output
data.” An appropriate name for an existing operational key part is expected to be
provided as described in section “STATKPRL input data.” If not, the error return
code of 8 and a reason code of 1026 is be returned, meaning key name not found.

STATKPRL input data

A 64-byte key name must be provided in the verb_data field, while the
verb_data_length must be set to a value of 64.

The operational key name must exactly match the name returned by a call to
STATKPRL.

STATKPR output data

Note:

1. The fields are returned in the order given.

Cryptographic Facility Query (CSUACFQ)

132 Common Cryptographic Architecture Application Programmer's Guide

2. Output data overwrites the input data in the verb_data field, and set the
verb_data_length field to the output value.

3. The verb_data_length parameter indicates the total size, at the bottom of the
table describing the verb_data.
Notice that the output data is smaller than the input data.

4. Multiple byte fields are stored in Big-Endian format, as is typical for CEX*C
communication.

Table 30. Output data format for STATKPR operational key parts

Field name Length in bytes Description

state 1 State of the key part register:

Value Description
X'00' The register is empty.
X'01' The first DES key part was entered for the named key into this

register.
X'02' An intermediate DES key part (part after first) has been entered.
X'03' The register contains a completed DES key.
X'11' The first AES key part was entered for the named key into this

register.
X'12' An intermediate AES key part (part after first) has been entered.
X'13' The register contains a completed AES key.

reserved 1 Will have a value of X'00'.

key_length 1 Length of key in bytes. For DES keys, values are: 8, 16, 24. For AES keys,
values are: 16, 24, 32.

cv_length 1 Length of Control Vector (CV) for key part, in bytes. The value is 8 or 16,
indicating how much of the CV field to use. Note that CV is NOT a
variable length field.

cv 16 Control Vector for the operational key part.

reserved_2 8 Has a value of X'00' for the entire length.

key_part_hash 20 Hash over the key stored in the key part register. For DES keys, the hash
algorithm is SHA-1. For AES keys, the hash algorithm is SHA-256.

ver_pattern 4 Verification pattern over the key calculated using the default algorithm.

Total byte count 52

STATKPRL
This keyword returns a list of the names of all operational key parts that have
been loaded by the TKE into the CEX*C.

Each name has a length of 64 bytes. The maximum number of key slots (and thus
the count of labels returned) depends on the firmware loaded to the adapter. This
count is currently set to 100. If not enough space has been provided (using the
verb_data_length field passed in by the application) to return the available list, a
return code of 8 and a reason code of 72 is returned.

Note: This keyword can return AES keys as well as HMAC key descriptions.

STATOAHL
This rule_array keyword causes all data to be returned in one VUD block . The
described structure also comprises extra data fields that contains output if the
SIGNSTAT keyword is specified.

The VUD block header and data has a layout as described in Table 31 on page 134:

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 133

|
|
|
|

|

Table 31. Output data format for the STATOAHL keyword

Offset Size Field Subordinate data type Description

Begin outer templating

4 1 Struct name Signed_data_t Name of structure

Type: binary integer
Value:
mbif_types.h:118:#define SIGNED_DATA_T 0x82

5 1 Struct version Signed_data_t Version of structure

Type: binary integer
Value: 0x00

6 4 Signed data len Signed_data_t Length of the entire signed_data_t structure,
including appended data and signature

Type: binary integer, big-endian

10 4 Data offset Signed_data_t Offset from start of the data sub-struct (here) to
the start of the actual data payload.

Type: binary integer, big-endian
Value: 0x14

14 4 Data len Signed_data_t Length of the data payload

Type: binary integer, big-endian

18 4 Sig offset Signed_data_t Offset from start of the sig sub-structure (here) to
the start of the actual signature.

Type: binary integer, big-endian

22 4 Sig len Signed_data_t Length of the signature

Type: binary integer, big-endian

26 4 Sig type Signed_data_t Type of signature

Type: binary integer, big-endian
Value: 0x04 (ECDSA over SHA-512 hash with

ECC P521, raw format)
0x00 (no signature)

Signed_data_t: 26 bytes (+ VUD fields = 30 bytes)

Begin payload

Data format: This data matches the output from the secure bootloader of the adapter. Assuming the same nonce is
provided and given correct ordering of operations (query the bootloader first) the payload data hashes to the same
value as that data provided by the secure bootloader.

The overall structure is called health_t, as indicated by the enumerated value in the first struct_id_t name field.
This contains multiple sub-structures, each reproduced here.

0 1 name struct_id_t Sub-structure that defines the name and version
of the data structure

Enum value: HEALTH_T (0x90)

1 1 version struct_id_t HEALTH_T (0x00)

Begin: Rom_status_t

Cryptographic Facility Query (CSUACFQ)

134 Common Cryptographic Architecture Application Programmer's Guide

||

|||||

|

|||||

|
|
|

|||||

|
|

|||||
|

|

|||||
|

|
|

|||||

|

|||||
|

|

|||||

|

|||||

|
|
|
|

||

|

|
|
|

|
|

|||||
|

|

|||||

|

Table 31. Output data format for the STATOAHL keyword (continued)

Offset Size Field Subordinate data type Description

2 1 name Rom_status_t:struct_id_t Rom status name

Enum value: ROM_STATUS_T (0x00)

3 1 version Rom_status_t:struct_id_t Rom status version (0x00)

4 2 Rsvd1 Rom_status_t (0x00)

6 2 Rom_version Rom_status_t Rom_version is a packed representation of the
POST0 and MB0 version numbers.

8 1 Page1_certified Rom_status_t Has the value 1 if MB1 has successfully
performed an IBM_INIT command to the point of
installing the page1 certificate and has value 0
otherwise.

9 2 Rsvd2 Rom_status_t 0x00

11 4 Boot_count_right Rom_status_t The number of times the card has been booted
and SSP is reset. MB0 has run far enough to
enforce the state rules.

15 8 adapterID Rom_status_t Byte array of adapter unique numeric serial
number, taken from the DS3645 Silicon Serial
Number register.

Begin: Rom_status_t:xcVpd_t Byte array of Vital Product Data (VPD), 0x100
total bytes.

23 1 Ds_tag Rom_status_t:xcVpd_t 0x82, tag for description field

24 2 Ds_length Rom_status_t:xcVpd_t 0x2C, description length

26 44 Ds Rom_status_t:xcVpd_t ASCII description

70 1 Vpdr_tag Rom_status_t:xcVpd_t 0x90, tag for VPDR field

71 2 Vpdr_length Rom_status_t:xcVpd_t 0x00CD, length of VPDR

73 2 Ec_tag Rom_status_t:xcVpd_t EC, ASCII tag for EC field

75 1 Ec_length Rom_status_t:xcVpd_t 0x07, length of EC field

76 7 Ec Rom_status_t:xcVpd_t ASCII field

83 2 Pn_tag Rom_status_t:xcVpd_t PN, ASCII tag for part number field

85 1 Pn_length Rom_status_t:xcVpd_t 0x07, length of PN field

86 7 Pn Rom_status_t:xcVpd_t ASCII field

93 2 Fn_tag Rom_status_t:xcVpd_t FN, ASCII tag for FRU number field

95 1 Fn_length Rom_status_t:xcVpd_t 0x07, length of FN field

96 7 Fn Rom_status_t:xcVpd_t ASCII field

103 2 Ve_tag Rom_status_t:xcVpd_t VE, ASCII tag for Secure part number field

105 1 Ve_length Rom_status_t:xcVpd_t 0x07, length of VE field

106 7 Ve Rom_status_t:xcVpd_t ASCII field

113 2 Mf_tag Rom_status_t:xcVpd_t MF, ASCII tag for manufacturing location field

115 1 Mf_length Rom_status_t:xcVpd_t 0x02, length of MF field

116 2 Mf Rom_status_t:xcVpd_t ASCII field

118 2 Sn_tag Rom_status_t:xcVpd_t SN, ASCII tag for serial number field

120 1 Sn_length Rom_status_t:xcVpd_t 0x0C, length of SN field

121 4 Sn_hdr Rom_status_t:xcVpd_t first part of serial number

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 135

|

|||||

|||||

|

|||||

|||||

|||||
|

|||||
|
|
|

|||||

|||||
|
|

|||||
|
|

||
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 31. Output data format for the STATOAHL keyword (continued)

Offset Size Field Subordinate data type Description

125 8 Sn Rom_status_t:xcVpd_t Rest of serial number

133 2 Rv_tag Rom_status_t:xcVpd_t RV, ASCII tag for checksum field

135 1 Rv_length Rom_status_t:xcVpd_t Length of reserved field

136 1 Checksum Rom_status_t:xcVpd_t 1 byte checksum field

137 141 Reserved Rom_status_t:xcVpd_t Reserved field, all 0x00 bytes

278 1 End_tag Rom_status_t:xcVpd_t 0x78, end tag

End: Rom_status_t:xcVpd_t

279 1 Init_state Rom_status_t

280 1 Seg2_state Rom_status_t State of segment 2:

UNOWNED 0x00
OWNED_BUT_UNRELIABLE 0x01
RUNNABLE 0x02
RELIABLE_BUT_UNRUNNABLE 0x03

281 1 Seg3_state Rom_status_t State of segment 3 (same possible values as
Seg2_state)

282 2 Owner2 Rom_status_t

284 2 Owner3 Rom_status_t

286 1 Active_seg1 Rom_status_t

287 2 Rsvd3 Rom_status_t

289 4 usr Rom_status_t

End: Rom_status_t + struct_id_t (291 + 2 = 293 bytes)

32
bytes

nonce Raw nonce Value passed by user to be signed as part of the
returned payload. This indicates the signature is
live, not a replayed value that was calculated
earlier.

Begin: var_t array for segment
identifiers

A var_t is a simple structure with 2 fields, specifying an offset and a length.
These help you find the item the var_t describes.

In this section are three var_t structures, followed in the next section by three
segment identifiers that are pointed to by the var_t structures.

0 4 Offset Var_t : for segment 1 Offset to the segment identifier from byte 0 of this
field

4 4 length Var_t : for segment 1 Length of the segment identifier

8 4 Offset Var_t : for segment 2 Offset to the segment identifier from byte 0 of this
field

12 4 length Var_t : for segment 2 Length of the segment identifier

16 4 Offset Var_t : for segment 3 Offset to the segment identifier from byte 0 of this
field

20 4 length Var_t : for segment 3 Length of the segment identifier

End: var_t array (24 bytes)

Begin: segment identifiers array, struct is mbid_t mbid_t indicates: Miniboot identifier. Miniboo’ is the
name for the secure boot loader that manages the
firmware loaded to the adapter.

Begin: mbid_t for segment 1

Cryptographic Facility Query (CSUACFQ)

136 Common Cryptographic Architecture Application Programmer's Guide

|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|

|||||

|||||

|
|
|
|

|||||
|

|||||

|||||

|||||

|||||

|||||

|

||
|
|||
|
|
|

|
|
|
|

|
|

|||||
|

|||||

|||||
|

|||||

|||||
|

|||||

||

||
|
|

||

Table 31. Output data format for the STATOAHL keyword (continued)

Offset Size Field Subordinate data type Description

0 1 name mbid_t:struct_id_t 0x81, name for mbid_t,

1 2 version mbid_t:struct_id_t 0x02, ECC version of mbid_t.: indicates secure
bootloader uses ECDSA to verify image for this
loaded segment of firmware.

2 1 type mbid_t Type field:

Value is: FAM_OWNER 0x03

If type is FAM_OWNER, the adapterID is a bit vector
that specifies onto which device families the
image identified by the mbid_t parameter may be
loaded. An attempt to load an image onto a
device belonging to a family whose bit in
adapterID is not set, will fail.

3 1 name mbid_t:ownerID_t:
struct_id_t

0x80, name for ownerID_t structure

4 1 version mbid_t:ownerID_t:
struct_id_t

5 1 seg mbid_t:ownerID_t Indicates the segment to which this ownerID_t
applies, may be 0x01, 0x02 or 0x03.

6 2 Owner2 mbid_t:ownerID_t If the seg field holds 0x01, then this field holds
0x0000. Otherwise, this field holds the two-byte
owner ID for the applicable segment 2.

8 2 Owner3 mbid_t:ownerID_t If the seg field holds 0x01 or 0x02, then this field
holds 0x0000. Otherwise, this field holds the
two-byte owner ID for the applicable segment 2.

10 1 trust1 mbid_t Owner specified value of what to do if a lower
level segment is updated. This trust1 field value
refers to segment 1, and is 0x00 if the seg value is
0x01. For other cases, the meaning implies to trust
or not trust, and is of interest to holders of
signing keys.

11 1 Trust2 mbid_t Owner specified value of what to do if a lower
level segment is updated. This trust2 field value
refers to segment 2, and is 0x00 if the seg value is
0x01 or 0x02. For other cases, the meaning implies
to trust or not trust, and is of interest to holders
of signing keys.

12 80 name mbid_t Byte array for image name

92 2 rev mbid_t Revision assigned to the segment by the owner of
the segment that this mbid_t structure is
describing

94 64 mbid_t

158 8 hash mbid_t SHA512 hash of the image identified by the name
field

166 4 reserved mbid_t:Etc (var_t) Reserved field. The data has validity only inside
the card.

170 4 reserved mbid_t:Etc (var_t) Reserved field. The data has validity only inside
the card.

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 137

|

|||||

|||||

|||||
|
|

|||||

|

|
|
|
|
|
|

||||
|
|

||||
|
|

|||||
|

|||||
|
|

|||||
|
|

|||||
|
|
|
|
|

|||||
|
|
|
|
|

|||||

|||||
|
|

|||||

|||||
|

|||||
|

|||||
|

Table 31. Output data format for the STATOAHL keyword (continued)

Offset Size Field Subordinate data type Description

174 4 offset mbid_t:Token (var_t) Segment key pointer field.

This var_t parameter indicates the offset from
byte 0 of this field to the beginning of the public
key which describes the segment that this mbid_t
represents.

178 4 len mbid_t:Token (var_t) Length of the public key token for the segment

Begin: mbid_t:token for segment 1 Explanation of the public key here

A firmware load operation is actually a pre-packaged and signed *command*,
as recognized by the secure bootloader in the adapter. While it is commonly
said that “the firmware is signed”, it is more accurate to say the “firmware
load command is signed, and includes the new firmware”. Each firmware load
command has been signed by the owner of a signing key, and this owner will
become the ‘owner of the segment’ after the owner’s firmware has been
loaded. Thus we refer to the ‘segment owner’ as the person who held the
private key that signed the command to load the firmware for that segment.
Each firmware load command package also includes a signed version of the
public key of the ‘segment owner’ for the segment to be loaded. The segment
owner public key signature has been computed with the private key of the
owner of the lower segment that is expected to have been installed. For
example, consider load of a new segment 2:

1. The segment 2 load command is a binary software image, with:

a. firmware image for new segment 2

b. command of how to load the segment 2

c. signature over the firmware image and command, calculated with
segment 2 owner private key

d. segment 2 owner public key

e. signature over segment 2 owner public key calculated with segment 1
owner private key

2. The secure boot loader

a. uses segment 1 owner public key to verify signature over segment 2
owner public key

b. uses segment 2 owner public key to verify signature over firmware and
command

c. executes the command.

Given the above explanation, it is now possible to say that the public key
included in the mbid_t is the segment owner public key for the segment that
the mbid_t describes. If the mbid_t describes segment 1, then the segment 1
owner public key is included at the end of the mbid_t when returned from the
adapter.

0 1 name mbid_t:token:struct_id_t struct_id_t, sub-structure that defines the name
and version of the data structure

Enum value: ECC_TOKEN_T (0x97)

1 1 version mbid_t:token:struct_id_t 0x00

2 2 Rsvd1 mbid_t:token 0x00

4 4 tokenLength mbid_t:token Length of token including header.

8 4 Rsvd2 mbid_t:token 0x00

Cryptographic Facility Query (CSUACFQ)

138 Common Cryptographic Architecture Application Programmer's Guide

|

|||||

|||||

|
|
|
|

|||||

||

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|

|

|
|

|

|
|

|
|

|

|
|
|
|
|

|||||
|

|

|||||

|||||

|||||

|||||

Table 31. Output data format for the STATOAHL keyword (continued)

Offset Size Field Subordinate data type Description

12 1 name mbid_t:token:struct_id_t struct_id_t defines the name and version of the
data structure

Enum value: ECC_PUBLIC_TOKEN_T (0x99)

13 1 version mbid_t:token:struct_id_t 0x00

14 2 sectionLength mbid_t:token Length of this section

16 4 Rsvd1 mbid_t:token 0x00

20 1 curveType mbid_t:token Type of curve

Value: 0x00 (Prime/NIST)

21 1 Rsvd2 mbid_t:token 0x00

22 2 pLength mbid_t:token Length of curve

Value: 0x0209 (P521)

24 2 qLen mbid_t:token 0x91

26 1 Pubkey_preface mbid_t:token Value: 0x04

27 72 Ecc_public_x mbid_t:token

99 72 Ecc_public_y mbid_t:token Y value for the public key

Length is 66 bytes for ECC P521 key + padding
bytes for hardware use of the value.

End: mbid_t:token for segment 1 (171 bytes)

End: mbid_t for segment 1 (182 + 171 = 353 bytes)

353 mbid_t mbid_t for segment 2 The mbid_t for each segment is the same size and
has the same fields as the mbid_t for segment 1

353 mbid_t mbid_t for segment 3 The mbid_t for each segment is the same size and
has the same fields as the mbid_t for segment 1

End: segment identifiers array, struct is mbid_t (3 * 353 bytes = 1059 bytes)

End payload

Begin signature section sig-section (if SIGNSTAT passed)

132 signature Raw r and s values for
signature over SHA-512
hash of the payload

Length X is given in the signed_data_t:sig len
field at the beginning of returned data

X is always be 132 bytes
r and s are 66 bytes each, r is first.

64 Payload hash Raw hash value Raw SHA-512 hash over the payload. This is the
value used for calculating the signature.

Total structure size:

VUD fields + signed_data_t: 30 bytes
Rom_status_t: 294 bytes
Nonce: 32 bytes
var_t array (describing mbid_t): 24 bytes
mbid_t array: 1059 bytes
Signature section and hash: 196 bytes
Total: 1634 bytes

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 139

|

|||||

|||||
|

|

|||||

|||||

|||||

|||||

|

|||||

|||||

|

|||||

|||||

|||||

|||||

|
|

||

||

|||||
|

|||||
|

|

|

|

||||
|
|

|
|

|
|

|||||
|

|

|
|
|
|
|
|
|
|

STATVKPL
This keyword returns a list of the names of all operational key parts that have
been loaded by the TKE into the CEX*C for preparation of variable length key
tokens.

This function is different from STATKPRL, which describes the list of 64-byte
legacy style tokens in preparation.

Each name has a length of 64 bytes. The maximum number of key slots (and thus
the count of labels returned) depends on the firmware loaded to the adapter. This
count is currently set to 100. If not enough space has been provided (using the
verb_data_length field passed in by the application) to return the available list, a
return code of 8 and a reason code of 72 is returned.

Note: This keyword can return AES keys as well as HMAC key descriptions.

STATVKPR
This keyword cause non-secret information about a particular named operational
key part loaded by the TKE to returned to the user.

This is different from STATKPR in that a register for creating a key in a variable
length key token is described. The structures for various key types are given in
section STATVKPR output data. An appropriate name for an existing operational
key part is expected to be provided as described in STATVKPL input data. If not,
the error return code of 8 and a reason code of 1026 is returned, meaning that the
key name is not found.

STATVKPL input data:

A 64 byte key name must be provided in the verb_data field, while the
verb_data_length must be set to 64.

The operational key name must match exactly the name returned by a call to
STATVKPL.

STATVKPR output data:

See Table 32 for the output data format.

Note:

1. The fields are returned in the order given.
2. Output data overwrites the input data in the verb_data field, and set the

verb_data_length field to the output value.
3. The verb_data_length parameter indicates the total size, at the bottom of the

table describing the verb_data.
Note that the output data is smaller than the input data.

4. Multiple byte fields are stored in Big-Endian format, as is typical for CEX*C
communication.

Table 32. Output data format for STATVKPR operational key parts

Field name Length in bytes Description

version 1 Version of the structure

Cryptographic Facility Query (CSUACFQ)

140 Common Cryptographic Architecture Application Programmer's Guide

|

Table 32. Output data format for STATVKPR operational key parts (continued)

Field name Length in bytes Description

state 1 State of the key part register:

Value Description
X'00' The register is empty.
X'01' The first DES key part was entered for the named key into this

register.
X'02' An intermediate DES key part (part after first) has been entered.
X'03' The register contains a completed DES key.
X'11' The first AES key part was entered for the named key into this

register.
X'12' An intermediate AES key part (part after first) has been entered.
X'13' The register contains a completed AES key.
X'21' The first AES key part for variable length token was entered for

the named key into this register.
X'22' An intermediate AES key part for variable length token (part after

first) has been entered.
X'23' The register contains a completed AES key part for variable length

token.

key_length 1 Length of key in bytes. For DES keys, values are: 8, 16, 24. For AES keys,
values are: 16, 24, 32.

key_completeness 1 Number of parts needed to complete key
X'C0' Two parts are needed.
X'80' One part is needed.
X'40' No parts are needed. Key is complete.

ver_pattern 4 ENC-ZERO method calculated verification pattern of the key.

key_part_hash 8 Hash using the SHA-256 algorithm over the key that is currently stored, at
the current level of completeness.

skel_length 2 Skeleton token length.

pad 2 Pad structure to 4-byte boundary.

skel 384 Stored key token skeleton, which will hold completed key when operation
is complete. No key material is stored or returned here.

reserved2 108 Extra bytes.

Total byte count 512

STATWPIN
For the CSUACFQ verb, the SIZEWPIN and STATWPIN keywords are added to
the rule array to query the size and to obtain the state information of the weak
PIN table. The STATWPIN rule_array keyword obtains the state information of the
weak PIN table.

Table 33. Output data format for the STATWPIN keyword

Field name
Length in
bytes Description

weak_PIN_table_state 11 - 460 Returns the WPIN entry structure as described in Table 34.

Table 34. CSUACFQ weak PIN entry structure (type X'30')

Offset Length in bytes Description

0 01 Weak PIN structure type (in ASCII): X'30' - weak PIN entry structure

1 03 Weak PIN entry identifier in ASCII digits 001 - 020 (X'303031' - X'303230')

Cryptographic Facility Query (CSUACFQ)

Chapter 7. CCA nodes and resource control 141

Table 34. CSUACFQ weak PIN entry structure (type X'30') (continued)

Offset Length in bytes Description

4 01 State of entry (in ASCII):

Value Meaning

A (X'41')
Active

L (X'4C')
Loaded

5 02 Clear PIN length (in ASCII digits). For DK verbs, valid values are 04 - 12
(X'3034' - X'3132'). Otherwise, valid values are 04 - 16 (X'3034' - X3136').

7 04 — 16 Clear weak PIN (in ASCII digits). Valid values are 0 - 9 (X'30' - X'39').

Restrictions
You cannot limit the number of returned rule_array elements.

Table 22 on page 106 describes the number and meaning of the information in
output rule_array elements.

Tip: Allocate a minimum of 30 rule_array elements to allow for extensions of the
returned information.

Required commands
The CSUACFQ required commands.

None.

Usage notes
Usage notes for CSUACFQ.

This verb is not impacted by the AUTOSELECT option. See “Verbs that ignore
AUTOSELECT” on page 12 for more information.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSUACFQJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSUACFQJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber verb_data_length,
byte[] verb_data

);

Cryptographic Facility Query (CSUACFQ)

142 Common Cryptographic Architecture Application Programmer's Guide

Cryptographic Facility Version (CSUACFV)
The Cryptographic Facility Version verb is used to retrieve information about the
Security Application Program Interface (SAPI) Version and the Security Application
Program Interface build date.

In the same format as the Cryptographic Facility Query (CSUACFQ) verb returns
for the CCA application with the STATCCA rule_array option.

This verb returns information elements in the version_data variable.

Format
The format of CSUACFV.

CSUACFV(
return_code,
reason_code,
exit_data_length,
exit_data,
version_data_length,
version_data)

Parameters
The parameter definitions for CSUACFV.

Note that there is no rule_array keyword.

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters common to all verbs” on page 22.

version_data_length

Direction: Input/Output
Type: Integer

The version_data_length parameter is a pointer to an integer variable
containing the number of bytes in the version data variable. This value must
be a minimum of 17 bytes. On input, the version_data_length variable must
be set to the total size of the variable pointed to by the version_data
parameter. On output, this variable contains the number of bytes of data
returned by the verb in the version_data variable.

version_data

Direction: Output
Type: String

The version_data parameter is a pointer to a string variable containing data
returned by the verb. An 8-byte character string identifies the version of the
Security Application Program Interface (SAPI) library, followed by an 8-byte
character string containing the build date for the SAPI library, followed by a
null terminating character. The build date is in the format: yyyymmdd, where
yyyy is the year, mm is the month, and dd is the day of the month.

Restrictions
The restrictions for CSUACFV.

None.

Cryptographic Facility Version (CSUACFV)

Chapter 7. CCA nodes and resource control 143

Required commands
The CSUACFV required commands.

None.

Usage notes
Usage notes for CSUACFV.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSUACFVJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSUACFVJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber version_data_length,
byte[] version_data

);

Cryptographic Resource Allocate (CSUACRA)
The Cryptographic Resource Allocate verb is used to allocate a specific CCA
coprocessor for use by the thread or process, depending on the scope of the verb.

This verb is scoped to a thread. When a thread or process, depending on the scope,
allocates a cryptographic resource, requests are routed to that resource. When a
cryptographic resource is not allocated, requests are routed to the default
cryptographic resource.

You can set the default cryptographic resource. If you take no action, the default
assignment is CRP01.

You cannot allocate a cryptographic resource while one is already allocated. Use
the Cryptographic Resource Deallocate verb (see “Cryptographic Resource
Deallocate (CSUACRD)” on page 147) to deallocate an allocated cryptographic
resource.

Be sure to review “Multi-coprocessor selection capabilities” on page 11.

Cryptographic Facility Version (CSUACFV)

144 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSUACRA.

CSUACRA(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
resource_name_length,
resource_name)

Parameters
The parameter definitions for CSUACRA.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Direction: Input
Type: String array

The rule_array parameter is a pointer to a string variable containing an array
of keywords. The keywords are eight bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keyword is
described in Table 35.

Table 35. Keywords for Cryptographic Resource Allocate control information

Keyword Description

Cryptographic resource (Required)

DEVICE Specifies a CEX*C coprocessor.

DEV-ANY Specifies to enable the AUTOSELECT option, such that the operating
system may select the CCA coprocessor to be used from the available
resources according to its policy. This selection applies to most verbs, but
not all. See “Multi-coprocessor selection capabilities” on page 11 for more
information.

HCPUACLR Specifies the use of host CPU assist for clear keys. This keyword enables
clear key use of the CPACF, for clear key AES encryption and decryption
with hash algorithms: SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512.
This is the default state at the time of the first use of the CCA library by a
PID or TID.

HCPUAPRT Specifies the use of host CPU assist for protected keys. This keyword
enables protected key use of the CPACF for protected key AES and DES,
TDES, and MAC. This is not the default state at the time of the first use of
the CCA library by a PID or TID.

Cryptographic Resource Allocate (CSUACRA)

Chapter 7. CCA nodes and resource control 145

There is an environment variable that also impacts the default card:
CSU_DEFAULT_ADAPTER (see “Multi-coprocessor selection capabilities” on
page 11). There are also environment variables that influence CPACF support
(see “Environment variables that affect CPACF usage” on page 14).

The actual hardware configuration determines what features are available, and
CCA uses what exists if the user sets these values as desired, with respect to
appropriate defaults.

resource_name_length

Direction: Input
Type: Integer

The resource_name_length parameter is a pointer to an integer variable
containing the number of bytes of data in the resource_name variable. The
length must be 1 - 64.

resource_name

Direction: Input
Type: String

The resource_name parameter is a pointer to a string variable containing the
name of the coprocessor to be allocated.

Restrictions
Restrictions for CSUACRA.

None.

Required commands
The CSUACRA required commands.

None.

Usage notes
Usage notes for CSUACRA.

For optimal performance, ensure that you have enabled CPACF in the thread doing
the processing, by making a quick call on the host side at thread startup time, to
Cryptographic Resource Allocate, specifying the correct HCPUACLR and
HCPUAPRT keyword values for your operation. See the Cryptographic Resource
Allocate rule_array keyword definitions, and see “Access control points that affect
CPACF protected key operations” on page 16 for more affected verbs. Note that it
is the user's responsibility to ensure that all adapters accessible to the operating
system use the DEV-ANY state. Further use of DEV-ANY as a target adapter for verbs
that modify the state of an adapter (such as the generation of retained keys) can
lead to unexpected results. See “Multi-coprocessor selection capabilities” on page
11 for more information.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSUACRAJ.

See “Building Java applications using the CCA JNI” on page 28.

Cryptographic Resource Allocate (CSUACRA)

146 Common Cryptographic Architecture Application Programmer's Guide

Format
public native void CSUACRAJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber resource_name_length,
byte[] resource_name);

Cryptographic Resource Deallocate (CSUACRD)
The Cryptographic Resource Deallocate verb is used to deallocate a specific CCA
coprocessor that is allocated by the thread or process, depending on the scope of
the verb.

This verb is scoped to a thread. When a thread or process, depending on the scope,
de-allocates a cryptographic resource, requests are routed to the default
cryptographic resource.

You can set the default cryptographic resource. If you take no action, the default
assignment is CRP01.

If a thread with an allocated coprocessor ends without first de-allocating the
coprocessor, excess memory consumption results. It is not necessary to deallocate a
cryptographic resource if the process itself is ending, only if individual threads end
while the process continues to run.

Be sure to review “Multi-coprocessor selection capabilities” on page 11.

Format
The format of CSUACRD.

CSUACRD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count
rule_array,
resource_name_length,
resource_name)

Parameters
The parameter definitions for CSUACRD.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

Cryptographic Resource Allocate (CSUACRA)

Chapter 7. CCA nodes and resource control 147

rule_array

Direction: Input
Type: String array

The rule_array parameter is a pointer to a string variable containing an array
of keywords. The keywords are eight bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keyword is
described in Table 36.

Table 36. Keywords for Cryptographic Resource Deallocate control information

Keyword Description

Cryptographic resource (Required)

DEVICE Specifies a CEX*C coprocessor.

DEV-ANY Specifies to disable the AUTOSELECT option. Verbs will now all use
the default adapter or a previously configured "selected" adapter as
chosen via CSUACRA. See “Multi-coprocessor selection capabilities” on
page 11 for more information.

HCPUACLR Specifies the use of host CPU assist for clear keys. This keyword
enables clear key use of the CPACF, for clear key AES encryption and
decryption with hash algorithms: SHA-1, SHA-224, SHA-256, SHA-384,
and SHA-512. This is the default state at the time of the first use of the
CCA library by a PID or TID.

HCPUAPRT Specifies the use of host CPU assist for protected keys. This keyword
disables protected key use of the CPACF for protected key AES and
DES, TDES, and MAC. This is the default state at the time of the first
use of the CCA library by a PID or TID.

There is an environment variable that also impacts the default card:
CSU_DEFAULT_ADAPTER (see “Multi-coprocessor selection capabilities” on
page 11). There are also environment variables that influence CPACF support
(see “Environment variables that affect CPACF usage” on page 14).

The actual hardware configuration determines what features are available, and
CCA uses what exists if the user sets these values as desired, with respect to
appropriate defaults.

resource_name_length

Direction: Input
Type: Integer

The resource_name_length parameter is a pointer to an integer variable
containing the number of bytes of data in the resource_name variable. The
length must be 1 - 64.

resource_name

Direction: Input
Type: String

The resource_name parameter is a pointer to a string variable containing the
name of the coprocessor to be deallocated.

Restrictions
The restrictions for CSUACRD.

None.

Cryptographic Resource Deallocate (CSUACRD)

148 Common Cryptographic Architecture Application Programmer's Guide

Required commands
The CSUACRD required commands.

None.

Usage notes
Usage notes for CSUACRD.

To disable CPACF usage in your processing thread, make a call to Cryptographic
Resource Deallocate, specifying the correct HCPUACLR and HCPUAPRT keyword
as appropriate. See the Cryptographic Resource Deallocate rule_array keyword
definitions, and see “Access control points that affect CPACF protected key
operations” on page 16 for more affected verbs.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSUACRDJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSUACRDJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber resource_name_length,
byte[] resource_name);

Key Storage Initialization (CSNBKSI)
The Key Storage Initialization verb initializes a key-storage file using the current
symmetric or asymmetric master-key.

The initialized key storage file does not contain any preexisting key records. The
key storage data and index files are in the /opt/IBM/CCA/keys directory.

The key storage functions do not work with HMAC keys.

Format
The format of CSNBKSI.

CSNBKSI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_storage_file_name_length,
key_storage_file_name,
key_storage_description_length,
key_storage_description,
clear_master_key)

Cryptographic Resource Deallocate (CSUACRD)

Chapter 7. CCA nodes and resource control 149

Parameters
The parameter definitions for CSNBKSI.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 2.

rule_array

Direction: Input
Type: String array

The rule_array parameter is a pointer to a string variable containing an array
of keywords. The keywords are eight bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords are
described in Table 37.

Table 37. Keywords for Key Storage Initialization control information

Keyword Description

Master-key source (Required)

CURRENT Specifies the current symmetric master-key of the default
cryptographic facility is to be used for the initialization.

Key-storage selection (One required)

AES Initialize AES key storage (fixed-length and variable-length
AES key tokens and HMAC key tokens).

DES Initialize DES key storage.

PKA Initialize PKA key storage (RSA and ECC key tokens).

key_storage_file_name_length

Direction: Input
Type: Integer

The key_storage_file_name_length parameter is a pointer to an integer
variable containing the number of bytes of data in the key_storage_file_name
variable. The length must be within the range of 1 - 64.

key_storage_file_name

Direction: Input
Type: String

The key_storage_file_name parameter is a pointer to a string variable
containing the fully qualified file name of the key-storage file to be initialized.
If the file does not exist, it is created. If the file does exist, it is overwritten and
all existing keys are lost.

key_storage_description_length

Direction: Input
Type: Integer

Key Storage Initialization (CSNBKSI)

150 Common Cryptographic Architecture Application Programmer's Guide

|
|

|

The key_storage_description_length parameter is a pointer to an integer
variable containing the number of bytes of data in the
key_storage_description variable.

key_storage_description

Direction: Input
Type: String

The key_storage_description parameter is a pointer to a string variable
containing the description string stored in the key-storage file when it is
initialized.

clear_master_key

Direction: Input
Type: String

The clear_master_key parameter is unused, but it must be declared and point
to 24 data bytes in application storage.

Restrictions
The restrictions for CSNBKSI.

ECC and variable-length symmetric key tokens are not supported in releases before
Release 4.1.0.

Required commands
The CSNBKSI required commands.

In order to access key storage, the Key Storage Initialization verb requires the
Compute Verification Pattern command (offset X'001D') to be enabled in the
active role.

Usage notes
Usage notes for CSNBKSI.

Using the Key Storage Initialization verb to initialize DES (symmetric) key storage
currently requires both the symmetric master key and the asymmetric master key
to be loaded, completed and set using the Master Key Process (CSNBMKP) verb or
suitable utility, or an interface tool that uses the Master Key Process (CSNBMKP)
verb.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKSIJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKSIJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_storage_file_name_length,

Key Storage Initialization (CSNBKSI)

Chapter 7. CCA nodes and resource control 151

|

byte[] key_storage_file_name,
hikmNativeNumber key_storage_description_length,
byte[] key_storage_description,
byte[] clear_master_key);

Log Query (CSUALGQ)
Use the Log Query verb to retrieve system log (SYSLOG) message data and CCA
log message data from the coprocessor. Syslog data is available for one of the five
latest boot cycles (current boot cycle and up to four previous boot cycles). CCA log
message data is optionally available during the current boot cycle. The verb
supports service personnel and developers in testing and debugging issues.

The SYSLOG for a boot cycle is initially populated with operating system messages
and other startup messages, but more messages are written as CCA encounters
errors at log level 12 or above. A log level of 12 means, that if an error at return
code value 12 or higher occurs during the processing of an operation or during
general system processing, then a descriptive message is sent to the SYSLOG. The
log level is configurable, with a default value of 12. If configured to be logged,
messages for return code 4 and return code 8 are saved in volatile memory (CCA
log) separately from messages in the SYSLOG. This keeps these messages from
overwhelming more important errors and system messages. Each new boot cycle
wipes out any previous CCA log, while the current SYSLOG and up to four
previous boot cycle SYSLOGs are maintained. The CCA log is a circular log. When
the log is full, the oldest messages are replaced as needed with any new messages.

Format
The format of CSUALGQ.

CSUALGQ(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
log_number_or_level,
reserved0,
log_data_length,
log_data,
reserved1_length,
reserved1,
reserved2_length,
reserved2)

Parameters
The parameter definitions for CSUALGQ.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 1.

Key Storage Initialization (CSNBKSI)

152 Common Cryptographic Architecture Application Programmer's Guide

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are eight bytes in length and must be left-aligned and padded on the right
with space characters. The rule_array keywords are described in Table 38.

Table 38. Keywords for Log Query control information.

Keyword Description

Service requested (One required)

CCALGLEN Specifies to return the length of the CCA log data buffer in the log_data_length variable (the
log_number_or_level parameter is ignored). No data is returned in the log_data variable.

GETCCALG Specifies to get up to log_data_length bytes of data from the current CCA log data buffer (the
log_number_or_level parameter is ignored). This data is returned in the log_data variable. The
returned log only contains all available CCA messages that had a return code of 4 or 8. All other
messages are filtered out.
Note: If the log level (see SETLGLVL keyword) has never been set to 4 or 8 in the current boot
cycle for the coprocessor, then the CCA log is empty and no data is available to return.

GETLGLVL Specifies to return the current log level in the log_number_or_level variable. The log level is used
to determine which return codes the coprocessor uses to generate a log message. A return code
greater than or equal to this level causes a log message to be generated. No data is returned in the
log_data variable.

GETSYSLG Specifies to get up to log_data_length bytes of data from the SYSLOG (for the given log number
as specified by the log_number_or_level parameter). This data is returned in the log_data
variable. The returned log contains all available SYSLOG messages, including boot, major error,
and CCA messages.

SETLGLVL Specifies to set the current log level inside the coprocessor to the value specified by the
log_number_or_level parameter (4, 8, or 12). A CCA return code greater than or equal to the log
level causes a log message to be generated. No data is returned in the log_data variable. If the log
level for the coprocessor has never been set in the current boot cycle, it defaults to 12. Where the
coprocessor stores a message, depends on the message return code:

v Return code 4 and return code 8 messages are stored in the CCA log. The CCA log is stored in
a volatile message data buffer and is only available for the current boot cycle.

v Return code 12 and return code 16 messages are stored in the current boot cycle SYSLOG along
with non-CCA messages. In addition to the current boot cycle SYSLOG, there are up to four
SYSLOGs maintained from previous boot cycles.

SYSLGLEN Specifies to return the length of the SYSLOG data buffer in the log_data_length variable (for the
given log number specified by the log_number_or_level parameter). No data is returned in the
log_data variable.

log_number_or_level

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the log number or level for the
service requested. This parameter may be unused, but must always be
declared. Table 39 describes the meaning of this parameter for the different
requested services.

Table 39. Meaning of log_number_or_level for the requested service (keyword).

Service requested Direction Meaning

CCALGLEN Input The value is ignored.

Log Query (CSUALGQ)

Chapter 7. CCA nodes and resource control 153

Table 39. Meaning of log_number_or_level for the requested service (keyword) (continued).

Service requested Direction Meaning

GETCCALG Input The value is ignored.

GETLGLVL Output This is the current minimum level of CCA return code for which a
coprocessor generates a log message. Valid values are 4, 8, or 12.

GETSYSLG Input Specifies which of five possible groups of system log message data to
retrieve from the coprocessor. See the note at end of the table.

SETLGLVL Input Specifies the minimum level of the CCA return code for which a
coprocessor is to generate a log message. Valid values are 4, 8, or 12. If the
log level is not set, the default is 12.

Value CCA return code that generates a log message

4 4, 8, 12, or 16

8 8, 12, or 16

12 12 or 16 (default if log level not set)

SYSLGLEN Input Specifies which length of five possible groups of SYSLOG message data to
retrieve from the coprocessor. See the note at end of the table.

Note: To process the system log message data from the current boot cycle, specify 0 in the log_number_or_level
parameter. To process the data from the oldest available boot cycle possible, use a log number of 4. If the log
number specifies an empty slot (that is, the coprocessor has not been power-cycled enough times for the given log
number to have data yet), no data is returned.

reserved0

Direction: Input/Output
Type: Integer

A pointer to an integer variable. This parameter is reserved for future use. It
must be a null pointer or point to a value of 0.

log_data_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the log_data
variable, or the maximum number of data bytes available to retrieve for a
particular log inside the coprocessor. This parameter may be unused, but must
always be declared. Table 40 describes the meaning of this parameter for the
different requested services.

Table 40. Meaning of log_data_length for the requested service (keyword).

Service requested Direction Meaning

CCALGLEN Output Specifies the maximum number of CCA log data bytes available to retrieve
inside the Coprocessor (the log_number_or_level parameter is ignored). No
data is returned in the log_data variable.

Log Query (CSUALGQ)

154 Common Cryptographic Architecture Application Programmer's Guide

Table 40. Meaning of log_data_length for the requested service (keyword) (continued).

Service requested Direction Meaning

GETCCALG Input/Output On input, this variable specifies the number of bytes available in the
log_data variable. On output, the variable is updated to the number of
bytes of CCA log data returned in the log_data variable.
Note:

1. To determine the maximum number of bytes that the current CCA log
data buffer contains, use the CCALGLEN keyword. The maximum is
less than or equal to 1024.

2. The actual amount of data returned is variable and can be less than the
maximum, depending on the amount of log messages issued so far.

3. On input, it is acceptable to specify a value less than the total size of
the available CCA log data buffer. On output, the end of the data buffer
is truncated as needed.

4. On input, it is acceptable to specify a value greater than the total size of
the available CCA log data buffer. On output, the length is adjusted to
the total size.

5. Interpretation of the data is defined internally by IBM. The data may or
may not be human-readable. The data may contain truncated messages
or partial messages that in some way conflict with a given editor.

GETLGLVL Input The value is ignored.

GETSYSLG Input/Output On input, this variable specifies the number of bytes available in the
log_data variable. On output, the variable is updated to the number of
bytes of SYSLOG data returned in the log_data variable (for the given log
number as specified by the log_number_or_level parameter).
Note:

1. To determine the maximum number of bytes that the specified SYSLOG
data buffer contains, use the SYSLGLEN keyword. The maximum that
can be returned is 16384.

2. The actual amount of data returned is variable and can be less than the
maximum, depending on the amount of log messages issued so far.

3. On input, it is acceptable to specify a value less than the total size of
the available SYSLOG data buffer. On output, the end of the data buffer
is truncated as needed.

4. On input, it is acceptable to specify a value greater than the total size of
the available SYSLOG data buffer. On output, the length is adjusted to
the total size.

5. Interpretation of the data is defined internally by IBM. The data may or
may not be human-readable. The data may contain truncated messages
or partial messages that in some way conflict with a given editor.

SETLGLVL Input The value is ignored.

SYSLGLEN Output Specifies the maximum number of SYSLOG data bytes available to retrieve
inside the coprocessor (for the given log number as specified by the
log_number_or_level parameter). No data is returned in the log_data
variable.

log_data

Direction: Input/Output
Type: String

A pointer to a string variable containing the returned log data when keyword
GETCCALG or GETSYSLG is specified in the rule array. This parameter may
be unused, but must always be declared.

Log Query (CSUALGQ)

Chapter 7. CCA nodes and resource control 155

reserved1_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
reserved1 variable. This parameter must be a null pointer or point to a value
of 0.

reserved1

Direction: Input/Output
Type: String

This parameter is a pointer to a string variable. It is reserved for future use.

reserved2_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
reserved2 variable. This parameter must be a null pointer or point to a value
of 0.

reserved2

Direction: Input/Output
Type: String

This parameter is a pointer to a string variable. It is reserved for future use.

Restrictions
The restrictions for CSUALGQ.

None.

Required commands
The CSUALGQ required commands.

The Log Query verb requires the following commands to be enabled in the active
role:

Table 41. Required commands for the Log Query verb.

Rule-array
keyword

Log number
value Offset Command

CCALGLEN,
GETCCALG

Ignored X'0035' Log Query: CCA

GETSYSLG,
SYSLGLEN

Ignored X'0034' Log Query: System

SETLGLVL 4 X'0036' Log Query: Set Log Level -4-

8 X'0037' Log Query: Set Log Level -8-

Log Query (CSUALGQ)

156 Common Cryptographic Architecture Application Programmer's Guide

Usage notes
Usage notes for CSUALGQ.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSUALGQJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSUALGQ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber log_number_or_level,
hikmNativeNumber reserved0,
hikmNativeNumber log_data_length,
byte[] log_data,
hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2);

Master Key Process (CSNBMKP)
The Master Key Process verb operates on the three master-key registers: new,
current, and old.

Use the verb to perform the following services:
v Clear the new and clear the old master-key registers.
v Generate a random master-key value in the new master-key register.
v XOR a clear value as a key part into the new master-key register.
v Set the master key, which transfers the current master-key to the old master-key

register, and the new master-key to the current master-key register. It then clears
the new master-key register.

You can choose to process either the symmetric or asymmetric registers by
specifying the SYM-MK and the ASYM-MK rule_array keywords.

Tip: Before starting to load new master-key information, ensure the new
master-key register is cleared. Do this by using the CLEAR keyword in the
rule_array.

To form a master key from key parts in the new master-key register, use the verb
several times to complete the following tasks:
v Clear the register, if it is not already clear.
v Load the first key part.
v Load any middle key parts, calling the verb once for each middle key part.
v Load the last key part.
v SET or confirm a master key for which the last key part has been loaded into the

new master-key register.

Log Query (CSUALGQ)

Chapter 7. CCA nodes and resource control 157

For the SYM-MK, the low-order bit in each byte of the key is used as parity for the
remaining bits in the byte. Each byte of the key part must contain an odd number
of one bits. If this is not the case, a warning is issued. The product maintains odd
parity on the accumulated symmetric master-key value.

When the last master key part is entered, this additional processing is performed:
v If any two of the 8-byte parts of the new master-key have the same value, a

warning is issued. Do not ignore this warning. Do not use a key with this
property.

v If any of the 8-byte parts of the new master-key compares equal to one of the
weak DES-keys, the verb fails with return code 8, reason code 703. See
“Questionable DES keys” on page 160 for a list of these weak keys. A
parity-adjusted version of the asymmetric master-key is used to look for weak
keys.

If an AES, DES or PKA key storage exists, the header record of each key storage is
updated with the verification pattern of the new, current master key.

Format
The format of CSNBMKP.

CSNBMKP(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_part)

Parameters
The parameter definitions for CSNBMKP.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

rule_array

Direction: Input
Type: String array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords are
described in Table 42.

Table 42. Keywords for Master Key Process control information

Keyword Description

Cryptographic component (Optional)

Master Key Process (CSNBMKP)

158 Common Cryptographic Architecture Application Programmer's Guide

Table 42. Keywords for Master Key Process control information (continued)

Keyword Description

ADAPTER Specifies the coprocessor. This is the default.

Master key register class (One, required)

See Note at the end of this table.

AES-MK Specifies operation with the AES master-key registers.

APKA-MK Specifies operation with the APKA master-key registers. This keyword was introduced with CCA
4.1.0.

ASYM-MK Specifies operation with the asymmetric master-key registers.

SYM-MK Specifies operation with the symmetric master-key registers.

Master-key process (One, required)

CLEAR Specifies to clear the NMK register.

FIRST Specifies to load the first key_part.

MIDDLE Specifies to XOR the second, third, or other intermediate key_part into the NMK register.

LAST Specifies to XOR the last key_part into the NMK register.

SET Specifies to advance the CMK to the OMK register, to advance the NMK to the CMK register, and
to clear the NMK register.

Note: The master-key register class is not optional for Linux on Z. There is no default for this environment. If a
suitable keyword is not specified, return code 8 with reason code 33 will be returned.

key_part

Direction: Input
Type: String

A pointer to a string variable containing a 168-bit or 192-bit clear key-part used
when you specify one of the keywords FIRST, MIDDLE, or LAST. If you use
the CLEAR or SET keywords, the information in the variable is ignored, but
you must declare the variable.

Restrictions
The restrictions for CSNBMKP.

General restrictions:
v You must set up the groups for the users who will be loading the master keys to

the cards. Each part of the load process is owned by a different Linux group
created by the RPM install procedure, and verified in the host library
implementing the API allowing master key processing. To complete a specific
step, the user must have membership in the proper group. See Master key load
(Step 7 on page 1113).

v When writing your own application using this verb, you must link it with the
/usr/lib64/libcsulccamk.so library.

Required commands
The CSNBMKP required commands.

This verb requires the following commands to be enabled in the active role based
on the master-key class and master-key operation:

Master Key Process (CSNBMKP)

Chapter 7. CCA nodes and resource control 159

Master-key
operation Master-key class Offset Command

CLEAR AES-MK
SYM-MK
ASYM-MK
APKA-MK

X'0124'
X'0032'
X'0060'
X'031F'

AES Master Key - Clear new master key register
DES Master Key - Clear new master key register
RSA Master Key - Clear new master key register
ECC Master Key - Clear new master key register

FIRST AES-MK
SYM-MK
ASYM-MK
APKA-MK

X'0125'
X'0018'
X'0053'
X'0320'

AES Master Key - Load first key part
DES Master Key - Load first key part
RSA Master Key - Load first key part
ECC Master Key - Load first key part

MIDDLE or LAST AES-MK
SYM-MK
ASYM-MK
APKA-MK

X'0126'
X'0019'
X'0054'
X'0321'

AES Master Key - Combine key parts
DES Master Key - Combine key parts
RSA Master Key - Combine key parts
ECC Master Key - Combine key parts

SET AES-MK
SYM-MK
ASYM-MK
APKA-MK

X'0128'
X'001A'
X'0057'
X'0322'

AES Master Key - Set master key
DES Master Key - Set master key
RSA Master Key - Set master key
ECC Master Key - Set master key

Usage notes
Usage notes for CSNBMKP.

This verb is not impacted by the AUTOSELECT option. See “Verbs that ignore
AUTOSELECT” on page 12 for more information.

Questionable DES keys
These keys are considered questionable DES keys, and so should probably not be
used when entering SYM-MK or ASYM-MK master keys.

01 01 01 01 01 01 01 01 /* weak */
FE FE FE FE FE FE FE FE /* weak */
1F 1F 1F 1F 0E 0E 0E 0E /* weak */
E0 E0 E0 E0 F1 F1 F1 F1 /* weak */
01 FE 01 FE 01 FE 01 FE /* semi-weak */
FE 01 FE 01 FE 01 FE 01 /* semi-weak */
1F E0 1F E0 0E F1 0E F1 /* semi-weak */
E0 1F E0 1F F1 0E F1 0E /* semi-weak */
01 E0 01 E0 01 F1 01 F1 /* semi-weak */
E0 01 E0 01 F1 01 F1 01 /* semi-weak */
1F FE 1F FE 0E FE 0E FE /* semi-weak */
FE 1F FE 1F FE 0E FE 0E /* semi-weak */
01 1F 01 1F 01 0E 01 0E /* semi-weak */
1F 01 1F 01 0E 01 0E 01 /* semi-weak */
E0 FE E0 FE F1 FE F1 FE /* semi-weak */
FE E0 FE E0 FE F1 FE F1 /* semi-weak */
1F 1F 01 01 0E 0E 01 01 /* possibly semi-weak */
01 1F 1F 01 01 0E 0E 01 /* possibly semi-weak */
1F 01 01 1F 0E 01 01 0E /* possibly semi-weak */
01 01 1F 1F 01 01 0E 0E /* possibly semi-weak */
E0 E0 01 01 F1 F1 01 01 /* possibly semi-weak */
FE FE 01 01 FE FE 01 01 /* possibly semi-weak */
FE E0 1F 01 FE F1 0E 01 /* possibly semi-weak */
E0 FE 1F 01 F1 FE 0E 01 /* possibly semi-weak */
FE E0 01 1F FE F1 01 0E /* possibly semi-weak */
E0 FE 01 1F F1 FE 01 0E /* possibly semi-weak */
E0 E0 1F 1F F1 F1 0E 0E /* possibly semi-weak */
FE FE 1F 1F FE FE 0E 0E /* possibly semi-weak */
FE 1F E0 01 FE 0E F1 01 /* possibly semi-weak */
E0 1F FE 01 F1 0E FE 01 /* possibly semi-weak */

Master Key Process (CSNBMKP)

160 Common Cryptographic Architecture Application Programmer's Guide

FE 01 E0 1F FE 01 F1 0E /* possibly semi-weak */
E0 01 FE 1F F1 01 FE 0E /* possibly semi-weak */
01 E0 E0 01 01 F1 F1 01 /* possibly semi-weak */
1F FE E0 01 0E FE F1 01 /* possibly semi-weak */
1F E0 FE 01 0E F1 FE 01 /* possibly semi-weak */
01 FE FE 01 01 FE FE 01 /* possibly semi-weak */
1F E0 E0 1F 0E F1 F1 0E /* possibly semi-weak */
01 FE E0 1F 01 FE F1 0E /* possibly semi-weak */
01 E0 FE 1F 01 F1 FE 0E /* possibly semi-weak */
1F FE FE 1F 0E FE FE 0E /* possibly semi-weak */
E0 01 01 E0 F1 01 01 F1 /* possibly semi-weak */
FE 1F 01 E0 FE 0E 01 F1 /* possibly semi-weak */
FE 01 1F E0 FE 01 0E F1 /* possibly semi-weak */
E0 1F 1F E0 F1 0E 0E F1 /* possibly semi-weak */
FE 01 01 FE FE 01 01 FE /* possibly semi-weak */
E0 1F 01 FE F1 0E 01 FE /* possibly semi-weak */
E0 01 1F FE F1 01 0E FE /* possibly semi-weak */
FE 1F 1F FE FE 0E 0E FE /* possibly semi-weak */
1F FE 01 E0 E0 FE 01 F1 /* possibly semi-weak */
01 FE 1F E0 01 FE 0E F1 /* possibly semi-weak */
1F E0 01 FE 0E F1 01 FE /* possibly semi-weak */
01 E0 1F FE 01 F1 0E FE /* possibly semi-weak */
01 01 E0 E0 01 01 F1 F1 /* possibly semi-weak */
1F 1F E0 E0 0E 0E F1 F1 /* possibly semi-weak */
1F 01 FE E0 0E 01 FE F1 /* possibly semi-weak */
01 1F FE E0 01 0E FE F1 /* possibly semi-weak */
1F 01 E0 FE 0E 01 F1 FE /* possibly semi-weak */
01 1F E0 FE 01 E0 F1 FE /* possibly semi-weak */
01 01 FE FE 01 01 FE FE /* possibly semi-weak */
1F 1F FE FE 0E 0E FE FE /* possibly semi-weak */
FE FE E0 E0 FE FE F1 F1 /* possibly semi-weak */
E0 FE FE E0 F1 FE FE F1 /* possibly semi-weak */
FE E0 E0 FE FE F1 F1 FE /* possibly semi-weak */
E0 E0 FE FE F1 F1 FE FE /* possibly semi-weak */

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBMKPJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBMKPJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_part);

Random Number Tests (CSUARNT)
The Random Number Tests verb invokes the USA NIST FIPS PUB 140-1 specified
cryptographic operational tests.

These tests, selected by a rule_array keyword, consist of:
v Tests of the random-number generation output using procedures specified in The

NIST SP 800-90A Deterministic Random Bit Generator Validation System (DRBGVS).
v Known-answer tests for periodic testing of cryptographic functions of DES

encryption and decryption, RSA encryption and decryption, HMAC and SHA-1
hashing.

v Known-answer tests for AES Galois/Counter Mode (GCM).

Master Key Process (CSNBMKP)

Chapter 7. CCA nodes and resource control 161

|
|
|
|
|
|

The tests are performed three times. If there is any test failure, the verb returns
return code 4 and reason code 1.

Format
The format of CSUARNT.

CSUARNT(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array)

Parameters
The parameter definitions for CSUARNT.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array parameter. This value must be 1.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are eight bytes in length and must be left-aligned and padded on the right
with space characters. The rule_array keywords are described in Table 43.

Table 43. Keywords for Random Number Tests control information

Keyword Description

Test selection (One required).

FIPS-RNT Perform the FIPS 140-1 specified test on the random
number generation output.

KAT Perform the FIPS 140-1 specified known-answer tests on
DES, RSA, and SHA-1.

KAT2 Specifies to perform known-answer tests of AES GCM
functions.

Restrictions
The restrictions for CSUARNT.

None.

Random Number Tests (CSUARNT)

162 Common Cryptographic Architecture Application Programmer's Guide

Required commands
The CSUARNT required commands.

None.

Usage notes
Usage notes for CSUARNT.

This verb is not impacted by the AUTOSELECT option. See “Verbs that ignore
AUTOSELECT” on page 12 for more information.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSUARNTJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSUARNTJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array);

Random Number Tests (CSUARNT)

Chapter 7. CCA nodes and resource control 163

Random Number Tests (CSUARNT)

164 Common Cryptographic Architecture Application Programmer's Guide

Chapter 8. Managing AES, DES, and HMAC cryptographic
keys

A group of verbs that generate and maintain AES, DES, and HMAC cryptographic
keys.

Using CCA, you can generate keys using the Key Generate verb. CCA provides a
number of verbs to assist you in managing and distributing AES, DES, and HMAC
keys, generating random numbers, and maintaining the key storage files.

The following verbs are described:
v “Clear Key Import (CSNBCKI)” on page 166
v “Multiple Clear Key Import (CSNBCKM)” on page 167
v “Control Vector Generate (CSNBCVG)” on page 170
v “Control Vector Translate (CSNBCVT)” on page 174
v “Cryptographic Variable Encipher (CSNBCVE)” on page 178
v “Data Key Export (CSNBDKX)” on page 180
v “Data Key Import (CSNBDKM)” on page 181
v “Diversified Key Generate (CSNBDKG)” on page 183
v “Diversified Key Generate2 (CSNBDKG2)” on page 189
v “EC Diffie-Hellman (CSNDEDH)” on page 195
v “Key Export (CSNBKEX)” on page 209
v “Key Generate (CSNBKGN)” on page 211
v “Key Generate2 (CSNBKGN2)” on page 221
v “Key Import (CSNBKIM)” on page 234
v “Key Part Import (CSNBKPI)” on page 237
v “Key Part Import2 (CSNBKPI2)” on page 241
v “Key Test (CSNBKYT)” on page 245
v “Key Test2 (CSNBKYT2)” on page 249
v “Key Test Extended (CSNBKYTX)” on page 254
v “Key Token Build (CSNBKTB)” on page 259
v “Key Token Build2 (CSNBKTB2)” on page 264
v “Key Token Change (CSNBKTC)” on page 301
v “Key Token Change2 (CSNBKTC2)” on page 304
v “Key Token Parse (CSNBKTP)” on page 307
v “Key Token Parse2 (CSNBKTP2)” on page 311
v “Key Translate (CSNBKTR)” on page 321
v “Key Translate2 (CSNBKTR2)” on page 323
v “PKA Decrypt (CSNDPKD)” on page 327
v “PKA Encrypt (CSNDPKE)” on page 330
v “Prohibit Export (CSNBPEX)” on page 334
v “Prohibit Export Extended (CSNBPEXX)” on page 335
v “Restrict Key Attribute (CSNBRKA)” on page 337
v “Random Number Generate (CSNBRNG)” on page 341

© Copyright IBM Corp. 2007, 2018 165

v “Random Number Generate Long (CSNBRNGL)” on page 342
v “Symmetric Key Export (CSNDSYX)” on page 344
v “Symmetric Key Export with Data (CSNDSXD)” on page 350
v “Symmetric Key Generate (CSNDSYG)” on page 353
v “Symmetric Key Import (CSNDSYI)” on page 358
v “Symmetric Key Import2 (CSNDSYI2)” on page 362
v “Unique Key Derive (CSNBUKD)” on page 369

Clear Key Import (CSNBCKI)
Use the Clear Key Import verb to import a clear DATA key that is to be used to
encipher or decipher data.

This verb can import only DATA keys. The Clear Key Import verb accepts an
8-byte clear DATA key, enciphers it under the master key, and returns the
encrypted DATA key in operational form in an internal key token.

If the clear key value does not have odd parity in the low-order bit of each byte,
the verb returns a warning value in the reason_code parameter. This verb does not
adjust the parity of the key.

Note: To import 16-byte or 24-byte DATA keys, use the Multiple Clear Key Import
verb that is described in “Multiple Clear Key Import (CSNBCKM)” on page 167.

Format
The format of CSNBCKI.

CSNBCKI(
return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
target_key_identifier)

Parameters
The parameter definitions for CSNBCKI.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

clear_key

Direction: Input
Type: String

The clear_key specifies the 8-byte clear key value to import.

target_key_identifier

Direction: Input/Output
Type: String

A 64-byte string that is to receive the internal key token. “Key tokens, key
labels, and key identifiers” on page 23 describes the internal key token.

166 Common Cryptographic Architecture Application Programmer's Guide

Restrictions
The restrictions for CSNBCKI.

None.

Required commands
The CSNBCKI required commands.

This verb requires the Clear Key Import/Multiple Clear Key Import - DES
command (offset X'00C3') to be enabled in the active role.

Note: A role with offset X'00C3' enabled can also use the Multiple Clear Key
Import verb with the DES algorithm.

Usage notes
Usage notes for CSNBCKI.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCKIJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCKIJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] clear_key,
byte[] target_key_identifier);

Multiple Clear Key Import (CSNBCKM)
Use the Multiple Clear Key Import verb to import a clear single, double, or
triple-length DATA key that is to be used to encipher or decipher data.

This verb can import only DATA keys. Multiple Clear Key Import accepts a clear
DATA key, enciphers it under the master key, and returns the encrypted DATA key
in operational form in an internal key token.

Format
The format of CSNBCKM.

CSNBCKM(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_length,
clear_key,
target_key_identifier)

Clear Key Import (CSNBCKI)

Chapter 8. AES, DES, and HMAC cryptographic keys 167

Parameters
The parameter definitions for CSNBCKM.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, 2, or 3.

rule_array

Direction: Input
Type: String array

Zero or one keyword that supplies control information to the verb. The
keyword must be in eight bytes of contiguous storage, left-aligned and padded
on the right with blanks. The rule_array keywords are described in Table 44.

Table 44. Keywords for Multiple Clear Key Import control information

Keyword Description

Algorithm (On, optional)

AES The key should be enciphered under the master key as an AES key.

DES The key should be enciphered under the master key as a DES key. This is
the default.

Key-wrapping method (One, optional)

USECONFG This is the default. Specifies to wrap the key using the configuration
setting for the default wrapping method. The default wrapping method
configuration setting may be changed using the TKE. This keyword is
ignored for AES keys.

WRAP-ENH Specifies to wrap the key using the legacy wrapping method. This
keyword is ignored for AES keys. This keyword was introduced with CCA
4.1.0.

WRAP-ECB Specifies to wrap the key using the enhanced wrapping method. Valid
only for DES keys. This keyword was introduced with CCA 4.1.0.

Translation control (Optional). This is valid only with key-wrapping method WRAP-ENH
or with USECONFG when the default wrapping method is WRAP-ENH. This option
cannot be used on a key with a control vector valued to binary zeros. This keyword was
introduced with CCA 4.1.0.

ENH-ONLY Specifies to restrict the key from being wrapped with the legacy wrapping
method after it has been wrapped with the enhanced wrapping method.
Sets bit 56 (ENH-ONLY) of the control vector to B'1'.

clear_key_length

Direction: Input
Type: Integer

The clear_key_length specifies the length of the clear key value to import. This
length must be 8, 16, or 24.

clear_key

Multiple Clear Key Import (CSNBCKM)

168 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: String

The clear_key specifies the clear key value to import.

target_key_identifier

Direction: Output
Type: String

A 64-byte string that is to receive the internal key token. Chapter 19, “Key
token formats,” on page 847 describes the key tokens.

Restrictions
The restrictions for CSNBCKM.

None.

Required commands
The CSNBCKM required commands.

This verb requires the following commands to be enabled in the active role based
on the algorithm or key-wrapping method:

Algorithm or method Offset Command

AES X'0129' Multiple Clear Key Import/Multiple
Secure Key Import - AES

DES X'00C3' Clear Key Import/Multiple Clear Key
Import - DES

WRAP-ECB or WRAP-ENH
used, and default
key-wrapping method setting
does not match keyword

X'0141' Multiple Clear Key Import - Allow
wrapping override keywords

Note: Note: A role with offset X'00C3' can also use the Clear Key Import verb.

Usage notes
Usage notes for CSNBCKM.

This verb produces an internal DATA token with a control vector which is usable
on the Cryptographic Coprocessor Feature. If a valid internal token is supplied as
input to the verb in the target_key_identifier field, that token's control vector will not
be used in the encryption of the clear key value.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCKMJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCKMJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,

Multiple Clear Key Import (CSNBCKM)

Chapter 8. AES, DES, and HMAC cryptographic keys 169

byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber clear_key_length,
byte[] clear_key,
byte[] target_key_identifier);

Control Vector Generate (CSNBCVG)
The Control Vector Generate verb builds a control vector from keywords specified
by the key_type and rule_array parameters.

Format
The format of CSNBCVG.

CSNBCVG(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
rule_array_count,
rule_array,
reserved,
control_vector)

Parameters
The parameter definitions for CSNBCVG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_type

Direction: Input
Type: String

A string variable containing a keyword for the key type. The keyword is eight
bytes in length, left-aligned, and padded on the right with space characters. It
is taken from the following list:
CIPHER CVARXCVL DKYGENKY MAC
CIPHERXI CVARXCVR ENCIPHER MACVER
CIPHERXL DATA EXPORTER OKEYXLAT
CIPHERXO DATAC IKEYXLAT OPINENC
CVARDEC DATAM IMPORTER PINGEN
CVARENC DATAMV IPINENC PINVER
CVARPINE DECIPHER KEYGENKY SECMSG

For information on the meaning of the key types, see Table 6 on page 44.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable.

rule_array

Multiple Clear Key Import (CSNBCKM)

170 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: String array

Keywords that provide control information to the verb. Each keyword is
left-aligned in 8-byte fields, and padded on the right with blanks. All
keywords must be in contiguous storage. “Key Token Build (CSNBKTB)” on
page 259 illustrates the key type and key usage keywords that can be
combined in the Control Vector Generate and Key Token Build verbs to create
a control vector.

See Figure 3 on page 48 for the key usage keywords that can be specified for a
given key type. The rule_array keywords are described in Table 45.

Table 45. Keywords for Control Vector Generate control information

Keyword Description

Key usage keywords: These keywords allow the key to be use with a callable service, restrict the key to a single
algorithm, or allow the key to be used for a specific function (One, required)

Key encrypting keys

OPIM IMPORTER keys that have this attribute can be used in the CSNBKGN service when the key
form is OPIM.

IMEX IMPORTER and EXPORTER keys that have this attribute can be used in the CSNBKGN service
when the key form is IMEX.

IMIM IMPORTER keys that have this attribute can be used in the CSNBKGN service when the key
form is IMIM.

IMPORT IMPORTER keys that have this attribute can be used to import a key in the CSNBKIM service.

OPEX EXPORTER keys that have this attribute can be used in the CSNBKGN service when the key
form is OPEX.

EXEX EXPORTER keys that have this attribute can be used in the CSNBKGN service when the key
form is EXEX.

EXPORT EXPORTER keys that have this attribute can be used to export a key in the CSNBKEX service.

XLATE IMPORTER and EXPORTER keys that have this attribute can be used in the CSNBKTR and
CSNBKTR2 services.

ANY This key attribute has been discontinued. Its usage is allowed for backward compatibility
reasons only.

NOT-KEK This key attribute has been discontinued. Its usage is allowed for backward compatibility
reasons only.

DATA This key attribute has been discontinued. Its usage is allowed for backward compatibility
reasons only.

LMTD-KEK This key attribute has been discontinued. Its usage is allowed for backward compatibility
reasons only.

MAC keys

ANY-MAC A key with this attribute can be used with any service that uses MAC keys.

CVVKEY-A Restricts the usage of the key to single-length key-A key or double-length key-A and key-B keys
for the CSNBCSG and CSNBCSV services.

CVVKEY-B Restricts the usage of the key to single-length key-B key for the CSNBCSG and CSNBCSV
services.

AMEX-CSC This key attribute has been discontinued. Its usage is allowed for backward compatibility
reasons only.

ANSIX9.9 This key attribute has been discontinued. Its usage is allowed for backward compatibility
reasons only.

Control Vector Generate (CSNBCVG)

Chapter 8. AES, DES, and HMAC cryptographic keys 171

||

||

|
|

|

||
|

||
|

||
|

||

||
|

||
|

||

||
|

||
|

||
|

||
|

||
|

|

||

||
|

||
|

||
|

||
|

Table 45. Keywords for Control Vector Generate control information (continued)

Keyword Description

Data operation keys

When the key type is SECMSG, either SMKEY or SMPIN must be specified in the rule_array.

SMKEY A key with this attribute can be used to encrypt keys in an EMV secure message.

SMPIN A key with this attribute can be used to encrypt PINs in an EMV secure message.

PIN keys

NO-SPEC The key is not restricted to a specific PIN-calculation method.

IBM-PIN The key can be used with the IBM 3624 PIN-calculation method.

IBM-PINO The key can be used with the IBM 3624 PIN-calculation method with offset processing.

GBP-PIN The key can be used with the IBM German Bank Pool PIN-calculation method.

GBP-PINO The key can be used with the IBM German Bank Pool PIN-calculation method with
institution-PIN input or output.

VISA-PVV The key can be used with the Visa PVV PIN-calculation method.

INBK-PIN The key can be used with the InterBank PIN-calculation method.

NOOFFSET Indicates that a PINGEN or PINVER key cannot be used to generate or verify of a PIN when an
offset process is requested.

CPINGEN The key can be used with the CSNBPGN service.

CPINGENA The key can be used with the CSNBCPA service.

EPINGEN The key can be used with the CSNBEPG service.

EPINVER The key can be used with the CSNBPVR service.

CPINENC The key can be used with the CSNBCPE service.

REFORMAT The key can be used with the CSNBPTR service in the REFORMAT mode.

TRANSLAT The key can be used with the CSNBPTR service in the TRANSLATE mode.

EPINGENA This key attribut has been discontinued. Its usage is allowed for backward compatibility reasons
only.

Key-generating keys

When the key type is KEYGENKY, either CLR8-ENC or UKPT must be specified in the rule array.

CLR8-ENC The key can be used to multiply-encrypt 8 bytes of clear data with a generating key.

DALL The key can be used to generate keys with the following key types: DATA, DATAC, DATAM,
DATAMV, DMKEY, DMPIN, EXPORTER, IKEYXLAT, IMPORTER, MAC, MACVER, OKEYXLAT,
and PINVER.

DDATA The key can be used to generate a single-length or double-length DATA or DATAC key.

DEXP The key can be used to generate an EXPORTER or an OKEYXLAT key.

DIMP The key can be used to generate an IMPORTER or an IKEYXLAT key.

DMAC The key can be used to generate a MAC or DATAM key.

DMKEY The key can be used to generate a SECMSG with a SMKEY secure messaging key for encrypting
keys.

DMPIN The key can be used to generate a SECMSG with a SMPIN secure messaging key for encrypting
PINs.

DMV The key can be used to generate a MACVER or DATAMV key.

DPVR The key can be used to generate a PINVER key.

DKYL0 A DKYGENKY key with this subtype can be used to generate a key based on the key-usage bits.

Control Vector Generate (CSNBCVG)

172 Common Cryptographic Architecture Application Programmer's Guide

|

||

|

|

||

||

|

||

||

||

||

||
|

||

||

||
|

||

||

||

||

||

||

||

||
|

|

|

||

||
|
|

||

||

||

||

||
|

||
|

||

||

||

Table 45. Keywords for Control Vector Generate control information (continued)

Keyword Description

DKYL1 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a subtype
of DKYL0.

DKYL2 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a subtype
of DKYL1.

DKYL3 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a subtype
of DKYL2.

DKYL4 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a subtype
of DKYL3.

DKYL5 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a subtype
of DKYL4.

DKYL6 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a subtype
of DKYL5.

DKYL7 A DKYGENKY key with this subtype can be used to generate a DKYGENKY key with a subtype
of DKYL6.

UKPT The key can be used to derive operational keys.

Key management keywords

These keywords are valid with all key types. The keywords are used to allow or disallow key management
functions.

Key lengths

MIXED Indicates that the key can be either a replicated single-length key or a double-length key with
two different, random 8-byte values.

SINGLE, KEYLN8 Specifies the key as a single-length key.

DOUBLE,
KEYLN16

Specifies the key as a double-length key.

DOUBLE-O Specifies the key as a double-length key with guaranteed different key values.

Miscellaneous attributes

COMP-TAG The key can be used with PCI-HSM compliant applications.

ENH-ONLY Prohibits the key from being wrapped with the legacy method after it has been wrapped with
the enhanced method.

KEY-PART Specifies the control vector is for a key part.

NO-XPORT Prohibits the key from being exported by Key_Export or Data_Key_Export.

NCOMPTAG The key cannot be used with PCI-HSM compliant applications.

NOT31XPT Prohibits the key from being exported by the Key_Export_to_TR31 verb.

T31XPTOK Permits the key to be exported by the Key_Export_to_TR31 verb.

XPORT-OK Permits the key to be exported by Key_Export or Data_Key_Export. Also permits the key to be
exported by the Key_Export_to_TR31 verb, unless NOT31XPT is enabled.

Note:

1. When the KEYGENKY key type is coded, either CLR8-ENC or UKPT must
be specified in rule_array.

2. When the SECMSG key_type is coded, either SMKEY or SMPIN must be
specified in the rule_array.

3. Keyword ENH-ONLY was introduced with CCA 4.1.0.

reserved

Control Vector Generate (CSNBCVG)

Chapter 8. AES, DES, and HMAC cryptographic keys 173

|

||

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||

|

|
|

|

||
|

||

|
|
|

||

|

||

||
|

||

||

||

||

||

||
|
|

Direction: Input
Type: String

The reserved parameter must be a variable of eight bytes of X'00'.

control_vector

Direction: Output
Type: String

A 16-byte string variable in application storage where the verb returns the
generated control vector.

Restrictions
The restrictions for CSNBCVG.

None.

Required commands
The CSNBCVG required commands.

None.

Usage notes
Usage notes for CSNBCVG.

See the key_type parameter on page “key_type ” on page 260 for an illustration of
key type and key usage keywords that can be combined in the Control Vector
Generate and Key Token Build verbs to create a control vector.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCVGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCVGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_type,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] reserved,
byte[] control_vector);

Control Vector Translate (CSNBCVT)
The Control Vector Translate verb changes the control vector used to encipher an
external DES key.

Detailed information about control vectors and how to use this verb can be found
in Chapter 21, “Control vectors and changing control vectors with the Control
Vector Translate verb,” on page 989.

Control Vector Generate (CSNBCVG)

174 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNBCVT.

CSNBCVT(
return_code,
reason_code,
exit_data_length,
exit_data,
kek_key_identifier,
source_key_token,
array_key_left_identifier,
mask_array_left,
array_key_right_identifier,
mask_array_right,
rule_array_count,
rule_array,
target_key_token)

Parameters
The parameter definitions for CSNBCVT.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

kek_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an operational key-token or the key
label of an operational key-token record containing the key-encrypting key. The
control vector in the key token must specify the key type IMPORTER,
EXPORTER, IKEYXLAT, or OKEYXLAT.

source_key_token

Direction: Input
Type: String

A pointer to a string variable containing the external DES key-token with the
key and control vector to be processed.

array_key_left_identifier

Direction: Input
Type: String

A pointer to a string variable containing an operational DES key-token or a key
label of an operational DES key-token record that deciphers the left mask-array.
The key token must contain a control vector specifying a CVARXCVL
key-type. The CVARXCVL key must be single length.

mask_array_left

Direction: Input
Type: String

A pointer to a string variable containing the mask array enciphered under the
left-array key.

array_key_right_identifier

Control Vector Translate (CSNBCVT)

Chapter 8. AES, DES, and HMAC cryptographic keys 175

Direction: Input
Type: String

A pointer to a string variable containing an operational DES key-token or the
key label of an operational DES key-token record that deciphers the right
mask-array. The key token must contain a control vector specifying a
CVARXCVR key-type. The CVARXCVR key must be single length.

mask_array_right

Direction: Input
Type: String

A pointer to a string variable containing the mask array enciphered under the
right-array key.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, or 2.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are eight bytes in length and must be left-aligned and padded on the right
with space characters. The rule_array keywords are described in Table 46.

Table 46. Keywords for Control Vector Translate control information

Keyword Description

Parity adjustment (One, optional)

ADJUST Ensures that all target-key bytes have odd parity. This is the default.

NOADJUST Prevents the parity of the target key from being altered.

Key half processing mode (One, optional)

LEFT Causes an 8-byte source key, or the left half of a 16-byte source key, to be processed with
the result placed into both halves of the target key. This is the default.

RIGHT Causes the right half of a 16-byte source key to be processed with the result placed into
only the right half of the target key. The left half of the target key is unchanged.

BOTH Causes both halves of a 16-byte source key to be processed with the result placed into
corresponding halves of the target key. When you use the BOTH keyword, the mask array
must be able to validate the translation of both halves.

SINGLE Causes the left half of the source key to be processed with the result placed into only the
left half of the target. The right half of the target key is unchanged.

target_key_token

Direction: Input/Output
Type: String

A pointer to a string variable containing an external DES key-token with the
new control vector. This key token contains the key halves with the new
control vector.

Control Vector Translate (CSNBCVT)

176 Common Cryptographic Architecture Application Programmer's Guide

Restrictions
The restrictions for CSNBCVT.

None.

Required commands
The CSNBCVT required commands.

This verb requires the Control Vector Translate command (offset X'00D6') to be
enabled in the active role.

Usage notes
Usage notes for CSNBCVT.

Consider that Control Vector Translate represents the capability to translate, by
definition, the limitations on the operations that a key can be used for, into a
different set of limitations. The control vector is the heart of security against the
misuse of keys that were defined for a specific purpose. The masks that control
what the key can be translated into being able to do (the right and left masks) are
themselves single-length (8-byte), and are encrypted with DES. Therefore, the
protection against translating the key to have more power (or less power) than it
did before are protected with single-DES. This reduces the security (somewhat) of
a double-length DES key. You cannot decrypt the double-length key with this
approach, or gain access to a key that you did not otherwise have the rights to use.
But you can make a key which you already have access to, on a system you
already have access to, more powerful than it was before if you can break
single-DES.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCVTJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCVTJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] kek_key_identifier,
byte[] source_key_token,
byte[] array_key_left,
byte[] mask_array_left,
byte[] array_key_right,
byte[] mask_array_right,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] target_key_token);

Control Vector Translate (CSNBCVT)

Chapter 8. AES, DES, and HMAC cryptographic keys 177

Cryptographic Variable Encipher (CSNBCVE)
This verb is used to encrypt plaintext using a CVARENC key to produce ciphertext
using the Cipher Block Chaining (CBC) method.

The plaintext must be a multiple of eight bytes in length.

Specify the following parameters to encrypt plaintext:
v An operational DES key-token or a key label of an operational DES key-token

record that contains the key to be used to encrypt the plaintext with the
c-variable_encrypting_key_identifier parameter. The control vector in the key token
must specify the CVARENC key-type.

v The length of the plaintext, which is the same as the length of the returned
ciphertext, with the text_length parameter. The plaintext must be a multiple of
eight bytes in length.

v The plaintext with the plaintext parameter.
v The initialization vector with the initialization_vector parameter.
v A variable for the returned ciphertext with the ciphertext parameter. The length

of this field is specified with the text_length variable.

This verb does the following:
v Uses the CVARENC key and the initialization value with the CBC method to

encrypt the plaintext.
v Returns the encrypted plaintext in the variable pointed to by the ciphertext

parameter.

Format
The format of CSNBCVE.

CSNBCVE(
return_code,
reason_code,
exit_data_length,
exit_data,
c_variable_encrypting_key_identifier,
text_length,
plain_text,
initialization_vector,
cipher_text)

Parameters
The parameter definitions for CSNBCVE.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

c_variable_encrypting_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an operational DES key-token or a key
label of an operational DES key-token record. The key token must contain a
control vector that specifies a CVARENC key-type.

text_length

Cryptographic Variable Encipher (CSNBCVE)

178 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: Integer

A pointer to an integer variable containing the length of the plain_text variable
and the cipher_text variable.

plain_text

Direction: Input
Type: String

A pointer to is a string variable containing the plaintext to be encrypted.

initialization_vector

Direction: Input
Type: String

A pointer to a string variable containing the 8-byte initialization vector that the
verb uses in encrypting the plaintext.

cipher_text

Direction: Output
Type: String

A pointer to a string variable containing the ciphertext returned by the verb.

Restrictions
The restrictions for CSNBCVE.

The text length must be a multiple of eight bytes.

The minimum length of text that the security server can process is eight bytes and
the maximum is 256 bytes.

Required commands
The required commands for CSNBCVE.

This verb requires the Cryptographic Variable Encipher command (offset
X'00DA') to be enabled in the active role.

Usage notes
Usage notes for CSNBCVE.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCVEJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCVEJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,

Cryptographic Variable Encipher (CSNBCVE)

Chapter 8. AES, DES, and HMAC cryptographic keys 179

byte[] c_variable_encrypting_key_identifier,
hikmNativeNumber text_length,
byte[] plain_text,
byte[] initialization_vector,
byte[] cipher_text);

Data Key Export (CSNBDKX)
Use the Data Key Export verb to re-encipher a data-encrypting key (key type of
DATA only) from encryption under the master key to encryption under an exporter
key-encrypting key.

The re-enciphered key is in a form suitable for export to another system.

The Data Key Export verb generates a key token with the same key length as the
input token's key.

Format
The format of CSNBDKX.

CSNBDKX(
return_code,
reason_code,
exit_data_length,
exit_data,
source_key_identifier,
exporter_key_identifier,
target_key_identifier)

Parameters
The parameter definitions for CSNBDKX.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

source_key_identifier

Direction: Input/Output
Type: String

A 64-byte string for an internal key token or label that contains a
data-encrypting key to be re-enciphered. The data-encrypting key is encrypted
under the master key.

exporter_key_identifier

Direction: Input/Output
Type: String

A 64-byte string for an internal key token or key label that contains the
exporter key_encrypting key. The data-encrypting key above will be encrypted
under this exporter key_encrypting key.

target_key_identifier

Direction: Input/Output
Type: String

A 64-byte field that is to receive the external key token, which contains the
re-enciphered key that has been exported. The re-enciphered key can now be

Cryptographic Variable Encipher (CSNBCVE)

180 Common Cryptographic Architecture Application Programmer's Guide

exchanged with another cryptographic system.

Restrictions
The restrictions for CSNBDKX.

For security reasons, requests will fail by default if they use an equal key halves
exporter to export a key with unequal key halves. You must have access control
point 'Data Key Export - Unrestricted' explicitly enabled if you want to export keys
in this manner.

Required commands
The CSNBDKX required commands.

This verb requires the Data Key Export command (offset X'010A') to be enabled in
the active role.

By also specifying the Data Key Export - Unrestricted command (offset X'0277'),
you can permit a less secure mode of operation that enables an equal key-halves
EXPORTER key-encrypting-key to export a key having unequal key-halves (key
parity bits are ignored).

Usage notes
Usage notes for.CSNBDKX.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDKXJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDKXJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] source_key_identifier,
byte[] exporter_key_identifier,
byte[] target_key_token);

Data Key Import (CSNBDKM)
Use the Data Key Import verb to import an encrypted source DES single-length,
double-length or triple-length DATA key and create or update a target internal key
token with the master key enciphered source key.

Data Key Export (CSNBDKX)

Chapter 8. AES, DES, and HMAC cryptographic keys 181

Format
The format of CSNBDKM.

CSNBDKM(
return_code,
reason_code,
exit_data_length,
exit_data,
source_key_token,
importer_key_identifier,
target_key_identifier)

Parameters
The parameter definitions for CSNBDKM.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

source_key_token

Direction: Input
Type: String

A pointer to a 64-byte string variable containing the source key to be imported.
The source key must be an external token or null token. The external key token
must indicate that a control vector is present; however, the control vector is
usually valued at zero. A double-length key that should result in a default
DATA control vector must be specified in a version X'01' external key token.
Otherwise, both single and double-length keys are presented in a version X'00'
key token. For the null token, the verb will process this token format as a
DATA key encrypted by the importer key and a null (all zero) control vector.

importer_key_identifier

Direction: Input/Output
Type: String

A pointer to a 64-byte string variable containing the (IMPORTER) transport key
or key label of the transport key used to decipher the source key.

target_key_identifier

Direction: Output
Type: String

A pointer to a 64-byte string variable containing a null key token or an internal
key token. The key token receives the imported key.

Restrictions
The restrictions for CSNBDKM.

For security reasons, requests will fail by default if they use an equal key halves
importer to import a key with unequal key halves. You must have access control
point 'Data Key Import - Unrestricted' explicitly enabled if you want to import
keys in this manner.

Required commands
The CSNBDKM required commands.

Data Key Import (CSNBDKM)

182 Common Cryptographic Architecture Application Programmer's Guide

This verb requires the Data Key Import command (offset X'0109') to be enabled in
the active role.

By also specifying the Data Key Import - Unrestricted command (offset X'027C'),
you can permit a less secure mode of operation that enables an equal key-halves
IMPORTER key-encrypting key to import a key having unequal key-halves (key
parity bits are ignored).

Usage notes
Usage notes for CSNBDKM.

This verb does not adjust the key parity of the source key.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDKMJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDKMJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] source_key_token,
byte[] importer_key_identifier,
byte[] target_key_identifier);

Diversified Key Generate (CSNBDKG)
Use the Diversified Key Generate verb to generate a key based on the
key-generating key, the processing method, and the parameter supplied.

The control vector of the key-generating key also determines the type of target key
that can be generated.

To use this verb, specify the following:
v The rule_array keyword to select the diversification process.
v The operational key-generating key from which the diversified keys are

generated. The control vector associated with this key restricts the use of this
key to the key generation process. This control vector also restricts the type of
key that can be generated.

v The data and length of data used in the diversification process.
v The generated-key could be an internal token or a skeleton token containing the

desired CV of the generated-key. The generated key CV must be one that is
permitted by the processing method and the key-generating key. The generated
key will be returned in this parameter.

v A key generation method keyword.

This verb generates diversified keys as follows:
v Determines if it can support the process specified in the rule_array.
v Recovers the key-generating key and checks the key-generating key class and

the specified usage of the key-generating key.

Data Key Import (CSNBDKM)

Chapter 8. AES, DES, and HMAC cryptographic keys 183

v Determines that the control vector in the generated-key token is permissible for
the specified processing method.

v Determines that the control vector in the generated-key token is permissible by
the control vector of the key-generating key.

v Determines the required data length from the processing method and the
generated-key CV. Validates the data_length.

v Generates the key appropriate to the specific processing method. Adjusts parity
of the key to odd. Creates the internal token and returns the generated
diversified key.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBDKG.

CSNBDKG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
generating_key_identifier,
data_length,
data,
data_decrypting_key_identifier,
generated_key_identifier)

Parameters
The parameter definitions for CSNBDKG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords that provide
control information to the verb. The processing method is the algorithm used
to create the generated key. The keyword is left-aligned and padded on the
right with blanks. The rule_array keywords are described in Table 47.

Table 47. Keywords for Diversified Key Generate control information

Keyword Description

Processing Method for generating or updating diversified keys (One required)

Diversified Key Generate (CSNBDKG)

184 Common Cryptographic Architecture Application Programmer's Guide

|

Table 47. Keywords for Diversified Key Generate control information (continued)

Keyword Description

CLR8-ENC Specifies that eight bytes of clear (not encrypted) data shall be Triple-DES encrypted with the
generating key (generating_key_identifier) to create a generated key.

The key selected by the generating_key_identifier must specify a KEYGENKY key-type also
with control vector bit 19 set to B'1'.

The key identified by the data_decrypting_key_identifier must identify a null DES
key-token.

The key token identified by the generated_key_identifier variable must contain a control
vector that specifies a single-length key of one of these types: DATA, CIPHER, DECIPHER,
MAC, or MACVER.

TDES-CBC Specifies that 16 bytes of clear (not encrypted) data shall be Triple-DES encrypted with the
generating key to create the generated key. If the generated_key_identifier variable specifies a
double-length key, then 16 bytes of clear data are Triple-DES encrypted in CBC mode with
an initial value of binary zeros.
Note: The EMV Card Personalization specification states that CBC encryption mode should
be used in the diversification process.

The key selected by the generating_key_identifier parameter must specify a DKYGENKY
key-type that has the appropriate control vector usage bits (bits 19 – 22) set for the desired
generated key.

Control vector bits 12 – 14 binary encode the key-derivation sequence level (DKYL7 down to
DKYL0). The final key is derived when bits 12 – 14 are B'000'. The verb verifies the
incremental relationship between the value in the control vectors of the key tokens identified
by the generated_key_identifier parameter and the generating_key_identifier parameter
control vector. In the case when the generated_key_identifier is a null DES token, the
appropriate counter value is placed into the output key-token.

The data_decrypting_key_identifier parameter must identify a null DES key-token.

A key token identified by the generated_key_identifier parameter that is not a null
key-token must contain a control vector that specifies a double-length key having a key type
that is consistent with the specification in bits 19 – 22 of the generating key.

TDES-DEC Specifies that 8 or 16 bytes of clear (not encrypted) data shall be Triple-DES decrypted with
the generating key to create the generated key. If the generated_key_identifier variable
specifies a single-length key, then 8 bytes of clear data are Triple-DES decrypted. If the
generated_key_identifier variable specifies a double-length key, then 16 bytes of clear data
are Triple-DES decrypted in ECB mode.

The key selected by the generating_key_identifier must specify a DKYGENKY key-type that
has the appropriate control vector usage bits (bits 19 – 22) set for the desired generated key.

Control vector bits 12 – 14 binary encode the key-derivation sequence level (DKYL7 down to
DKYL0). The final key is derived when bits 12 – 14 are B'000'. The verb verifies the
incremental relationship between the value in the generated_key_identifier variable
control-vector and the generating_key_identifier variable control-vector. Or in the case when
the generated_key_identifier variable is a null DES key-token, the appropriate counter value
is placed into the output key-token. The data_decrypting_key_identifier parameter must
identify a null DES key-token.

A key token identified by the generated_key_identifier variable that is not a null DES
key-token must contain a control vector that specifies a single-length or double-length key
having a key type consistent with the specification in bits 19 – 22 of the generating key.

Diversified Key Generate (CSNBDKG)

Chapter 8. AES, DES, and HMAC cryptographic keys 185

Table 47. Keywords for Diversified Key Generate control information (continued)

Keyword Description

TDES-ENC Specifies that 16 bytes of clear (not encrypted) data shall be Triple-DES decrypted with the
generating key to create the generated key. If the generated_key_identifier variable
specifies a double-length key, then 16 bytes of clear data are Triple-DES decrypted in CBC
mode with an initial value of binary zeros.
Note: The EMV Card Personalization specification states that CBC encryption mode should
be used in the diversification process.

The key selected by the generated_key_identifier must specify a DKYGENKY key-type
that has the appropriate control vector usage bits (bits 19 – 22) set for the desired generated
key.

Control vector bits 12 – 14 binary encode the key-derivation sequence level (DKYL7 down to
DKYL0). The final key is derived when bits 12 – 14 are B'000'. The verb verifies the
incremental relationship between the value in the generated_key_identifier variable
control-vector and the generating_key_identifier variable control-vector. Or in the case when
the generated_key_identifier variable is a null DES key-token, the appropriate counter value
is placed into the output key-token. The data_decrypting_key_identifier parameter must
identify a null DES key-token.

A key token identified by the generated_key_identifier variable that is not a null DES
key-token must contain a control vector that specifies a single-length or double-length key
having a key type consistent with the specification in bits 19 – 22 of the generating key.

TDES-XOR Specifies that 10 bytes or 18 bytes of clear (not encrypted) data shall be processed as
described in “Working with Europay-Mastercard-Visa Smart cards” on page 492 to create the
generated key. The data variable contains either 8 bytes or 16 bytes of data to be
triple-encrypted to which you append a 2-byte Application Transaction Counter value
(previously received from the smart card). Place the counter value in a string construct with
the high-order counter bit first in the string.

The key selected by the generating_key_identifier parameter must specify a DKYGENKY
key-type at level-0 (bits 12 – 14 B'000') and indicate permission to create one of several key
types in bits 19 – 22:

B'0001' DDATA, to generate a DATA key

B'0010' DMAC, to generate a MAC key

B'0011' DMV, to generate a MACVER key

B'1000' DMKEY, to generate a SECMSG SMKEY (used in secure messaging, key encryption,
see the Secure Messaging for PINs verb)

B'1001' DMPIN, to generate a SECMSG SMPIN (used in secure messaging, PIN encryption,
see the Secure Messaging for PINs verb).

The data_decrypting_key_identifier parameter must identify a null DES key-token.

A key token or key-token record identified by the generated_key_identifier parameter that is
not a null DES key-token. The token must contain a control vector that specifies a key type
conforming to that specified in control-vector bits 19 – 22 for the key-generating key. The
control vector must specify a double-length key.

TDESEMV2 This option supports generation of a session key by the EMV 2000 algorithm (This EMV2000
algorithm uses a branch factor of 2). The generating key must be a level 0 DKYGENKY and
cannot have replicated halves. The session key generated must be double length and the
allowed key types are DATA, DATAC, DATAM, DATAMV, MAC, MACVER, SMPIN, and
SMKEY. Key type must be allowed by the generating key control vector.

Diversified Key Generate (CSNBDKG)

186 Common Cryptographic Architecture Application Programmer's Guide

Table 47. Keywords for Diversified Key Generate control information (continued)

Keyword Description

TDESEMV4 This option supports generation of a session key by the EMV 2000 algorithm (This EMV2000
algorithm uses a branch factor of 4). The generating key must be a level 0 DKYGENKY and
cannot have replicated halves. The session key generated must be double length and the
allowed key types are DATA, DATAC, DATAM, DATAMV, MAC, MACVER, SMPIN, and
SMKEY. Key type must be allowed by the generating key control vector.

Processing Method for updating a diversified key (optional)

SESS-XOR Specifies the VISA method for session key generation, namely that 8 bytes or 16 bytes of data
shall be exclusive-ORed with the clear value of the session key contained in the key token
identified by the generating_key_identifier parameter. If the generating_key_identifier
parameter identifies a single-length key, then 8 bytes of data are exclusive-ORed. If the
generating_key_identifier parameter identifies a double-length key, then 16 bytes of data
are exclusive-ORed.

The key token specified by the generating_key_identifier parameter must be of key type
DATA, DATAC, DATAM, DATAMV, MAC, MACVER.

The data_decrypting_key_identifier parameter must identify a null DES key-token.

On input, the token identified by the generated_key_identifier parameter must identify a
null DES key-token. The control vector contained in the output key token identified by the
generated_key_identifier is the same as the control vector contained in the key token
identified by the generating_key_identifier.

Key-wrapping method (One, optional)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the default
wrapping method. The default wrapping method configuration setting may be changed
using the TKE. This keyword is ignored for AES keys.

WRAP-ECB Specifies to wrap the key using the legacy wrapping method.

WRAP-ENH Specifies to wrap the key using the enhanced wrapping method.

Translation control (Optional). This is valid only with key-wrapping method WRAP-ENH or with USECONFG
when the default wrapping method is WRAP-ENH. This option cannot be used on a key with a control vector
valued to binary zeros.

ENH-ONLY Specifies to restrict the key from being wrapped with the legacy wrapping method once it
has been wrapped with the enhanced wrapping method. Sets bit 56 (ENH-ONLY) of the
control vector to B'1'.

generating_key_identifier

Direction: Input/Output
Type: String

The label or internal token of a key generating key. The type of key-generating
key depends on the processing method.

data_length

Direction: Input
Type: Integer

The length of the data parameter that follows. Length depends on the
processing method and the generated key.

data

Direction: Input
Type: String

Diversified Key Generate (CSNBDKG)

Chapter 8. AES, DES, and HMAC cryptographic keys 187

Data input to the diversified key or session key generation process. Data
depends on the processing method and the generated_key_identifier.

key_identifier

Direction: Input/Output
Type: String

This parameter is currently not used. It must be a 64-byte null token.

generated_key_identifier

Direction: Input/Output
Type: String

The internal token of an operational key, a skeleton token containing the
control vector of the key to be generated, or a null token. A null token can be
supplied if the generated_key_identifier is a DKYGENKY with a CV derived
from the generating_key_identifier. A skeleton token or internal token is
required when generated_key_identifier will not be a DKYGENKY key type
or the processing method is not SESS-XOR. For SESS-XOR, this must be a
null token. On output, this parameter contains the generated key.

Restrictions
The restrictions for CSNBDKG.

None.

Required commands
The CSNBDKG required commands.

This verb requires the following commands to be enabled in the active role based
on the keyword specified for the process rule:

Rule-array keyword Offset Command

CLR8-ENC X'0040' Diversified Key Generate - CLR8-ENC

SESS-XOR X'0043' Diversified Key Generate - SESS-XOR

TDES-DEC X'0042' Diversified Key Generate - TDES-DEC

TDES-ENC X'0041' Diversified Key Generate - TDES-ENC

TDES-XOR X'0045' Diversified Key Generate - TDES-XOR

TDESEMV2 or
TDESEMV4

X'0046' Diversified Key Generate -
TDESEMV2/TDESEMV4

WRAP-ECB or
WRAP-ENH and
default key-wrapping
method setting does
not match keyword

X'013D' Diversified Key Generate - Allow
wrapping override keywords

When a key-generating key of key type DKYGENKY is specified with control
vector bits (19 - 22) of B'1111', the Diversified Key Generate - DKYGENKY - DALL
command (offset X'0290') must also be enabled in the active role.

Note: A role with offset X'0290' enabled can also use the PIN Change/Unblock
verb with a DALL key.

Diversified Key Generate (CSNBDKG)

188 Common Cryptographic Architecture Application Programmer's Guide

When using the TDES-ENC or TDES-DEC modes, you can specifically enable
generation of a single-length key or a double-length key with equal key-halves (an
effective single-length key) by enabling the Diversified Key Generate - Single
length or same halves command (offset X'0044').

Usage notes
Usage notes for CSNBDKG.

Refer to Chapter 21, “Control vectors and changing control vectors with the
Control Vector Translate verb,” on page 989 for information on the control vector
bits for the DKG key generating key.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDKGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDKGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] generating_key_identifier,
hikmNativeNumber data_length,
byte[] data,
byte[] data_decrypting_key_identifier,
byte[] generated_key_identifier);

Diversified Key Generate2 (CSNBDKG2)
The Diversified Key Generate2 service generates an AES key based on a function
of a key-generating key, the process rule, and data that you supply.

To use this service, specify:
v the rule array keyword to select the diversification process
v the operational AES key-generating key from which the diversified keys are

generated:
– Key usage field 1 determines the type of key that is generated and restricts

the use of this key to the key-diversification process.
– Key usage field 2 contains a flag to determine how key usage fields 3 through

6 control the key usage fields of the generated key.
- When the flag is on, the key usage fields of the DKYGENKY must be equal

to the key usage fields of the generated key (KUF-MBE, meaning: key usage
fields must be equal).

- When the flag is off, the key usage fields of the DKYGENKY limit the
values of the key usage fields of the generated key (KUF-MBP, meaning:
key usage fields must be permitted).

For the service to be valid, the generated key cannot have a usage that is not
enabled in the DKYGENKY key. The UDX-ONLY bit is always treated as must
be equal.

– Key usage fields 3 through 6 in the key generating key indicate the key usage
attributes for the key to be generated.

Diversified Key Generate (CSNBDKG)

Chapter 8. AES, DES, and HMAC cryptographic keys 189

Note: The only exception to this rule is when the type of key to diversify is
D-ALL.

v the data and length of data used in the diversification process
v the AES key token with a suitable key usage field for receiving the diversified

key.

Format
The format of CSNBDKG2.

CSNBDKG2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
generating_key_identifier_length,
generating_key_identifier,
derivation_data_length,
derivation_data,
reserved1_length,
reserved1,
reserved2_length,
reserved2,
generated_key_identifier1_length,
generated_key_identifier1,
generated_key_identifier2_length,
generated_key_identifier2)

Parameters
The parameter definitions for CSNBDKG2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1 or 2.

rule_array

Direction: Input
Type: String array

The keyword that provides control information to the verb. The only
rule_array keyword is described in Table 48.

Table 48. Keyword for Diversified Key Generate2 control information

Keyword Description

Diversification Process (One required)

Diversified Key Generate2 (CSNBDKG2)

190 Common Cryptographic Architecture Application Programmer's Guide

Table 48. Keyword for Diversified Key Generate2 control information (continued)

Keyword Description

KDFFM-DK
(Release 4.4 or
later)

Specifies to use the DK version of Key Derivation Function (KDF) in Feedback Mode (NIST SP
800-108), as specified in DK Kryptographie Teil 1: Empfohlene kryptographische Algorithmen, to
generate a bank specific Issuer Master Key. The generated Issuer Master Key (keying material) can
be used to derive an ICC master key.

This method uses AES CMAC to encipher 16 - 40 bytes of derivation data with the k-bit
diversified key generating key (banking association specific master key) to produce a k-bit
generated Bank specific Issuer Master Key, where k = 128, 192, or 256.

MK-OPTC
(Release 4.4 or
later)

Specifies to use the EMV Master Key Derivation Option C, as specified in EMV Integrated Circuit
Card Specifications for Payments Systems, to generate an ICC master key. The generated ICC master
key (keying material) can be used for Application Cryptogram generation or verification, issuer
authentication, and secure messaging.

This method uses AES in ECB mode to encipher the 16 bytes of derivation data with the k-bit
diversified key generating key (Issuer Master Key) to produce a k-bit generated ICC master key,
where k = 128, 192, or 256.

SESS-ENC A session key is created by enciphering a 16-byte diversification value with the k-bit AES
key-generating key to produce a k-bit AES session key using the AES algorithm in ECB mode,
where k is 128, 192 or 256 bits.

Bit length of generated key (One, optional). Release 4.4 or later. Valid only with the KDFFM-DK keyword. Default is
to use the bit length of the generating key as the bit length of the generated key.

KLEN128 Specifies the bit length of the generated key to be 128.

KLEN192 Specifies the bit length of the generated key to be 192, allowed if and only if the bit length of the
generating key is greater than or equal to 192. See “Required commands” on page 194.

KLEN256 Specifies the bit length of the generated key to be 256, allowed if and only if the bit length of the
generating key is 256. See “Required commands” on page 194.

generating_key_identifier_length

Direction: Input
Type: Integer

Length of the generating_key_identifier parameter in bytes. If the
generating_key_identifier contains a label, the value must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

generating_key_identifier

Direction: Input/Output
Type: String

The identifier of the key-generating key. The key identifier is an operational
token or the key label of an operational token in key storage. The key
algorithm of this key must be AES and the key type must be DKYGENKY. The
key usage field indicates the key type of the generated key.

If SESS-ENC is specified, the clear length of the generated key is equal to the
clear length of the generating key. Also, beginning with Release 4.4, the
sequence level can be set to DKYL0, DKYL1, or DKYL2 in the key usage field
2.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

Diversified Key Generate2 (CSNBDKG2)

Chapter 8. AES, DES, and HMAC cryptographic keys 191

If the rule_array parameter specifies a diversification process of KDFFM-DK,
the key-derivation sequence level of the generating key must be DKYL2.
Otherwise, if KDFFM-DK is not specified, any sequence level is allowed for the
generating key.

derivation_data_length

Direction: Input
Type: Integer

Length of the derivation_data parameter in bytes. The value must be in the
range 16 - 40 for the diversification process keyword KDFFM-DK, otherwise
the value must be 16.

derivation_data

Direction: Input
Type: String

The derivation data to be used in the key generation process. This data is often
referred to as the diversification data. For SESS-ENC, the derivation data is 16
bytes long. Note that if SESS-ENC is specified and the length of the key
generating key is 192 bits or 256 bits, the data is manipulated in conformance
with the EMV Common Session Key Derivation Option.

reserved1_length

Direction: Input
Type: Integer

Length of the reserved1 parameter in bytes. The value must be 0.

reserved1

Direction: Input
Type: String

This parameter is ignored.

reserved2_length

Direction: Input
Type: Integer

Length of the reserved2 parameter in bytes. The value must be 0.

reserved2

Direction: Input
Type: String

This parameter is ignored.

generated_key_identifier1_length

Direction: Input/Output
Type: Integer

On input, this parameter specifies the length in bytes of the buffer for the
generated_key_identifier1 parameter. The maximum value is 725 bytes.

On output, the parameter holds the actual length in bytes of the
generated_key_identifier1 parameter.

generated_key_identifier1

Diversified Key Generate2 (CSNBDKG2)

192 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input/Output
Type: String

A pointer to a string variable containing an internal variable-length symmetric
key-token or the key label of such a record in AES key-storage.

On input, identify a null key token or a skeleton key token that specifies the
desired attributes of the key on output. The key token identified by
generating_key_identifier1 determines whether on input the
generating_key_identifier1 can identify a null key token or a skeleton key
token. See Table 49:

Table 49. Generating and generated key tokens

Iunpt generating key token Iunpt generated key token Output generated key token

DKYGENKY, DKYL0, type of
key to diversify D-ALL

Null AES key token not
allowed; AES skeleton key
token required.

Key type same as skeleton;
diversified key final.

DKYGENKY, DKYL0, type of
key to diversify not D-ALL

Either null AES key token or
AES skeleton key token
required.

Key type determined by
input generated key token
type of key to diversify; if
null key token on input,
output key token will have
attributes based on the
related generated key usage
fields of the input generating
key token, otherwise the
output key token has
attributes of the input
skeleton key token.

DKYGENKY, DKYL1, any
type of key to diversify

Null AES key token required;
AES skeleton key token not
allowed.

Same as input generating
key token except DKYL0 and
with new level of diversified
key.

DKYGENKY, DKYL2, any
type of key to diversify

Null AES key token required;
AES skeleton key token not
allowed.

Same as input generating
key token except DKYL1 and
with new level of diversified
key.

Note:

1. If the supplied generated key-token contains a key, the key value and length are
ignored and overwritten.

2. The key type must match what the generating key indicates can be created in the key
generating key usage field at offset 45.

3. The key usage fields in the generated key must meet the requirements (KUF must be
equal (KUF-MBE) or KUF must be permissible (KUF-MBP)) of the corresponding key
usage fields in the generating key unless D-ALL is specified in the generating key. A
flag bit in the DKYGENKY key-usage field 2 determines whether the key-usage field
level of control is KUF-MBE or KUF-MBP.

4. If authorized by access control, D-ALL permits the derivation of several different keys.
See “Required commands” on page 194.

generated_key_identifier2_length

Direction: Input
Type: Integer

Length of the generated_key_identifier2 parameter in bytes. The value must
be 0.

Diversified Key Generate2 (CSNBDKG2)

Chapter 8. AES, DES, and HMAC cryptographic keys 193

generated_key_identifier2

Direction: Input/Output
Type: String

This parameter is ignored.

Restrictions
The restrictions for CSNBDKG2.

None.

Required commands
The CSNBDKG2 required commands.

The Diversified Key Generate2 verb requires the following commands to be
enabled in the active role:

Rule-array keyword Offset Command

KDFFM-DK (Release 4.4 or
later)

X'02D3' Diversified Key Generate2 - KDFFM-DK

KLEN192 and KLEN256
(Release 4.4 or later)

X'02D4' Allow DKG2 Generated Key Length Option
with KDFFM-DK Keyword

MK-OPTC (Release 4.4 or
later)

X'02D2' Diversified Key Generate2 - MK-OPTC

SESS-ENC X'02CC' Diversified Key Generate2 - AES EMV1
SESS

An additional command is required when the key usage fields of the key token
identified by the generating_key_identifier parameter specify a type of key to
diversify of D-ALL (any type of key allowed). In this case, the verb requires the
Diversified Key Generate2 - DALL command (offset X'02CD') to be enabled in the
active role.

Usage notes
Usage notes for CSNBDKG2.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDKG2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDKG2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber generating_key_identifier_length,
byte[] generating_key_identifier,

Diversified Key Generate2 (CSNBDKG2)

194 Common Cryptographic Architecture Application Programmer's Guide

hikmNativeNumber derivation_data_length,
byte[] derivation_data,
hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2,
hikmNativeNumber generated_key_identifier1_length,
byte[] generated_key_identifier1,
hikmNativeNumber generated_key_identifier2_length,
byte[] generated_key_identifier2);

EC Diffie-Hellman (CSNDEDH)
Use the EC Diffie-Hellman verb to create symmetric key material from a pair of
Elliptic Curve Cryptography (ECC) keys using the Elliptic Curve Diffie-Hellman
(ECDH) protocol and "Z" - The "secret" material output from EC Diffie-Hellman
process.

For more information, see “EC Diffie-Hellman key agreement models” on page 52.

ECDH is a key-agreement protocol that allows two parties, each having an elliptic
curve public-private key pair, to establish a shared secret over an insecure channel.
This shared secret is used to derive another symmetric key. The ECDH protocol is
a variant of the Diffie-Hellman protocol using elliptic curve cryptography. ECDH
derives a shared secret value from a secret key owned by an Entity A and a public
key owned by an Entity B, when the keys share the same elliptic curve domain
parameters. Entity A can be either the initiator of a key-agreement transaction, or
the responder in a scheme. If two entities both correctly perform the same
operations with corresponding keys as inputs, the same shared secret value is
produced.

Both parties must create an ECC public-private key pair. See “PKA Key Token
Build (CSNDPKB)” on page 699 and “PKA Key Generate (CSNDPKG)” on page
689. A key can be internal or external, as well as encrypted or in the clear. Both
keys must have the same elliptic curve domain parameters (curve type and key
size):
v Brainpool (key size 160, 192, 224, 256, 320, 384, or 512)
v Prime (key size 192, 224, 256, 384, or 521)

In addition to having the same elliptic curve domain parameters, the keys must
have their key-usage field set to permit key establishment (either KEY-MGMT or
KM-ONLY). See “ECC key token” on page 874.

To use this verb, specify the following:
v One to six rule-array keywords:

– A required key-agreement keyword
– An optional transport key-type (required if output_KEK_key_identifier is a

label) that identifies which key-storage dataset contains the output KEK
key-token

– An optional output key-type (required if output_key_identifier is a label) that
identifies which key-storage dataset contains the output key-token

– When the output is a DES key-token, an optional key-wrapping method and
an optional translation control keyword

– An optional hash type for rule-array keyword DERIV02.

Diversified Key Generate2 (CSNBDKG2)

Chapter 8. AES, DES, and HMAC cryptographic keys 195

v The internal or external ECC key-token containing the private key
(public-private key pair).
If the private key is in an external key-token and is not in the clear, specify the
internal KEK that was used to wrap the private key. Otherwise, specify a private
KEK key-length of 0.

v An internal or external ECC key-token containing the public key (public key
only or public-private key pair) of the other party.
If the public key is in a key token that contains a public-private key pair, only
the public-key portion is used. No attempt is made to decrypt the private key.

v Party information data in parameter party_info:
– When rule-array keyword DERIV01 is given: From 8 - 64 bytes, specify the

party information data of the initiator and the responder entities, according to
NIST SP800-56A Section 5.8

– When rule-array keyword DERIV02 is given: From 0 - 256 bytes, specify party
information data, according to section 5.6.3 of ANS X9.63-2011

v The number of bits of key material, from 64 - 256, to derive and place in the
provided output key-token

v The length in bytes of the buffer for the output key-identifier
v An internal or external skeleton key-token to be used as input for the output

key-token
The skeleton key-token must be an AES key or a DES key, as shown in the
following table:

Table 50. CSNDEDH skeleton key-tokens

Algorithm Token version number Key type (see note)

AES X'04' (legacy fixed-length
symmetric key-token)

DATA

X'05' (variable-length
symmetric key-token)

v CIPHER

Both parties can provide any combination of
encryption or decryption for key-usage field.

v EXPORTER or IMPORTER

Both parties can provide any combination of
EXPORTER or IMPORTER.

DES X'00', X'01', X'03' (legacy
fixed-length symmetric
key-token)

v CIPHER, DECIPHER, ENCIPHER

Both parties can provide any combination of
Encipher or Decipher key-usage bits in the
control vector.

v CIPHER XI, CIPHERXL, CIPHERXO

Both parties can provide any combination of
Encipher or Decipher key-usage bits in the
control vector.

v EXPORTER or IMPORTER

Both parties can provide any combination of
EXPORT or IMPORT key-usage bits in the
control vector.

Note:

1. Except as otherwise noted, both parties must provide identical skeleton key tokens for
the output key in order to derive identical keys. For legacy skeletons, control vector
parity bits are not used in the key derivation process.

2. Control vector bits and key-usage fields are not used in the key derivation process
when rule-array keyword DERIV02 is specified.

EC Diffie-Hellman (CSNDEDH)

196 Common Cryptographic Architecture Application Programmer's Guide

If the skeleton key-token is an external key-token, specify the internal KEK to be
used to wrap the output key-token. Otherwise, specify an output KEK length of
0.
If the output_key_identifier specifies a DES key-token, then the
output_KEK_key_token must identify a legacy DES KEK. Otherwise it must
identify a variable-length symmetric AES KEK key-token.

Table 51 provides the format for the concatenation string from which the key is
derived when DERIV01 is specified in the rule-array:

Table 51. CSNDEDH concatenation string format for DERIV01

Offset (bytes) Length (bytes) Value Comments

0 4 Initialized to
X'00000001'

Counter (four-byte unsigned
integer)

4 xx Z A shared secret bit string or
octet string

4 + xx 1
Value Meaning

X'03' DES

X'04' AES

Algorithm identifier

5 + xx 1 Passed
party_info_length
variable

Party information length
passed by caller, converted
to a one-byte unsigned
integer

6 + xx party_info_length String identified by
party_info
parameter

Parties information

6 + xx +
party_info_length

2 Supplied public
information length,
zz

Two-byte unsigned integer
specifying length of supplied
public information

8 + xx +
party_info_length

zz Supplied public
information

Token data extracted from
the skeleton key token
identified by the
output_key_identifier
parameter (refer to Table 52
on page 198.

Note: All integers are in big-endian format.

EC Diffie-Hellman (CSNDEDH)

Chapter 8. AES, DES, and HMAC cryptographic keys 197

Table 52. DERIV01 supplied public information

Algorithm
Key-token
version Key type

Supplied public
information
length, zz (bytes)

Supplied public
information

AES X'04' (legacy
fixed-length
symmetric
key-token)

DATA 8 Control vector (CV) from
key token beginning at
offset 48 for zz bytes. If flag
byte indicates no CV
present, information valued
to binary zeros.

X'05'
(variable-
length
symmetric
key-token)

CIPHER 1 + (key usage
fields count * 2) +
1 + (key
management fields
count * 2)

Key usage and key
management information
from key token beginning at
offset 44 for zz bytes, with
ENCRYPT and DECRYPT
bits (B'11xx xxxx') of KUF 1
high-order byte masked off
to maintain compatibility
between keys with different
key usage for these bits

EXPORTER
or
IMPORTER

1 + (key usage
fields count * 2) +
1 + (key
management fields
count * 2)

Key usage and key
management information
from key token beginning at
offset 44 for zz bytes, with
no bits masked off

DES X'00', X'01',
X'03' (legacy
fixed-length
symmetric
key token)

CIPHER,
DECIPHER,
or
ENCIPHER

8 for single-length
keys, 16 for
double-length keys

CV from key token
beginning at offset 32 for zz
bytes, with CV bits 18, 19,
and 23 (X'xx11 xxx1')
masked off (in both CV
halves if double-length key)
to maintain compatibility
between keys with different
Encipher, Decipher, and
parity bit values.

EXPORTER
or
IMPORTER

16 CV from key token
beginning at offset 32 for zz
bytes, with CV bits 9, 14,
and 15 (X'x1xx xx11')
masked off (in both CV
halves) to maintain
compatibility between
different KEK key types and
parity bit values.

Table 53 provides the format for the concatenation string from which the key is
derived when DERIV02 is specified in the rule-array:

Table 53. CSNDEDH concatenation string format for DERIV02

Offset
(bytes) Length (bytes) Value Comments

0 xx Z A shared secret bit string or octet
string

xx 4 Initialized to
X'00000001'

Counter (four-byte unsigned
integer)

EC Diffie-Hellman (CSNDEDH)

198 Common Cryptographic Architecture Application Programmer's Guide

Table 53. CSNDEDH concatenation string format for DERIV02 (continued)

Offset
(bytes) Length (bytes) Value Comments

xx + 4 yy String identified by
party_info parameter

Parties information; length not an
explicit field in concatenation
string

Note: All integers are in big-endian format.

The output from this verb can be one of the following formats:
v Internal CCA Token (DES or AES): AES keys are in the variable-length

symmetric key token format. DES keys are in the DES external key token format.
v External CCA key token (DES or AES): AES keys are in the variable-length

symmetric key token format. DES keys are in the DES external key token format.
v "Z" – The "secret" material output from EC Diffie-Hellman process.

The PASSTHRU service is provided as a convenience to users who wish to
implement their own key completion process in host application software. While
the "Z" derivation process is not reversible (the ECC keys cannot be discovered by
obtaining "Z") there is a level of security compromise associated with returning the
clear "Z" to the application. Future derivations for CCA key tokens using ECC keys
previously used in PASSTHRU must be considered to have lower security, and
using the same ECC keys for PASSTHRU as for DERIV01 is strongly discouraged.
It should also be noted that since "Z" is the secret material, returning it in the clear
to the host application reduces security level of the "Z" from the HSM level to the
host application level, and keys made from this material should not be regarded as
having any HSM protection.

For more information, see “EC Diffie-Hellman key agreement models” on page 52.

EC Diffie-Hellman (CSNDEDH)

Chapter 8. AES, DES, and HMAC cryptographic keys 199

Format
The format of CSNDEDH.

CSNDEDH(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
private_key_identifier_length,
private_key_identifier,
private_KEK_key_identifier_length,
private_KEK_key_identifier,
public_key_identifier_length,
public_key_identifier,
chaining_vector_length,
chaining_vector,
party_info_length,
party_info,
key_bit_length,
reserved_1_length,
reserved_1,
reserved_2_length,
reserved_2,
reserved_3_length,
reserved_3,
reserved_4_length,
reserved_4,
reserved_5_length,
reserved_5,
output_KEK_key_identifier_length,
output_KEK_key_identifier,
output_key_identifier_length,
output_key_identifier)

Parameters
The parameter definitions for CSNDEDH.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. Valid values are 1 - 6.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are 8 bytes in length and must be left-aligned and padded on the right with
space characters. The rule_array keywords for this verb are shown below:

EC Diffie-Hellman (CSNDEDH)

200 Common Cryptographic Architecture Application Programmer's Guide

Table 54. Keywords for EC Diffie-Hellman control information

Keyword Meaning

Key agreement (one required). Initiator and responder must have a sufficient level of trust
such that they each derive only one element of any key pair. DERIV01 is designed for
CCA-to-CCA interaction.

DERIV01 Use input skeleton key-token and derive one element of any key pair.
Denotes ANS X9.63 protocol static unified model key-agreement
scheme (see NIST SP800-56A).

DERIV02 Use input skeleton key-token and derive one element of any key pair.
Denotes key derivation function ANS-X9.63-KDF (refer to ANS
X9.63-2011 section 5.6.3).

PASSTHRU Skip key derivation step and return raw Z material.
Note: This keyword is available only for Linux on Z.

Transport key-type (one, optional; one required if output_KEK_key_identifier is a label)

OKEK-AES The output_KEK_key_identifier represents an AES key-token.

OKEK-DES The output_KEK_key_identifier represents a DES key-token.

Output key-type (one, optional; required if output_key_identifier is a label)

KEY-AES The outbound key-encrypting key represents an AES skeleton
key-token.

KEY-DES The outbound key-encrypting key represents a DES skeleton key-token.

Key-wrapping method (one, optional). DES only.

USECONFG This is the default. Specifies to wrap the key using the configuration
setting for the default wrapping method. The default wrapping method
configuration setting may be changed using the TKE. This keyword is
ignored for AES keys.

WRAP-ECB Specifies to wrap the key using the legacy wrapping method. This
keyword is ignored for AES keys.

WRAP-ENH Specifies to wrap the key using the enhanced wrapping method. Valid
only for DES keys.

Translation control (optional). This is valid only with key-wrapping method WRAP-ENH or
with USECONFG when the default wrapping method is WRAP-ENH. This option cannot
be used on a key with a control vector valued to binary zeros.

ENH-ONLY Specifies to restrict the key from being wrapped with the legacy
wrapping method after it has been wrapped with the enhanced
wrapping method. Sets bit 56 (ENH-ONLY) of the control vector to B'1'.

Hash method (one, optional). Only valid with DERIV02 key agreement keyword.

SHA-224 Specifies the use of the SHA-224 method.

SHA-256 Specifies the use of the SHA-256 method. This is the default.

SHA-384 Specifies the use of the SHA-384 method.

SHA-512 Specifies the use of the SHA-512 method.

private_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes in the
private_key_identifier variable.

private_key_identifier

EC Diffie-Hellman (CSNDEDH)

Chapter 8. AES, DES, and HMAC cryptographic keys 201

Direction: Input
Type: String

A pointer to a string variable containing an internal or external ECC key-token,
or a key label identifying a PKA key-storage record for such a token. The ECC
key-token will contain a public-private key pair. A clear private-key is only
allowed when rule-array keyword DERIV01 is specified.

The ECC curve type and size must be the same as the type (Prime or
Brainpool) and size of the ECC key-token specified by the
public_key_identifier parameter. The key-usage flag of the ECC key-token
identified by the private_key_identifier parameter must permit key
establishment (either KEY-MGMT or KM-ONLY).

For rule-array keyword DERIV02, the ECC key-token identified by the
private_key_identifier parameter must contain an ECC key-derivation
information section (section identifier X'23'). Refer to Table 254 on page 879.

private_KEK_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes in the
private_KEK_key_identifier variable. The maximum value is 900. If the
private_key_identifier contains an internal ECC token, this value must be a zero.

private_KEK_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an internal KEK key-token, or the key
label of such a record in AES key storage. The KEK key-token must be present
if the key token specified by the private_key_identifier contains an external
encrypted ECC key-token.

public_key_identifier_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the
public_key_identifier variable.

Note that even though this variable is not currently updated on output, it is
reserved as an output field for future use.

public_key_identifier

Direction: Input/Output
Type: String

A pointer to a string variable containing an ECC key-token, or a key label
identifying an AES key-storage record for such a key token. The ECC curve
type and size must be the same as the type and size of the ECC key-token
specified by the private_key_identifier parameter. If the public_key_identifier
parameter identifies a key token containing a public-private key pair, no
attempt to decrypt the private part is made.

Note that even though this variable is not currently updated on output, it is
reserved as an output field for future use.

EC Diffie-Hellman (CSNDEDH)

202 Common Cryptographic Architecture Application Programmer's Guide

chaining_vector_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the
chaining_vector variable. This field is currently not used. The value must be 0.

chaining_vector

Direction: Input/Output
Type: String

A pointer to a string variable containing a buffer that is currently reserved.

party_info_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the
party_info variable. The value must be 8 - 64 for DERIV01. For DERIV02, the
value must be 0 - 256.

party_info

Direction: Input/Output
Type: String

A pointer to a string variable. For DERIV01, the string contains the combined
entity identifier information, including nonce. This information must contain
data of both entities according to NIST SP800-56A Section 5.8. For DERIV02,
the string contains optional shared data according to ANS X9.63-2011 section
5.6.3.

key_bit_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bits of key material
to derive and place in the provided output key-token. The value must be 0 if
the PASSTHRU rule-array keyword is specified. The value must be 64 - 256.

reserved_1_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the
reserved_1 variable. The value must be 0.

reserved_1

Direction: Input/Output
Type: String

A pointer to a string variable that is currently not used.

reserved_2_length

Direction: Input/Output
Type: Integer

EC Diffie-Hellman (CSNDEDH)

Chapter 8. AES, DES, and HMAC cryptographic keys 203

A pointer to an integer variable containing the number of bytes in the
reserved_2 variable. The value must be 0.

reserved_2

Direction: Input/Output
Type: String

A pointer to a string variable that is currently not used.

reserved_3_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the
reserved_3 variable. The value must be 0.

reserved_3

Direction: Input/Output
Type: String

A pointer to a string variable that is currently not used.

reserved_4_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the
reserved_4 variable. The value must be 0.

reserved_4

Direction: Input/Output
Type: String

A pointer to a string variable that is currently not used.

reserved_5_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the
reserved_5 variable. The value must be 0.

reserved_5

Direction: Input/Output
Type: String

A pointer to a string variable that is currently not used.

output_KEK_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes in the
output_KEK_key_identifier variable. The maximum value is 900. The
output_KEK_key_identifier_length must be zero if output_key_identifier will
contain an internal token or if the PASSTHRU rule-array keyword was
specified.

EC Diffie-Hellman (CSNDEDH)

204 Common Cryptographic Architecture Application Programmer's Guide

output_KEK_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an internal KEK key-token, or a key
label identifying a key-storage record for such a token. This parameter must
identify a KEK key-token whenever the output_key_identifier specifies an
external key-token. If the output_key_identifier specifies a DES key-token, then
the output_KEK_key_identifier must identify a legacy DES KEK, otherwise it
must identify a variable-length symmetric AES KEK key-token.

If this variable contains a key label, specify a transport key-type rule-array
keyword (OKEK-DES or OKEK-AES) to identify which key-storage dataset
contains the key token. If a transport key-type keyword is specified, it must
match the type of key identified by this parameter, whether the key is in key
storage or not.

If the output_KEK_key_identifier specifies a legacy DES KEK, then the key token
must contain either an EXPORTER control vector with bit 21 on (EXPORT) or
an IMPORTER control vector with bit 21 set to B'1' (IMPORT). The XLATE bit
(bit 22) is not checked. Similarly, if the output_KEK_key_identifier identifies a
variable-length symmetric AES KEK, then the KEK must be have a key type of
EXPORTER or IMPORTER. Key-usage field 1 of the KEK must be set so that
the key can be used for EXPORT or IMPORT. In addition, key-usage field 4
must be set so that the key can wrap DERIVATION class keys.

output_key_identifier_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the
output_key_identifier variable. On input, the output_key_identifier length variable
must be set to the total size of the buffer pointed to by the output key identifier
parameter. On output, this variable contains the number of bytes of data
returned by the verb in the output_key_identifier variable. The maximum
allowed value is 900 bytes.

output_key_identifier

Direction: Input/Output
Type: String

A pointer to a string variable. On input, it must contain an internal or an
external skeleton key-token, or a key label identifying a key-storage record for
such a token. The skeleton key-token must be one of the following:

DES (legacy DES key-token)

v CIPHER, DECIPHER, or ENCIPHER

v EXPORTER or IMPORTER

AES

v DATA (legacy AES key-token)
v CIPHER (variable-length symmetric key-token) with key-usage field

set so that the key can be used for decryption, encryption, or both)
v EXPORTER or IMPORTER (variable-length symmetric key-token)

On successful completion, this variable contains either:

EC Diffie-Hellman (CSNDEDH)

Chapter 8. AES, DES, and HMAC cryptographic keys 205

v An updated key-token that contains the generated symmetric key material,
or the key label of the key-token that has been updated in key storage.

v "Z" data (in the clear) if the PASSTHRU rule-array keyword was specified.

If this variable contains an external key-token on input, then the
output_KEK_key_identifier is used to securely encrypt it for output. If this
variable contains a key label, specify an output key-type rule-array keyword
(KEY-DES or KEY-AES) to identify which key-storage dataset contains the key
token. If an output key-type keyword is specified, it must match the type of
key identified by this parameter, whether the key is in key storage or not.

If this variable identifies an external DES key-token, then the
output_KEK_key_identifier must identify a DES KEK key-token. If this variable is
present and identifies an external key-token other than a DES key-token, then
the output_KEK_key_identifier must identify an AES KEK key-token.

Restrictions
The restrictions for CSNDEDH.
v The NIST security strength requirements are enforced, with respect to ECC curve

type (input) and derived key-length. See “Required commands” about how you
can override this enforcement.
Table 55 lists the valid key bit lengths and the minimum curve size required for
each of the supported output key types:

Table 55. Valid key bit lengths and minimum curve size

Output key ID type Valid key bit lengths Minimum curve required

DES 64 P160

128 P160

192 P224

AES 128 P256

192 P384

256 P512

v A clear private key is only allowed when rule-array keyword DERIV01 is
specified.

Required commands
The CSNDEDH required commands.

This table describes access control points that the EC Diffie-Hellman verb must
have enabled in the active role under certain circumstances.

Command Offset When required

ECC Diffie-Hellmann X'0360' When using the EC Diffie-Hellman verb

ECC Diffie-Hellman - Allow
DERIV02

X'035F' When using the DERIV02 rule

ECC Diffie-Hellman - Allow
key wrap override

X'0362' If the output_key_identifier parameter
identifies a DES key-token, and the wrapping
method specified is WRAP-ECB or
WRAP-ENH.

EC Diffie-Hellman (CSNDEDH)

206 Common Cryptographic Architecture Application Programmer's Guide

Command Offset When required

Prohibit weak wrapping -
Transport keys

This command affects
multiple verbs. See
Chapter 24, “Access control
points and verbs,” on page
1047.

X'0328' To disable the wrapping of a stronger key with
a weaker transport key

Warn when weak wrap -
Transport keys

The command Prohibit weak
wrapping - Transport keys
(offset X'0328') overrides this
command.

X'032C' To receive a warning against the wrapping of a
stronger key with a weaker transport key

ECC Diffie-Hellman -
Prohibit weak key generate

X'036F' To disable a weaker key from being used to
generate a stronger key

ECC Diffie-Hellman - Allow
PASSTHRU

X'0361' When specifying the PASSTHRU rule-array
keyword.

Depending on curve type, each length of p in bits contained in the ECC
private-key section and the ECC public-key section must have the following
command enabled in the active role:

Curve type
Length of prime p in
bits Offset Command

Brainpool 160 (X'00A0') X'0368' ECC Diffie-Hellmann - Allow BP
Curve 160

192 (X'00C0') X'0369' ECC Diffie-Hellmann - Allow BP
Curve 192

224 (X'00E0') X'036A' ECC Diffie-Hellmann - Allow BP
Curve 224

256 (X'0100') X'036B' ECC Diffie-Hellmann - Allow BP
Curve 256

320 (X'0140') X'036C' ECC Diffie-Hellmann - Allow BP
Curve 320

384 (X'0180') X'036D' ECC Diffie-Hellmann - Allow BP
Curve 384

512 (X'0200') X'036E' ECC Diffie-Hellmann - Allow BP
Curve 512

Prime 192 (X'00C0') X'0363' ECC Diffie-Hellmann - Allow
Prime Curve 192

224 (X'00E0') X'0364' ECC Diffie-Hellmann - Allow
Prime Curve 224

256 (X'0100') X'0365' ECC Diffie-Hellmann - Allow
Prime Curve 256

384 (X'0180') X'0366' ECC Diffie-Hellmann - Allow
Prime Curve 384

521 (X'0209') X'0367' ECC Diffie-Hellmann - Allow
Prime Curve 521

EC Diffie-Hellman (CSNDEDH)

Chapter 8. AES, DES, and HMAC cryptographic keys 207

To disable the wrapping of a key with a weaker master key, the Prohibit weak
wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

To receive a warning when wrapping a key with a weaker master key, enable the
Warn when weak wrap - Master keys command (offset X'0332') in the active role.
The Prohibit weak wrapping - Master keys command overrides this command.

Usage notes
Usage notes for CSNDEDH.

The PASSTHRU service is provided as a convenience to users who wish to
implement their own key completion process in host application software. While
the "Z" derivation process is not reversible (the ECC keys cannot be discovered by
obtaining "Z") there is a level of security compromise associated with returning the
clear "Z" to the application. Future derivations for CCA key tokens using ECC keys
previously used in PASSTHRU must be considered to have lower security, and
using the same ECC keys for PASSTHRU as for DERIV01 is strongly discouraged.
It should also be noted that since "Z" is the secret material, returning it in the clear
to the host application reduces security level of the "Z" from the HSM level to the
host application level, and keys made from this material should not be regarded as
having any HSM protection.

For more information, see “EC Diffie-Hellman key agreement models” on page 52.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDEDHJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDEDHJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber private_key_identifier_length,
byte[] private_key_identifier,
hikmNativeNumber private_KEK_key_identifier_length,
byte[] private_KEK_key_identifier,
hikmNativeNumber public_key_identifier_length,
byte[] public_key_identifier,
hikmNativeNumber chaining_vector_length,
byte[] chaining_vector,
hikmNativeNumber party_info_length,
byte[] party_info,
hikmNativeNumber key_bit_length,
hikmNativeNumber reserved_1_length,
byte[] reserved_1,
hikmNativeNumber reserved_2_length,
byte[] reserved_2,
hikmNativeNumber reserved_3_length,
byte[] reserved_3,
hikmNativeNumber reserved_4_length,
byte[] reserved_4,
hikmNativeNumber reserved_5_length,
byte[] reserved_5,

EC Diffie-Hellman (CSNDEDH)

208 Common Cryptographic Architecture Application Programmer's Guide

hikmNativeNumber output_KEK_key_identifier_length,
byte[] output_KEK_key_identifier,
hikmNativeNumber output_key_identifier_length,
byte[] output_key_identifier);

Key Export (CSNBKEX)
Use the Key Export verb to re-encipher any type of key (except an IMP-PKA) from
encryption under a master key variant to encryption under the same variant of an
exporter key-encrypting key. The format of .

The re-enciphered key can be exported to another system.

If the key to be exported is a DATA key, the Key Export verb generates a key
token with the same key length as the input token's key.

This verb supports the no-export bit that the Prohibit Export verb sets in the
internal token.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBKEX.

CSNBKEX(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
source_key_identifier,
exporter_key_identifier,
target_key_identifier)

Parameters
The parameter definitions for CSNBKEX.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_type

Direction: Input
Type: String

The parameter is an 8-byte field that contains either a key type value or the
keyword TOKEN. The keyword is left-aligned and padded on the right with
blanks.

If the key type is TOKEN, CCA determines the key type from the control
vector (CV) field in the internal key token provided in the source_key_identifier
parameter.

Key type values for the Key Export verb are:
CIPHER DATAMV MAC
CIPHERXI DECIPHER MACVER
CIPHERXL ENCIPHER OKEYXLAT

EC Diffie-Hellman (CSNDEDH)

Chapter 8. AES, DES, and HMAC cryptographic keys 209

|

CIPHERXO EXPORTER OPINENC
DATA IKEYXLAT PINGEN
DATAC IMPORTER PINVER
DATAM IPINENC TOKEN

For information about the meaning of the key types, see Table 6 on page 44.

source_key_identifier

Direction: Input
Type: String

A 64-byte string of the internal key token that contains the key to be
re-enciphered. This parameter must identify an internal key token in
application storage, or a label of an existing key in the DES key storage file.

If you supply TOKEN for the key_type parameter, CCA looks at the control
vector in the internal key token and determines the key type from this
information. If you supply TOKEN for the key_type parameter and supply a
label for this parameter, the label must be unique in the DES key storage file.

exporter_key_identifier

Direction: Input/Output
Type: String

A 64-byte string of the internal key token or key label that contains the
exporter key-encrypting key. This parameter must identify an internal key
token in application storage, or a label of an existing key in the key storage
file.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used
to encipher the generated key.

Control vectors are explained in “Control vector” on page 40 and the NOCV
bit is shown in Table 233 on page 849.

target_key_identifier

Direction: Input/Output
Type: String

The 64-byte field external key token that contains the re-enciphered key. The
re-enciphered key can be exchanged with another cryptographic system.

Restrictions
The restrictions for CSNBKEX.

For security reasons, requests will fail by default if they use an equal key halves
exporter to export a key with unequal key halves. You must have access control
point 'Key Export - Unrestricted' explicitly enabled if you want to export keys in
this manner.

Required commands
The CSNBKEX required commands.

This verb requires the Key Export command (offset X'0013') to be enabled in the
active role.

Key Export (CSNBKEX)

210 Common Cryptographic Architecture Application Programmer's Guide

By also specifying the Key Export - Unrestricted command (offset X'0276'), you
can permit a less secure mode of operation that enables an equal key-halves
EXPORTER key-encrypting-key to export a key having unequal key-halves (key
parity bits are ignored).

Usage notes
Usage notes for CSNBKEX.

For Key Export, you can use the following combinations of parameters:
v A valid key type in the key_type parameter and an internal key token in the

source_key_identifier parameter. The key type must be equivalent to the control
vector specified in the internal key token.

v A key_type parameter of TOKEN and an internal key token in the
source_key_identifier parameter. The source_key_identifier can be a label with
TOKEN only if the label name is unique in the key storage. The key type is
extracted from the control vector contained in the internal key token.

v A valid key type in the key_type parameter, and a label in the source_key_identifier
parameter.

If internal key tokens are supplied in the source_key_identifier or
exporter_key_identifier parameters, the key in one or both tokens can be
re-enciphered. This occurs if the master key was changed since the internal key
token was last used. The return and reason codes that indicate this do not indicate
which key was re-enciphered. Therefore, assume both keys have been
re-enciphered.

Existing internal tokens created with key type MACD must be exported with
either a TOKEN or DATAM key type. The external CV will be DATAM CV. The
MACD key type is not supported.

To export a double-length MAC generation or MAC verification key, it is
recommended that a key type of TOKEN be used.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKEXJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKEXJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_type,
byte[] source_key_identifier,
byte[] exporter_key_identifier,
byte[] target_key_identifier);

Key Generate (CSNBKGN)
Use the Key Generate verb to generate an AES key of type DATA, or either one or
two odd parity DES keys of any type.

Key Export (CSNBKEX)

Chapter 8. AES, DES, and HMAC cryptographic keys 211

The DES keys can be single-length (8-byte), double-length (16-byte), or, in the case
of DATA keys, triple-length (24-byte). The AES keys can be 16, 24 or 32 bytes in
length. The Key Generate verb does not produce keys in clear form; all keys are
returned in encrypted form. When two keys are generated (DES only), each key
has the same clear value, although this clear value is not exposed outside the
secure cryptographic feature.

For AES, the verb returns only one copy of the key, enciphered under the AES
master key. For DES, the verb selectively returns one copy of the key or two, with
each copy enciphered under a user-specified DES key-encrypting key.

This verb returns the key to the application program that called it and the
application program can then use the CCA key storage verbs to store the key in
the key storage file.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBKGN.

CSNBKGN(
return_code,
reason_code,
exit_data_length,
exit_data,
key_form,
key_length,
key_type_1,
key_type_2,
kek_key_identifier_1,
kek_key_identifier_2,
generated_key_identifier_1,
generated_key_identifier_2)

Parameters
The parameter definitions for CSNBKGN.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_form

Direction: Input
Type: String

A 4-byte keyword that defines the type of key you want generated. This
parameter also specifies if each key should be returned for either operational,
importable, or exportable use. The keyword must be in a 4-byte field,
left-aligned, and padded with blanks.

The possible key forms are:

Operational (OP)
The key is used for cryptographic operations on the local system.
Operational keys are protected by master key variants and can be
stored in the CCA key storage file or held by applications in internal
key tokens.

Key Generate (CSNBKGN)

212 Common Cryptographic Architecture Application Programmer's Guide

|

Importable (IM)
The key is stored with a file or sent to another system. Importable keys
are protected by importer key-encrypting keys.

Exportable (EX)
The key is transported or exported to another system and imported
there for use. Exportable keys are protected by exporter key-encrypting
keys and cannot be used by CCA verb.

Importable and exportable keys are contained in external key tokens. For more
information on key tokens, refer to “Key token” on page 35.

The first two characters refer to key_type_1. The next two characters refer to
key_type_2.

The following keywords are allowed: OP, IM, EX, OPIM, OPEX, IMEX, EXEX,
OPOP, and IMIM. See Table 56 for their meanings.

Table 56. Keywords for the Key Generate verb key_form parameter

Keyword Description

EX Return one copy of the key enciphered under an exporter KEK with key usage EXEX.

EXEX Return two copies of the key, both enciphered under exporter key-encrypting keys with key usage
EXEX.

IM Return one copy of the key enciphered under an importer KEK with key usage IMEX.

IMEX Return two copies of the key, the first enciphered under an importer KEK with key usage IMEX, and
the second under an exporter KEK with key usage IMEX.

IMIM Return two copies of the key, both enciphered under importer KEKs with key usage IMIM.

OP Return one copy of the key enciphered under the DES master key.

OPEX Return two copies of the key, the first enciphered key under the DES master key and the second
under an exporter KEK with key usage OPEX.

OPIM Return two copies of the key, the first enciphered key under the DES master key and the second
under an importer KEK with key usage OPIM.

OPOP Return two copies of the key, both enciphered under the DES master key.

The key forms are defined as follows:

Operational (OP)
The key value is enciphered under a master key. The result is placed
into an internal key token. The key is then operational at the local
system.

Importable (IM)
The key value is enciphered under an importer key-encrypting key.
The result is placed into an external key token. The key can then be
imported later to the local node. This key form cannot be used by any
CCA verb.

Exportable (EX)
The key value is enciphered under an exporter key-encrypting key. The
result is placed into an external key token. The key can then be
transported or exported to another system and imported there for use.
This key form cannot be used by any CCA verb.

The keys are placed into tokens that the generated_key_identifier_1 and
generated_key_identifier_2 parameters identify.

Key Generate (CSNBKGN)

Chapter 8. AES, DES, and HMAC cryptographic keys 213

Valid key type combinations depend on the key form. See Table 60 on page 219
for valid key combinations.

key_length

Direction: Input
Type: String

An 8-byte value that defines the length of the key as being 8, 16, 24 or 32
bytes. The keyword must be left-aligned and padded on the right with blanks.
You must supply one of the key length values in the key_length parameter.

Table 57 lists the key lengths used for various key types.

Table 57. Key length values for the Key Generate verb

Value Description Algorithm

SINGLE, SINGLE-R, or
KEYLN8

Single length (8-byte or
64-bit) key

DES

DOUBLE or KEYLN16 Double length (16-byte or
128-bit) key

AES or DES

DOUBLE-O Double length (16-byte or
128-bit) key

DES

KEYLN24 Triple length (24-byte or
192-bit) key

AES or DES

KEYLN32 32-byte (256-bit) key AES

AES keys allow only KEYLN16, KEYLN24, and KEYLN32. To generate a
128-bit AES key, specify key_length as KEYLN16. For 192-bit AES keys specify
key_length as KEYLN24. A 256-bit AES key requires a key_length of KEYLN32.
All AES keys are DATA keys.

Keys with a length of 32 bytes have four 8-byte key parts. This key length is
valid only for AES keys. To generate a 32-byte AES key with four different
values to be the basis of each key part, specify key_length as KEYLN32.

To generate a single-length key, specify key_length as SINGLE or KEYLN8.

Double-length (16-byte) keys have an 8-byte left half and an 8-byte right half.
Both halves can have identical clear values or not. If you want the same value
to be used in both key halves (called replicated key values), specify a key_length
of SINGLE, SINGLE-R, or KEYLN8. If you want different values to be the
basis of each key half, specify a key_length of DOUBLE or KEYLN16.

Triple-length (24-byte) keys have three 8-byte key parts. This key length is
valid for DATA keys only. To generate a triple-length DATA key with three
different values to be the basis of each key part, specify a key_length of
KEYLN24.

Use SINGLE or SINGLE-R if you want to create a DES transport key that you
would use to exchange DATA keys with a PCF system. Because PCF does not
use double-length transport keys, specify SINGLE so that the effects of
multiple encipherment are nullified.

When generating an AKEK, the key_length parameter is ignored. The AKEK key
length (8-byte or 16-byte) is determined by the skeleton token created by the
Key Token Build verb and provided in the generated_key_identifier_1 parameter.

The key length specified must be consistent with the key length indicated by
the token you supply. For DES keys, this length is a field in the control vector.

Key Generate (CSNBKGN)

214 Common Cryptographic Architecture Application Programmer's Guide

For AES keys, the length is an explicit field in the token. Table 58 shows the
valid key lengths for each key type. An X indicates that a key length is
permitted for a key type. A Y indicates that the key generated will be a
double-length key with replicated key values. It is preferred that SINGLE-R be
used for this result.

Table 58. Key Generate - key lengths for each key type

Key Type
SINGLE
KEYLN8) SINGLE-R

DOUBLE
KEYLN16) DOUBLE-O

Triple
(KEYLN24) (KEYLN32)

AESDATA X X X

MAC
MACVER

X
X

X
X

X
X

X
X

DATA X X X X X

DATAM
DATAMV

X
X

X
X

EXPORTER
IMPORTER

Y
Y

X
X

X
X

X
X

IKEYXLAT
OKEYXLAT

Y
Y

X
X

X
X

X
X

CIPHER
DECIPHER
ENCIPHER

X
X
X

X
X
X

X
X
X

IPINENC
OPINENC
PINGEN
PINVER

Y
Y
Y
Y

X
X
X
X

X
X
X
X

X
X
X
X

CVARDEC*
CVARENC*
CVARPINE*
CVARXCVL*
CVARXCVR*

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

DKYGENKY*
KEYGENKY*

X
X

X
X

X
X

CIPHERXI
CIPHERXL
CIPHERXO

X
X
X

Note: Key types marked with an asterisk (*) are requested through the use of
the TOKEN keyword and specifying a proper control vector in a key token.

key_type_1

Direction: Input
Type: String

An 8-byte keyword from the following group:
AESDATA DATA ENCIPHER MACVER
AESTOKEN DATAC EXPORTER OKEYXLAT
CIPHER DATAM IKEYXLAT OPINENC
CIPHERXI DATAMV IMPORTER PINGEN
CIPHERXL DATAXLAT IPINENC PINVER
CIPHERXO DECIPHER MAC

or the keyword TOKEN.

Key Generate (CSNBKGN)

Chapter 8. AES, DES, and HMAC cryptographic keys 215

For information on the meaning of the key types, see Table 6 on page 44.

Use the key_type_1 parameter for the first, or only key, that you want
generated. The keyword must be left-aligned and padded with blanks. Valid
type combinations depend on the key form.

If key_type_1 is TOKEN, CCA examines the control vector (CV) field in the
generated_key_identifier_1 parameter to derive the key type. When
key_type_1 is TOKEN, CCA does not check for the length of the key for DATA
keys. Instead, it uses the key_length parameter to determine the length of the
key.

Use the AESTOKEN keyword for AES keys, or the TOKEN keyword for DES
keys to indicate that the verb should determine the key type from the key
token that you supply. For AES, all keys are type AESDATA. For DES, the key
type is determined from the control vector in the key tokens. Alternatively, you
can specify the key type using keywords shown in Table 59 on page 219 and
Table 60 on page 219.

Key types can have mandatory key forms. For example, CVARENC keys must
be generated in pairs with CVARDEC keys. The reason is that a CVARENC
key can only be used for encryption, and without a CVARDEC key you cannot
decrypt the data. See Table 59 on page 219 and Table 60 on page 219 for valid
key type and key form combinations.

key_type_2

Direction: Input
Type: String

An 8-byte keyword from the following group:
AESDATA DATA ENCIPHER MACVER
AESTOKEN DATAC EXPORTER OKEYXLAT
CIPHER DATAM IKEYXLAT OPINENC
CIPHERXI DATAMV IMPORTER PINGEN
CIPHERXL DATAXLAT IPINENC PINVER
CIPHERXO DECIPHER MAC

or the keyword TOKEN.

For information on the meaning of the key types, see Table 6 on page 44.

Use the key_type_2 parameter for a key pair, which is shown in Table 60 on
page 219. The keyword must be left-aligned and padded with blanks. Valid
type combinations depend on the key form.

If key_type_2 is TOKEN, CCA examines the control vector (CV) field in the
generated_key_identifier_2 parameter to derive the key type. When key_type_2 is
TOKEN, CCA does not check for the length of the key for DATA keys.
Instead, it uses the key_length parameter to determine the length of the key.

If you want only one key to be generated, specify the key_type_2 and
KEK_key_identifier_2 as binary zeros.

See Table 59 on page 219 and Table 60 on page 219 for valid key type and key
form combinations.

KEK_key_identifier_1

Direction: Input/Output
Type: String

A 64-byte string of an internal key token containing the importer or exporter

Key Generate (CSNBKGN)

216 Common Cryptographic Architecture Application Programmer's Guide

key-encrypting key, or a key label. If you supply a key label that is less than
64-bytes, it must be left-aligned and padded with blanks. KEK_key_identifier_1
is required for a key_form of IM, EX, IMEX, EXEX, or IMIM.

If the key_form is OP, OPEX, OPIM, or OPOP, the KEK_key_identifier_1 is null.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used
to encipher the generated key.

Control vectors are explained in “Control vector” on page 40 and the NOCV
bit is shown in Table 233 on page 849.

This parameter is not used when generating AES keys, and should point to
null key-tokens.

KEK_key_identifier_2

Direction: Input/Output
Type: String

A 64-byte string of an internal key token containing the importer or exporter
key-encrypting key, or a key label of an internal token. If you supply a key
label that is less than 64-bytes, it must be left-aligned and padded with blanks.
KEK_key_identifier_2 is required for a key_form of OPIM, OPEX, IMEX, IMIM,
or EXEX. This field is ignored for key_form keywords OP, IM and EX.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used
to encipher the generated key.

Control vectors are explained in “Control vector” on page 40 and the NOCV
bit is shown in Table 233 on page 849.

This parameter is not used when generating AES keys, and should point to
null key-tokens.

generated_key_identifier_1

Direction: Input/Output
Type: String

This parameter specifies either a generated:
v Internal key token for an operational key form, or
v External key token containing a key enciphered under the kek_key_identifier_1

parameter.

When key_type_1 parameter is AESDATA, the generated_key_identifier_1
parameter is ignored. In this case, it is recommended that the parameter be
initialized to 64-bytes of X'00'.

If you specify a key_type_1 of TOKEN, then this field contains a valid token of
the key type you want to generate. Otherwise, on input, this parameter must
be binary zeros. See key_type_1 for a list of valid key types.

If you specify a key_type_1 of IMPORTER or EXPORTER and a key_form of
OPEX, and if the generated_key_identifier_1 parameter contains a valid internal
token of the same type, the NOCV bit, if on, is propagated to the generated
key token.

Using the AESTOKEN or TOKEN keyword in the key type parameters
requires that the key tokens already exist when the verb is called, so the
information in those tokens can be used to determine the key type:

Key Generate (CSNBKGN)

Chapter 8. AES, DES, and HMAC cryptographic keys 217

v The key_type_1 parameter overrides the type in the token.
v The key_length parameter overrides the length value in the generated key

token.

In general, unless you are using the AESTOKEN or TOKEN keyword, you
must identify a null key token in the generated key identifier parameters on
input.

generated_key_identifier_2

Direction: Input/Output
Type: String

This parameter specifies a generated external key token containing a key
enciphered under the kek_key_identifier_2 parameter.

If you specify a key_type_2 of TOKEN, then this field contains a valid token of
the key type you want to generate. Otherwise, on input, this parameter must
be binary zeros. See key_type_1 for a list of valid key types.

The token can be an internal or external token.

Using the AESTOKEN or TOKEN keyword in the key type parameters
requires that the key tokens already exist when the verb is called, so the
information in those tokens can be used to determine the key type. In general,
unless you are using the AESTOKEN or TOKEN keyword, you must identify
a null key token in the generated key identifier parameters on input.

Restrictions
The restrictions for CSNBKGN.

None.

Required commands
The CSNBKGN required commands.

Depending on the key_type and key_form parameters selected, the verb could
require one or more of these commands to be enabled in the active role:

Offset Command

X'008C' Key Generate - Key set

X'008E' Key Generate - OP

X'00D7' Key Generate - Key set extended

X'00DB' Key Generate - SINGLE-R

Note: A role with offset X'00DB' enabled can also possibly use the Remote Key
Export verb to replicate a single-length source key.

Usage notes
The usage notes for CSNBKGN.

Table 59 on page 219 shows the valid key type and key form combinations for a
single key. Key types marked with an '*' must be requested through the

Key Generate (CSNBKGN)

218 Common Cryptographic Architecture Application Programmer's Guide

|
|

specification of a proper control vector in a key token and through the use of the
TOKEN keyword. See also Chapter 20, “Key forms and types used in the Key
Generate verb,” on page 985.

Note: Not all key types are valid on all hardware. See Table 6 on page 44.

For AES keys, only key form OP is supported. AES keys cannot be generated in
pairs.

Table 59. Keywords for Key Generate, valid key types and key forms for a single key

Key Type 1 Key Type 2 OP IM EX

AESDATA Not applicable X

AESTOKEN Not applicable X

DATA Not applicable X X X

DATAC* Not applicable X X X

DATAM Not applicable X X X

DKYGENKY* Not applicable X X X

KEYGENKY* Not applicable X X X

MAC Not applicable X X X

PINGEN Not applicable X X X

Table 60 shows the valid key type and key form combinations for a key pair.

Table 60. Keywords for Key Generate, valid key types and key forms for a key pair

Key Type 1 Key Type 2 OPEX EXEX OPIM,
OPOP,
IMIM

IMEX

CIPHER CIPHER X X X X

CIPHER DECIPHER X X X X

CIPHER ENCIPHER X X X X

CVARDEC* CVARENC* E E

CVARDECC* CVARPINE* E E

CVARENC* CVARDEC* E E

CVARENC* CVARXCVL* E E

CVARENC* CVARXCVR* E E

CVARXCVL* CVARENC* E E

CVARXCVR* CVARENC* E E

CVARPINE* CVARDEC* E E

DATA DATA X X X X

DATA DATAXLAT X X X

DATAC* DATAC* X X X X

DATAM DATAM X X X X

DATAM DATAMV X X X X

DATAXLAT DATAXLAT X X X

DECIPHER CIPHER X X X X

DECIPHER ENCIPHER X X X X

Key Generate (CSNBKGN)

Chapter 8. AES, DES, and HMAC cryptographic keys 219

Table 60. Keywords for Key Generate, valid key types and key forms for a key
pair (continued)

Key Type 1 Key Type 2 OPEX EXEX OPIM,
OPOP,
IMIM

IMEX

DKYGENKY* DKYGENKY* X X X X

ENCIPHER CIPHER X X X X

ENCIPHER DECIPHER X X X X

EXPORTER IKEYXLAT X X X

EXPORTER IMPORTER X X X

IKEYXLAT EXPORTER X X X

IKEYXLAT OKEYXLAT X X X

IMPORTER EXPORTER X X X

IMPORTER OKEYXLAT X X X

IPINENC OPINENC X X E X

KEYGENKY* KEYGENKY* X X X X

MAC MAC X X X X

MAC MACVER X X X X

OKEYXLAT IKEYXLAT X X X

OKEYXLAT IMPORTER X X X

OPINENC IPINENC X X E X

OPINENC OPINENC X

PINVER PINGEN X X X

PINGEN PINVER X X X

Note:

1. AES keys cannot be generated in pairs.

2. An 'X' indicates a permissible key type combination for a given key form. An 'E'
indicates that a special (Extended) command is required as those keys require special
handling.

3. The key types marked with an '*' must be requested through the specification of a
proper control-vector in a key token and the use of the TOKEN keyword.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKGNJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKGNJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_form,
byte[] key_length,
byte[] key_type_1,
byte[] key_type_2,
byte[] KEK_key_identifier_1,

Key Generate (CSNBKGN)

220 Common Cryptographic Architecture Application Programmer's Guide

byte[] KEK_key_identifier_2,
byte[] generated_key_identifier_1,
byte[] generated_key_identifier_2);

Key Generate2 (CSNBKGN2)
Use the Key Generate2 verb to randomly generate a keyed hash message
authentication code (HMAC) key or an AES key. Depending on the key form
specified, the verb returns either one or two enciphered copies of the key, each in a
variable-length symmetric key-token. Key tokens can be returned to either
application storage or AES key storage.

To generate keys that are returned in a fixed-length symmetric key-token, see “Key
Generate (CSNBKGN)” on page 211.

The CSNBKGN2 verb selectively returns one or two copies of an AES or an HMAC
key enciphered under the AES master key or an AES key-encrypting key. Keys
enciphered under the master key are immediately usable at the local node.

The verb can create default key tokens, update the key in existing key tokens, or
complete skeleton key tokens. You can use the Key Token Build2 verb to build a
skeleton key token (see “Key Token Build2 (CSNBKTB2)” on page 264.

Note: Variable-length symmetric key tokens have an associated data section that
contains clear data. This section is hashed and the hash value is cryptographically
bound to its enciphered payload. See “Variable-length symmetric key tokens” on
page 889.

To use this verb, specify the following:
v Two required rule array keywords:

– a required token algorithm keyword that selects the type of algorithm that the
key can be used for (either AES or HMAC)

– a required key form keyword that selects the number of keys to return, either
one or two, and the token type for each key, either internal or external.

v The number of bits of clear-key data to randomly generate and return encrypted
in the generated key or keys
– AES keys can be 128, 192, or 256 bits
– HMAC keys can be 80 - 2048 bits
Any generated key will have the specified key length.

v The key types of each AES or HMAC key to be returned. A key type of TOKEN
indicates that the generated key token provided as input is to be updated.

Note:

1. When generating only one copy of the key, use eight space characters for the
second key-type variable.

2. To update an existing key token with a copy of the randomly generated key,
specify keyword TOKEN as the key type and identify the key token to be
updated using the generated_key_identifier_n parameter.

3. If the key type is not TOKEN, the generated_key_identifier_n parameter
must have a length of zero or point to a null key-token. This results in a key
token with default key-usage and key-management fields.

Key Generate (CSNBKGN)

Chapter 8. AES, DES, and HMAC cryptographic keys 221

v The optional key name (label), 64 bytes, of one or both keys that is to be placed
in the associated data of the key token; if provided, this data overrides any label
in the input generated key token.

v The optional user-defined associated data, up to 255 bytes, of one or both keys
that is to be placed in the associated data of the key token; if provided, this data
overrides any user-defined associated data in the input generated key token.

Note: A user_associated_data_n variable that contains data overrides any
user-defined associated data contained in a key token to be updated.

v A key-encrypting key (KEK) identifier of key type EXPORTER or IMPORTER,
contained in an internal variable-length symmetric key-token, for wrapping each
external key to be returned.

v The key identifier for each key to be generated.

Format
The format of CSNBKGN2.

CSNBKGN2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_bit_length,
key_type_1,
key_type_2,
key_name_1_length,
key_name_1,
key_name_2_length,
key_name_2,
user_associated_data_1_length,
user_associated_data_1,
user_associated_data_2_length,
user_associated_data_2,
key_encrypting_key_identifier_1_length,
key_encrypting_key_identifier_1,
key_encrypting_key_identifier_2_length,
key_encrypting_key_identifier_2,
generated_key_identifier_1_length,
generated_key_identifier_1,
generated_key_identifier_2_length,
generated_key_identifier_2)

Parameters
The parameter definitions for CSNBKGN2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 2, 3, or 4.

rule_array

Key Generate2 (CSNBKGN2)

222 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: String array

The rule_array contains keywords that provide control information to the verb.
The keywords must be in contiguous storage with each of the keywords
left-aligned in its own 8-byte location and padded on the right with blanks.
The rule_array keywords are described in Table 61.

Table 61. Keywords for Key Generate2 control information

Keyword Description

Token algorithm (One required)

AES Specifies to generate an AES key token.

HMAC Specifies to generate an HMAC key token.

Key form (One, required) The first two characters refer to key_type_1. The next two characters refer to key_type_2. See
“Usage notes” on page 228 for details.

EX Return one copy of the key enciphered under an exporter KEK with key usage GEN-EXEX.

EXEX Return two copies of the key, both enciphered under exporter key-encrypting keys with key usage
GEN-EXEX.

IM Return one copy of the key enciphered under an importer KEK with key usage GEN-IMEX.

IMEX Return two copies of the key, the first enciphered under an importer KEK with key usage
GEN-IMEX, and the second under an exporter KEK with key usage GEN-IMEX.

IMIM Return two copies of the key, both enciphered under importer KEKs with key usage GEN-IMIM.

OP Return one copy of the key enciphered under the AES master key.

OPEX Return two copies of the key, the first enciphered key under the AES master key and the second
under an exporter KEK with key usage GEN-OPEX.

OPIM Return two copies of the key, the first enciphered key under the AES master key and the second
under an importer KEK with key usage GEN-OPIM.

OPOP Return two copies of the key, both enciphered under the AES master key.

Payload Version for generated_key_identifier_1 (one, optional)
Note: If TOKEN is specified for key_type_1, the payload format version is determined by the information in the
key token identified by the generated_key_identifier_1 parameter unless specifically overridden by one of the
following keywords.

V0PYLDK1 Return a key token identified by the generated_key_identifier_1 parameter with a payload
formatted using the less secure legacy variable-length version 0 format. This is the default if the
key_type_1 variable is not valued to TOKEN and the key type is AES CIPHER, AES EXPORTER,
AES IMPORTER, or HMAC MAC. Only valid with those key types.

V1PYLDK1 Return a key token using the generated_key_identifier_1 parameter with a payload formatted
using the more secure fixed-length version 1 format. This is the default if the key_type_1 variable is
not valued to TOKEN and the key type is not AES CIPHER, AES EXPORTER, AES IMPORTER, or
HMAC MAC. Not valid with HMAC MAC.
Note: This option produces a key token that is not compatible with releases before Release 4.4.

Payload Version for generated_key_identifier_2 (one, optional when generating a key pair, otherwise not allowed)
Note: If TOKEN is specified for key_type_2 when generating a key pair, the payload format version is determined
by the information in the key token identified by the generated_key_identifier_2 parameter unless specifically
overridden by one of the following keywords.

V0PYLDK2 Return a key token identified by the generated_key_identifier_2 parameter with a payload
formatted using the original variable-length version 0 format. This is the default if the key_type_2
variable is not valued to TOKEN and the key type is AES CIPHER, AES EXPORTER, AES
IMPORTER, or HMAC MAC. Only valid with those key types.

Key Generate2 (CSNBKGN2)

Chapter 8. AES, DES, and HMAC cryptographic keys 223

Table 61. Keywords for Key Generate2 control information (continued)

Keyword Description

V1PYLDK2 Return a key token using the generated_key_identifier_2 parameter with a payload formatted
using the more secure fixed-length version 1 format. This is the default if the key_type_2 variable is
not valued to TOKEN and the key type is not AES CIPHER, AES EXPORTER, AES IMPORTER, or
HMAC MAC. Not valid with HMAC MAC.
Note: This option produces a key token that is not compatible with releases before Release 4.4.

clear_key_bit_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of clear-key bits to
randomly generate and return encrypted in the generated key or keys. If a
generated key token has a key type of TOKEN, this value overrides any key
length contained in the key token. The value can be 128, 192, and 256 for AES
keys, and 80 - 2048 for HMAC keys.

key_type_1, key_type_2

Direction: Input
Type: String

The key_type_1 and key_type_2 parameters are pointers to 8-byte string
variables, each containing a keyword that is left aligned and padded on the
right with space characters. The keyword specifies the key type of the key
being generated. If a single copy of the key is being generated, set the
key_type_2 variable to eight space characters.

The verb returns each copy of the generated key in a default key token that it
builds, or updates a key token that is provided. Keyword TOKEN indicates
that the verb is to return an updated key token that contains the key-usage
and key-management fields of the key token that is provided by the
corresponding key_identifier_1 or key_identifier_2 parameter. A keyword
other than TOKEN indicates that a null key-token is provided and that the
verb is to build and return a default key-token for the specified key type (AES
key types CIPHER, EXPORTER, or IMPORTER only).

Valid type combinations depend on the key form, and are documented in
Table 64 on page 229 and Table 65 on page 229.

The 8-byte keyword for the key_type_1 or key_type_2 parameters can be one of
the following:

Table 62. Keywords and associated algorithms for key_type_1/2 parameter

Keyword Algorithm

CIPHER AES

EXPORTER AES

IMPORTER AES

MAC AES or HMAC

MACVER HMAC

Specify the keyword TOKEN when supplying a key token in the
generated_key_identifier_1/2 parameter.

Key Generate2 (CSNBKGN2)

224 Common Cryptographic Architecture Application Programmer's Guide

If key_type_1 or key_type_2 is TOKEN, the associated data in the
generated_key_identifier_1 or generated_key_identifier_2 parameter is used to
derive the key type.

key_name_1_length

Direction: Input
Type: Integer

The length of the key_name parameter for generated_key_identifier_1. Valid values
are 0 and 64.

key_name_1

Direction: Input
Type: String

A pointer to a string variable containing the optional key label that is placed in
the associated data of the key token identified by the
generated_key_identifier_1 variable. If present, it must be a valid key label.
This data is cryptographically bound to the first copy of the key.

key_name_2_length

Direction: Input
Type: Integer

The length of the key_name parameter for generated_key_identifier_2. Valid values
are 0 and 64. When only one key is being generated, set this value to 0.

key_name_2

Direction: Input
Type: String

A pointer to a string variable containing the optional key label that is placed in
the associated data of the key token identified by the
generated_key_identifier_2 variable. If present, it must be a valid key label.
This data is cryptographically bound to the first copy of the key.

When only one key is being generated, this parameter is ignored.

user_associated_data_1_length

Direction: Input
Type: Integer

The length of the user-associated data parameter for generated_key_identifier_1.
The valid values are 0 - 255 bytes.

user_associated_data_1

Direction: Input
Type: String

User-associated data to be stored in the associated data structure for
generated_key_identifier_1.

user_associated_data_2_length

Direction: Input
Type: Integer

The length of the user-associated data parameter for generated_key_identifier_2.

Key Generate2 (CSNBKGN2)

Chapter 8. AES, DES, and HMAC cryptographic keys 225

The valid values are 0 - 255 bytes. When only one key is being generated, this
parameter is ignored.

user_associated_data_2

Direction: Input
Type: String

User associated data to be stored in the associated data structure for
generated_key_identifier_2.

When only one key is being generated, this parameter is ignored.

key_encrypting_key_identifier_1_length

Direction: Input
Type: Integer

The length of the buffer for key_encrypting_key_identifier_1 in bytes. When the
key form rule is OP, OPOP, OPIM, or OPEX, this length must be zero. When
the key form rule is EX, EXEX, IM, IMEX, or IMIM, the value must be
between the actual length of the token and 725 bytes when
key_encrypting_key_identifier_1 is a token.

The value must be 64 bytes when key_encrypting_key_identifier_1 is a label.

key_encrypting_key_identifier_1

Direction: Input
Type: String

When key_encrypting_key_identifier_1_length is zero, this parameter is ignored.
Otherwise, key_encrypting_key_identifier_1 contains an internal key token
containing the AES importer or exporter key-encrypting key, or a key label.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

key_encrypting_key_identifier_2_length

Direction: Input
Type: Integer

The length of the buffer for key_encrypting_key_identifier_2 in bytes. When the
key form rule is OPOP, this length must be zero. When the key form rule is
EXEX, IMEX, IMIM, OPIM, or OPEX, the value must be between the actual
length of the token and 725 when key_encrypting_key_identifier_2 is a token. The
value must be 64 when key_encrypting_key_identifier_2 is a label.

When only one key is being generated, this parameter is ignored.

key_encrypting_key_identifier_2

Direction: Input/Output
Type: String

When key_encrypting_key_identifier_2_length is zero, this parameter is ignored.
Otherwise, key_encrypting_key_identifier_2 contains an internal key token
containing the AES importer or exporter key-encrypting key, or a key label.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

When only one key is being generated, this parameter is ignored.

generated_key_identifier_1_length

Key Generate2 (CSNBKGN2)

226 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input/Output
Type: Integer

On input, the length of the buffer for the generated_key_identifier_1 parameter in
bytes. The maximum value is 900 bytes.

On output, the parameter will hold the actual length of the
generated_key_identifier_1.

generated_key_identifier_1

Direction: Input/Output
Type: String

The buffer for the first generated key token.

On input, if you specify a key_type_1 of TOKEN, then the buffer contains a
valid key token of the key type you want to generate. The key token must be
left-aligned in the buffer. Otherwise, this parameter must be binary zeros. See
“key_type_1, key_type_2” on page 224 for valid key types.

On output, the buffer contains the generated key token.

generated_key_identifier_2_length

Direction: Input/Output
Type: Integer

On input, the length of the buffer for the generated_key_identifier_2 in bytes. The
minimum value is 120 bytes and the maximum value is 725 bytes. The
maximum value is 900 bytes.

On output, the parameter will hold the actual length of the
generated_key_identifier_2.

When only one key is being generated, this parameter is ignored.

generated_key_identifier_2

Direction: Input/Output
Type: String

The buffer for the second generated key token.

On input, if you specify a key_type_2 of TOKEN, then the buffer contains a
valid key token of the key type you want to generate. The key token must be
left-aligned in the buffer. Otherwise, this parameter must be binary zeros. See
“key_type_1, key_type_2” on page 224 for valid key types.

On output, the buffer contains the generated key token.

When only one key is being generated, this parameter is ignored

Restrictions
The restrictions for CSNBKGN2.

None.

Required commands
The CSNBKGN2 required commands.

Key Generate2 (CSNBKGN2)

Chapter 8. AES, DES, and HMAC cryptographic keys 227

Depending on your specification of key form and key type, different commands
are required to enable the processing of the Key Generate2 verb.

Offset Command

X'00EA' Key Generate2 - OP

This command is required, if key form and key type
combinations are specified that are shown with an X in
Table 64 on page 229.

X'00EB' Key Generate2 - Key set

This command is required, if key form and key type
combinations are specified that are shown with an X in
Table 65 on page 229.

X'00EC' Key Generate2 - Key set extended

This command is required, if key form and key type
combinations are specified that are shown with an E in
Table 65 on page 229.

To disallow the wrapping of a key with a weaker key-encrypting key, enable the
Prohibit weak wrapping - Transport keys command (offset X'0328') in the active
role. This command affects multiple verbs. See Chapter 24, “Access control points
and verbs,” on page 1047.

To receive a warning when wrapping a key with a weaker key-encrypting key,
enable the Warn when weak wrap - Transport keys command (offset X'032C') in the
active role. The Prohibit weak wrapping - Transport keys command (offset
X'0328') overrides this command.

To disable the wrapping of a key with a weaker master key, the Prohibit weak
wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

To receive a warning when wrapping a key with a weaker master key, enable the
Warn when weak wrap - Master keys command (offset X'0332') in the active role.
The Prohibit weak wrapping - Master keys command overrides this command.

The following access-control points support DK keys (DK enabled AES key types
MAC, PINCALC, PINPROT, and PINPRW):

Table 63. ACPs supporting DK keys for the Key Generate2 verb

Offset Command

X'02BB' Key Generate2 - DK PIN key set

X'02BC' Key Generate2 - DK PIN print key

X'02BD' Key Generate2 - DK PIN admin1 key set PINPROT

X'02BE' Key Generate2 - DK PIN admin1 key set MAC

X'02BF' Key Generate2 - DK PIN admin2 key set MAC

Usage notes
Read the contained usage notes and related information for the CSNBKGN2 verb,
especially about the key type and key form specifications.

Key Generate2 (CSNBKGN2)

228 Common Cryptographic Architecture Application Programmer's Guide

The key forms are defined as follows:

Operational (OP)
The key value is enciphered under a master key. The result is placed into
an internal key token. The key is then operational at the local system.

Importable (IM)
The key value is enciphered under an importer key-encrypting key. The
result is placed into an external key token. The corresponding
key_encrypting_key_identifier_n parameter must contain an AES IMPORTER
key token or label.

Exportable (EX)
The key value is enciphered under an exporter key-encrypting key. The
result is placed into an external key token. The corresponding
key_encrypting_key_identifier_n parameter must contain an AES EXPORTER
key token or label.

Key type specifications: Generated AES and HMAC keys returned in an internal
key token are enciphered with the AES master key, while generated keys returned
in an external key token are enciphered under an AES key-encrypting key.

There are two methods for specifying the type of keys to be generated:
v One or two key type keywords are examined depending on the value of the key

form rule-array keyword. Table 64 shows the permissible key type and key form
keyword combinations to generate a single copy of a key. Table 65 shows the
permissible key type and key form keyword combinations to generate two
copies of a key.

v Use the TOKEN keyword and provide a key token to be updated or a skeleton
key-token to be completed.

Table 64. Key Generate2 key_type and key_form keywords for one AES or HMAC key

key_type_1 Required key usage
Key form
OP

Key form
IM or EX

CIPHER DECRYPT and ENCRYPT X X

DKYGENKY* D-ALL X X

DKYGENKY* D-CIPHER X X

DKYGENKY* D-MAC X X

MAC* GENERATE and VERIFY X X

PINCALC* GENONLY X X

Note:

1. An X indicates a permissible key type and key usage combination for a given key form.

2. The key types marked with an asterisk must be requested through the specification of a
proper key usage in a key token and the use of the TOKEN keyword. These key types
are not recognized by the verb as key type keywords.

Table 65. Key Generate2 key_type and key_form keywords for a pair of AES or HMAC keys

key_type_1 (usage) key_type_2 (usage)

key_form

OPOP,
OPIM,
IMIM OPEX EXEX IMEX

CIPHER CIPHER X X X X

CIPHER CIPHER (DECRYPT) X X X X

Key Generate2 (CSNBKGN2)

Chapter 8. AES, DES, and HMAC cryptographic keys 229

Table 65. Key Generate2 key_type and key_form keywords for a pair of AES or HMAC
keys (continued)

key_type_1 (usage) key_type_2 (usage)

key_form

OPOP,
OPIM,
IMIM OPEX EXEX IMEX

CIPHER CIPHER (ENCRYPT) X X X X

CIPHER CIPHER (DECRYPT
C-XLATE)

X X X X

CIPHER CIPHER (ENCRYPT
C-XLATE)

X X X X

CIPHER CIPHER (DECRYPT
ENCRYPT C-XLATE)

X X X X

CIPHER (DECRYPT) CIPHER X X X X

CIPHER (DECRYPT) CIPHER (DECRYPT)

CIPHER (DECRYPT) CIPHER (ENCRYPT) X X X X

CIPHER (DECRYPT) CIPHER (DECRYPT
C-XLATE)

CIPHER (DECRYPT) CIPHER (ENCRYPT
C-XLATE)

X X X X

CIPHER (DECRYPT) CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER (ENCRYPT) CIPHER X X X X

CIPHER (ENCRYPT) CIPHER (DECRYPT) X X X X

CIPHER (ENCRYPT) CIPHER (ENCRYPT)

CIPHER (ENCRYPT) CIPHER (DECRYPT
C-XLATE)

X X X X

CIPHER (ENCRYPT) CIPHER (ENCRPYT
C-XLATE)

CIPHER (ENCRYPT) CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER (DECRYPT
C-XLATE)

CIPHER X E X E

CIPHER (DECRYPT
C-XLATE)

CIPHER (DECRYPT)

CIPHER (DECRYPT
C-XLATE)

CIPHER (ENCRYPT) X E X E

CIPHER (DECRYPT
C-XLATE)

CIPHER (DECRYPT
C-XLATE)

CIPHER (DECRYPT
C-XLATE)

CIPHER (ENCRYPT
C-XLATE)

E X E

CIPHER (DECRYPT
C-XLATE)

CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER (ENCRYPT
C-XLATE)

CIPHER X E X E

CIPHER (ENCRYPT
C-XLATE)

CIPHER (DECRYPT) X E X E

Key Generate2 (CSNBKGN2)

230 Common Cryptographic Architecture Application Programmer's Guide

Table 65. Key Generate2 key_type and key_form keywords for a pair of AES or HMAC
keys (continued)

key_type_1 (usage) key_type_2 (usage)

key_form

OPOP,
OPIM,
IMIM OPEX EXEX IMEX

CIPHER (ENCRYPT
C-XLATE)

CIPHER (ENCRYPT)

CIPHER (ENCRYPT
C-XLATE)

CIPHER (DECRYPT
C-XLATE)

E X E

CIPHER (ENCRYPT
C-XLATE)

CIPHER (ENCRYPT
C-XLATE)

CIPHER (ENCRYPT
C-XLATE)

CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER X E X E

CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER (DECRYPT)

CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER (ENCRYPT)

CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER (DECRYPT
C-XLATE)

CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER (ENCRPYT
C-XLATE)

CIPHER (DECRYPT
ENCRYPT C-XLATE)

CIPHER (DECRYPT
ENCRYPT C-XLATE)

E X E

MAC* (GENERATE) MAC* (GENERATE) X X X X

MAC* (GENERATE) MAC* (VERIFY) X X X X

MAC* (VERIFY) MAC* (GENERATE) X X X X

MAC* (GENONLY) MAC* (VERIFY) X X X X

MAC* (VERIFY) MAC* (GENONLY) X X X X

MAC* (GENERATE) MAC* (GENONLY) X X X X

MAC* (GENONLY) MAC* (GENERATE) X X X X

IMPORTER EXPORTER X X X

EXPORTER IMPORTER X X X

DKYGENKY* DKYGENKY* X X X X

Key Generate2 (CSNBKGN2)

Chapter 8. AES, DES, and HMAC cryptographic keys 231

Table 65. Key Generate2 key_type and key_form keywords for a pair of AES or HMAC
keys (continued)

key_type_1 (usage) key_type_2 (usage)

key_form

OPOP,
OPIM,
IMIM OPEX EXEX IMEX

Note:

1. An X indicates a permissible key type and key usage combination for a given key form.
An E indicates that a special (Extended) command is required as those keys require
special handling. See the "Required commands" section for the commands required to
enable these permissible combinations.

2. The key types marked with an asterisk (*) must be requested through the specification
of a proper key usage in a key token and the use of the TOKEN keyword. These key
types are not recognized by the verb as key type keywords.

3. A pair of DKYGENKY keys can be used to diversify a pair of keys with different key
types and key usage attributes. The combination of key types and key usage attributes
that can be diversified must meet the requirements of using the Key_Generate2 verb to
generate those same keys. A DKYGENKY key with D-ALL usage can only be paired
with a DKYGENKY key with D-ALL usage.

4. Refer to Table 67.

For AES keys, the AES KEK must be at least as strong as the key being generated
to be considered sufficient strength.

For HMAC keys, the AES KEK must be sufficient strength as described in the
following table:

Table 66. AES KEK strength required for generating an HMAC key under an AES KEK

Key-usage field 2 in the HMAC key
contains

Minimum strength of AES KEK to
adequately protect the HMAC key

SHA-256, SHA-384, or SHA-512 256 bits

SHA-224 192 bits

SHA-1 128 bits

Table 67 describes the key generation processing for DK keys (DK enabled AES key
types MAC, PINCALC, PINPROT, and PINPRW). They have special rules related
to which keys can exist on which system.

Table 67. CSNBKGN2 access control requirements for DK enabled keys

generated_key_identifier_1 generated_key_identifier_2 key_form

key_type_1 KUF 1
high-order
byte

KUF
2
high-
order
byte

KUF 3
high-order
byte

key_type_2 KUF 1
high-order
byte

KUF 2
high-
order
byte

KUF 3
high-order
byte

OPOP
OPIM
IMIM

OPEX
IMEX

EXEX OP
EX
IM

When using Key Generate2 to generate one or two DK keys that have DKPINOP, DKPINOPP, DKPINAD1, or
DKPINAD2 on in key-usage field 3 of at least one skeleton key-token, the following table rows show the valid key
usage for each DK key and the required access control command required for each key_form keyword.

PINPROT ENCRYPT Any
usage

DKPINOP PINPROT DECRYPT Any
usage

DKPINOP % x

PINPROT DECRYPT Any
usage

DKPINOP PINPROT ENCRYPT Any
usage

DKPINOP %

Key Generate2 (CSNBKGN2)

232 Common Cryptographic Architecture Application Programmer's Guide

Table 67. CSNBKGN2 access control requirements for DK enabled keys (continued)

generated_key_identifier_1 generated_key_identifier_2 key_form

PINPROT ENCRYPT Any
usage

DKPINOP CIPHER DECRYPT Any
usage

No DK
user

% *

CIPHER DECRYPT Any
usage

No DK
user

PINPROT ENCRYPT Any
usage

DKPINOP %

PINPROT ENCRYPT Any
usage

DKPINAD1 PINPROT DECRYPT Any
usage

DKPINAD1 % &

PINPROT DECRYPT Any
usage

DKPINAD1 PINPROT ENCRYPT Any
usage

DKPINAD1 %

MAC GENONLY Any
usage

DKPINOP MAC VERIFY Any
usage

DKPINOP % x

MAC VERIFY Any
usage

DKPINOP MAC GENONLY Any
usage

DKPINOP %

MAC GENONLY Any
usage

DKPINAD1 MAC VERIFY Any
usage

DKPINAD1 ~ ~

MAC VERIFY Any
usage

DKPINAD1 MAC GENONLY Any
usage

DKPINAD1 ~

MAC GENONLY Any
usage

DKPINAD2 MAC VERIFY Any
usage

DKPINAD2 % $

MAC VERIFY Any
usage

DKPINAD2 MAC GENONLY Any
usage

DKPINAD2 %

PINPRW GENONLY Any
usage

DKPINOP PINPRW VERIFY Any
usage

DKPINOP x x

PINPRW VERIFY Any
usage

DKPINOP PINPRW GENONLY Any
usage

DKPINOP x

PINCALC GENONLY Any
usage

DKPINOP #

The symbols in the key_form columns are as follows:
% Generate DK Set Locally (OPOP, OPIM, IMIM), offset X'02BB'
* Generate DK PIN Print Pair, offset X'02BC'
& Generate DK PIN Admin 1 PINPROT Pair, offset X'02BD'
~ Generate DK PIN Admin 1 MAC Pair, offset X'02BE'
$ Generate DK PIN Admin 2 MAC Pair, offset X'02BF'
Generate2 Key, offset X'00EA'
x Generate2 Key Set, offset X'00EB'
none Error 8/155

The DKPINAD1 MAC keys are special. They are the only keys listed as needing no
special permission to be generated as OPOP, OPIM, or IMIM pairs. Those keys are
needed for generating and verifying the value EPB_M_FUS in some DK functions.
Those functions run on the same system (Generating Unit) and are the only
functions that use the DKPINAD1 keys. Since the entire key pair is required on the
same system, special permission should not be needed in order to generate a
complete key pair on the same system.

DKPINAD2 MAC key pairs can be generated with GENONLY and VERIFY key
usage in key form OPOP, OPIM, and IMIM (those formats that render possible the
existence of the entire key pair on one system) only with an appropriate access
control point (%) set.

Key Generate2 (CSNBKGN2)

Chapter 8. AES, DES, and HMAC cryptographic keys 233

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKGN2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKGN2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] clear_key_bit_length,
byte[] key_type_1,
byte[] key_type_2,
byte[] key_name_1_length,
byte[] key_name_1,
byte[] key_name_2_length,
byte[] key_name_2,
byte[] user_associated_data_1_length,
byte[] user_associated_data_1,
byte[] user_associated_data_2_length,
byte[] user_associated_data_2,
byte[] key_encrypting_key_identifier_1_length,
byte[] key_encrypting_key_identifier_1,
byte[] key_encrypting_key_identifier_2_length,
byte[] key_encrypting_key_identifier_2,
byte[] generated_key_identifier_1_length,
byte[] generated_key_identifier_1,
byte[] generated_key_identifier_2_length,
byte[] generated_key_identifier_2);

Key Import (CSNBKIM)
Use the Key Import verb to re-encipher a key from encryption under an importer
key-encrypting key to encryption under the master key.

The re-enciphered key is in operational form.

Choose one of the following options:
v Specify the key_type parameter as TOKEN and specify the external key token in

the source_key_identifier parameter. The key type information is determined from
the control vector in the external key token.

v Specify a key type in the key_type parameter and specify an external key token
in the source_key_identifier parameter. The specified key type must be compatible
with the control vector in the external key token.

v Specify a valid key type in the key_type parameter and a null key token in the
source_key_identifier parameter. The default control vector for the key_type
specified will be used to process the key.

For DATA keys, this verb generates a key of the same length as that contained in
the input token.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Key Generate2 (CSNBKGN2)

234 Common Cryptographic Architecture Application Programmer's Guide

|

Format
The format of CSNBKIM.

CSNBKIM(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
source_key_identifier,
importer_key_identifier,
target_key_identifier)

Parameters
The parameter definitions for CSNBKIM.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_type

Direction: Input
Type: String

The type of key you want to re-encipher under the master key. Specify an
8-byte keyword or the keyword TOKEN. The keyword must be left-aligned
and padded on the right with blanks.

If the key type is TOKEN, CCA determines the key type from the control
vector (CV) field in the external key token provided in the source_key_identifier
parameter.

The key type of TOKEN is not allowed when the importer_key_identifier
parameter is NOCV.

Key type values for the Key Import verb are:
CIPHER DATAC EXPORTER MACVER PINVER
CIPHERXL DATAM IMPORTER MACD TOKEN
CIPHERXI DATAMV IKEYXLAT OKEYXLAT
CIPHERXO DECIPHER IPINENC OPINENC
DATA ENCIPHER MAC PINGEN

For information on the meaning of the key types, see Table 6 on page 44.

We recommend using key type of TOKEN when importing double-length
MAC and MACVER keys.

source_key_identifier

Direction: Input
Type: String

The key you want to re-encipher under the master key. The parameter is a
64-byte field for the enciphered key to be imported containing either an
external key token or a null key token. If you specify a null token, the token is
all binary zeros, except for a key in bytes 16-23 or 16-31, or in bytes 16-31 and
48-55 for triple-length DATA keys. Refer to Table 236 on page 852.

If key type is TOKEN, this field might not specify a null token.

This verb supports the no-export function in the CV.

Key Import (CSNBKIM)

Chapter 8. AES, DES, and HMAC cryptographic keys 235

importer_key_identifier

Direction: Input/Output
Type: String

The importer key-encrypting key that the key is currently encrypted under.
The parameter is a 64-byte area containing either the key label of the key in the
cryptographic key data set or the internal key token for the key. If you supply
a key label that is less than 64-bytes, it must be left-aligned and padded with
blanks.

Note: If you specify a NOCV importer in the importer_key_identifier parameter,
the key to be imported must be enciphered under the importer key itself.

target_key_identifier

Direction: Input/Output
Type: String

This parameter is the generated re-enciphered key. The parameter is a 64-byte
area that receives the internal key token for the imported key.

If the imported key type is IMPORTER or EXPORTER and the token key type
is the same, the target_key_identifier parameter changes direction to both input
and output. If the application passes a valid internal key token for an
IMPORTER or EXPORTER key in this parameter, the NOCV bit is propagated
to the imported key token.

Restrictions
The restrictions for CSNBKIM.

For security reasons, a request fails by default if it uses an equal-key-halves
importer to import a key with unequal key halves. You must have access control
point Key Import - Unrestricted (offset X'027B') explicitly enabled if you want to
import keys in this manner.

Required commands
The required commands for CSNBKIM.

This verb requires the Key Import command (offset X'0012') to be enabled in the
active role.

By also enabling the Key Import - Unrestricted command (offset X'027B'), you
can permit a less secure mode of operation that enables an equal key-halves
IMPORTER key-encrypting key to import a key having unequal key-halves (key
parity bits are ignored).

To disable the wrapping of a key with a weaker master key, the Prohibit weak
wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

To receive a warning when wrapping a key with a weaker master key, enable the
Warn when weak wrap - Master keys command (offset X'0332') in the active role.
The Prohibit weak wrapping - Master keys command overrides this command.

Usage notes
Usage notes for CSNBKIM.

Key Import (CSNBKIM)

236 Common Cryptographic Architecture Application Programmer's Guide

Use of NOCV keys are controlled by an access control point in the CEX*C.
Creation of NOCV key-encrypting keys is available only for standard IMPORTERs
and EXPORTERs.

This verb will mark an imported KEK as a NOCV-KEK KEK:
v If a token is supplied in the target token field, it must be a valid importer or

exporter token. If the token fails token validation, processing continues, but the
NOCV flag will not be copied

v The source token (key to be imported) must be a importer or exporter with the
default control vector.

v If the target token is valid and the NOCV flag is on and the source token is
valid and the control vector of the target token is exactly the same as the source
token, the imported token will have the NOCV flag set on.

v If the target token is valid and the NOCV flag is on and the source token is
valid and the control vector of the target token is NOT exactly the same as the
source token, a return code will be given.

v All other scenarios will complete successfully, but the NOCV flag will not be
copied

The software bit used to mark the imported token with export prohibited is not
supported on a CEX*C. The internal token for an export prohibited key will have
the appropriate control vector that prohibits export.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKIMJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKIMJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_type,
byte[] source_key_identifier,
byte[] importer_key_identifier,
byte[] target_key_identifier);

Key Part Import (CSNBKPI)
Use the Key Part Import verb to combine, by XORing, the clear key parts of any
key type and return the combined key value either in an internal token or as an
update to the key storage file.

Before you use the Key Part Import verb for the first key part, you must use the
Key Token Build or Key Token Build2 verb to create the internal key token into
which the key will be imported. Subsequent key parts are combined with the first
part in internal token form or as a label from the key storage file.

The preferred way to specify key parts is FIRST, ADD-PART, and COMPLETE in
the rule_array. Only when the combined key parts have been marked as complete
can the key token be used in any cryptographic operation. The partial key can be
passed to the Key Token Change or Key Token Change2 verb for re-encipherment,
in case building the key was started during a master key change operation. The

Key Import (CSNBKIM)

Chapter 8. AES, DES, and HMAC cryptographic keys 237

partial key can be passed to the Key Token Parse verb, in order to discover how
the key token was originally specified, if researching an old partial key. Partial
keys can also be passed to the Key Test, Key Test2, and Key Test Extended verbs.

Key parts can also be specified as FIRST, MIDDLE, or LAST in the rule_array.
ADD-PART or MIDDLE can be executed multiple times for as many key parts as
necessary. Only when the LAST part has been combined can the key token be used
in any other service.

New applications should employ the ADD-PART and COMPLETE keywords in
lieu of the MIDDLE and LAST keywords in order to ensure a separation of
responsibilities between someone who can add key-part information and someone
who can declare that appropriate information has been accumulated in a key.

The Key Part Import verb can also be used to import a key without using key
parts. Call the Key Part Import verb FIRST with key part value X'0000...' then call
the Key Part Import verb LAST with the complete value.

Keys created using this service have odd parity. The FIRST key part is adjusted to
odd parity. All subsequent key parts are adjusted to even parity before being
combined.

Format
The format of CSNBKPI.

CSNBKPI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_part,
key_identifier)

Parameters
The parameter definitions for CSNBKPI.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1 or 2.

rule_array

Direction: Input
Type: String array

The keyword that provides control information to the verb. The keywords
must be eight bytes of contiguous storage with the keyword left-aligned in its
8-byte location and padded on the right with blanks. The rule_array keywords
are described in Table 68 on page 239.

Key Part Import (CSNBKPI)

238 Common Cryptographic Architecture Application Programmer's Guide

Table 68. Keywords for Key Part Import control information

Keyword Description

Key part (One, required)

FIRST This keyword specifies that an initial key part is being entered. This verb returns this key-part
encrypted by the master key in the key token that you supplied.

ADD-PART This keyword specifies that additional key-part information is provided.

COMPLETE This keyword specifies that the key-part bit shall be turned off in the control vector of the key
rendering the key fully operational. Note that no key-part information is added to the key with
this keyword.

MIDDLE This keyword specifies that an intermediate key part, which is neither the first key part nor the
last key part, is being entered. Note that the command control point for this keyword is the same
as that for the LAST keyword and different from that for the ADD-PART keyword.

LAST This keyword specifies that the last key part is being entered. The key-part bit is turned off in the
control vector.

RETRKPR A key label must be passed as the key_identifier. This key label corresponds to a key stored in a
KPIT register inside the crypto-card (not in host key storage). The key in that register has been
loaded by label and key part using the KPIT verb by the TKE. This keyword for KPI allows the
user to tell the card to wrap that key (it must be in the complete state) using the master key, place
it in an internal token, and return that token to the user.

This keyword applies only when using IBM Z .

Key-wrapping method (One, optional)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the default
wrapping method. The default wrapping method configuration setting may be changed using the
TKE. This keyword is ignored for AES keys.

WRAP-ENH Specifies to wrap the key using the legacy wrapping method. This keyword is ignored for AES
keys. This keyword was introduced with CCA 4.1.0.

WRAP-ECB Specifies to wrap the key using the enhanced wrapping method. Valid only for DES keys. This
keyword was introduced with CCA 4.1.0.

key_part

Direction: Input
Type: String

A 16-byte field containing the clear key part to be entered. If the key is a
single-length key, the key part must be left-aligned and padded on the right
with zeros. This field is ignored if COMPLETE is specified.

key_identifier

Direction: Input/Output
Type: String

A 64-byte field containing an internal token or a label of an existing key in the
key storage file. If rule_array is FIRST, this field is the skeleton of an internal
token of a single- or double-length key with the KEY-PART marking. If
rule_array is MIDDLE or LAST, this is an internal token or key label of a
partially combined key. Depending on the input format, the accumulated
partial or complete key is returned as an internal token or as an updated key
storage file record. The returned key_identifier will be encrypted under the
current master key.

Restrictions
The restrictions for CSNBKPI.

Key Part Import (CSNBKPI)

Chapter 8. AES, DES, and HMAC cryptographic keys 239

If a label is specified on key_identifier, the label must be unique. If more than one
record is found, the verb fails.

You must have access control point 'Key Part Import - Unrestricted' explicitly
enabled. Otherwise, current applications will fail with either of the following
conditions:
v The first eight bytes of key identifier is different than the second eight bytes

AND the first eight bytes of the combined key are the same as the last second
eight bytes

v The first eight bytes of key identifier is the same as the second eight bytes AND
the first eight bytes of the combined key are different than the second eight
bytes.

Required commands
The required commands for CSNBKPI.

This verb requires the following commands to be enabled in the active role:

Rule-array keyword Offset Command

FIRST X'001B' Key Part Import - first key part

ADD-PART X'0278' Key Part Import - ADD-PART

COMPLETE X'0279' Key Part Import - COMPLETE

MIDDLE or LAST X'001C' Key Part Import - middle and last

MIDDLE or LAST X'001C' Key Part Import - middle and last

WRAP-ECB or WRAP-ENH used,
and default key-wrapping method
setting does not match keyword

X'0140' Key Part Import - Allow wrapping
override keywords

The Key Part Import verb enforces the key-halves restriction when the Key Part
Import - Unrestricted command (offset X'027A') is disabled in the active role.
Enabling this command results in less secure operation and is not recommended.

To disable the wrapping of a key with a weaker master key, the Prohibit weak
wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

To receive a warning when wrapping a key with a weaker master key, enable the
Warn when weak wrap - Master keys command (offset X'0332') in the active role.
The Prohibit weak wrapping - Master keys command overrides this command.

Usage notes
The usage notes for CSNBKPI.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKPIJ.

See “Building Java applications using the CCA JNI” on page 28.

Key Part Import (CSNBKPI)

240 Common Cryptographic Architecture Application Programmer's Guide

Format
public native void CSNBKPIJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_part,
byte[] key_identifier);

Key Part Import2 (CSNBKPI2)
Use the Key Part Import2 verb to combine, by XORing, the clear key parts of any
key type and return the combined key value either in a variable-length internal
key token or as an update to the key storage file.

Before you use the Key Part Import2 verb for the first key part, you must use the
Key Token Build2 verb to create the variable-length internal key token into which
the key will be imported. Subsequent key parts are combined with the first part in
variable-length internal key token form, or as a label from the key storage file.

The preferred way to specify key parts is FIRST, ADD-PART, and COMPLETE in
the rule_array. Only when the combined key parts have been marked as complete
can the key token be used in any cryptographic operation. The partial key can be
passed to the Key Token Change2 verb for re-encipherment, in case building the
key was started during a master key change operation. The partial key can be
passed to the Key Token Parse verb, in order to discover how the key token was
originally specified, if researching an old partial key. Partial keys can also be
passed to the Key Test, Key Test2, and Key Test Extended verbs.

Key parts can also be specified as FIRST, MIDDLE, or LAST in the rule_array.
ADD-PART or MIDDLE can be executed multiple times for as many key parts as
necessary. Only when the LAST part has been combined can the key token be used
by any other verb.

New applications should employ the ADD-PART and COMPLETE keywords in
lieu of the MIDDLE and LAST keywords in order to ensure a separation of
responsibilities between someone who can add key-part information and someone
who can declare that appropriate information has been accumulated in a key.

On each call to Key Part Import2 (except with the COMPLETE keyword), specify
the number of bits to use for the clear key part. Place the clear key part in the
key_part parameter, and specify the number of bits using the key_part_length
variable. Any extraneous bits of key_part data will be ignored.

Consider using the Key Test2 verb to ensure a correct key value has been
accumulated prior to using the COMPLETE option to mark the key as fully
operational.

Key Part Import (CSNBKPI)

Chapter 8. AES, DES, and HMAC cryptographic keys 241

Format
The format of CSNBKPI2.

CSNBKPI2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_part_bit_length,
key_part,
key_identifier_length,
key_identifier)

Parameters
The parameters for CSNBKPI2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 2 or 3.

rule_array

Direction: Input
Type: String array

The rule_array contains keywords that provide control information to the verb.
The keywords must be in contiguous storage with each of the keywords
left-aligned in its own 8-byte location and padded on the right with blanks.
The rule_array keywords are described in Table 69.

Table 69. Keywords for Key Part Import2 control information

Keyword Description

Token algorithm (Required)

HMAC Specifies to import an HMAC key token.

AES Specifies to import an AES key token.

Key part (One required)

FIRST This keyword specifies that an initial key part is being entered. This verb returns this key-part
encrypted by the master key in the key token that you supplied.

ADD-PART This keyword specifies that additional key-part information is provided.

COMPLETE This keyword specifies that the key-part bit shall be turned off in the control vector of the key
rendering the key fully operational. Note that no key-part information is added to the key with this
keyword.

Key Part Import2 (CSNBKPI2)

242 Common Cryptographic Architecture Application Programmer's Guide

Table 69. Keywords for Key Part Import2 control information (continued)

Keyword Description

RETRKPR A key label must be passed as the key_identifier. This key label corresponds to a key stored in an
internal register inside the cryptographic coprocessor (not in host key storage). The key in that
register has been loaded by label and key part securely form the TKE. The RETRKPR keyword for
CSNBKPI allows the user to tell the card to wrap that key loaded from the TKE (it must be in the
complete state) using the master key, place it in an internal token, and return that token to the user.

This keyword applies only when using IBM Z .

Split knowledge (Optional, required when keyword FIRST is used)

MIN3PART Specifies that the key must be entered in at least three parts.

MIN2PART Specifies that the key must be entered in at least two parts.

MIN1PART Specifies that the key must be entered in at least one part.

key_part_bit_length

Direction: Input
Type: Integer

The length of the clear key in bits. This indicates the bit length of the key
supplied in the key_part field. For FIRST and ADD-PART keywords, valid
values are 80 - 2048 for HMAC keys, or 128, 192, or 256 for AES keys. The
value must be 0 for the COMPLETE keyword.

key_part

Direction: Input
Type: String

This parameter is the clear key value to be applied. The key part must be
left-aligned. This parameter is ignored if COMPLETE is specified.

key_identifier_length

Direction: Input/Output
Type: Integer

On input, the length of the buffer for the key_identifier parameter. For labels,
the value is 64. The key_identifier must be left-aligned in the buffer. The buffer
must be large enough to receive the updated token. The maximum value is
725. The output token will be longer when the first key part is imported.

On output, the actual length of the token returned to the caller. For labels, the
value will be 64.

key_identifier

Direction: Input/Output
Type: String

The parameter containing an internal token or a 64-byte label of an existing
key storage file record. If rule_array is FIRST, the key is a skeleton token. If
rule_array is ADD-PART, this is an internal token or the label of a key storage
file record of a partially combined key. Depending on the input format, the
accumulated partial or complete key is returned as an internal token or as an
updated record in a key storage file. The returned key_identifier will be
encrypted under the current master key.

Key Part Import2 (CSNBKPI2)

Chapter 8. AES, DES, and HMAC cryptographic keys 243

||
|
|
|
|

|

Restrictions
The restrictions for CSNBKPI2.

None.

Required commands
The required commands for CSNBKPI2.

This verb requires the following commands to be enabled in the active role:

Rule-array keyword Offset Command

FIRST and MIN3PART X'0297' Key Part Import2 - Load first key part,
require 3 key parts

FIRST and MIN2PART X'0298' Key Part Import2 - Load first key part,
require 2 key parts

FIRST and MIN1PART X'0299' Key Part Import2 - Load first key part,
require 1 key parts

ADD-PART X'029A' Key Part Import2 - Add second of 3 or more
key parts

X'029B' Key Part Import2 - Add last required key
part

X'029C' Key Part Import2 - Add optional key part

COMPLETE X'029D' Key Part Import2 - Complete key

To disable the wrapping of a key with a weaker master key, the Prohibit weak
wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

To receive a warning when wrapping a key with a weaker master key, enable the
Warn when weak wrap - Master keys command (offset X'0332') in the active role.
The Prohibit weak wrapping - Master keys command overrides this command.

Usage notes
The usage notes for CSNBKPI2.

On each call to Key Part Import2, also specify a rule-array keyword to define the
service action: FIRST, ADD-PART, or COMPLETE.
v With the FIRST keyword, the input key-token must be a skeleton token (no key

material). Use of the FIRST keyword requires that the Load First Key Part2
access control point be enabled in the default role.

v With the ADD-PART keyword, the service XORs the clear key-part with the key
value in the input key-token. Use of the ADD-PART keyword requires that an
Add Key Part2 access control point be enabled in the default role. The key
remains incomplete in the updated key token returned from the service.

v With the COMPLETE keyword, the KEY-PART bit is set off in the updated key
token that is returned from the service. Use of the COMPLETE keyword
requires that the Complete Key Part2 access control point be enabled in the
default role. The key_part_bit_length parameter must be set to zero.

Key Part Import2 (CSNBKPI2)

244 Common Cryptographic Architecture Application Programmer's Guide

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKPI2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKPI2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_part_bit_length,
hikmNativeNumber key_part,
hikmNativeNumber key_identifier_length,
hikmNativeNumber key_identifier);

Key Test (CSNBKYT)
Use the Key Test verb to generate or verify the value of either a master key, an
internal AES key or key-part, or an internal DES key or key-part.

A key to test can be in the clear or encrypted under the master key. Keywords in
the rule_array parameter specify whether the verb generates or verifies a
verification pattern.

This algorithm is supported for clear and encrypted single and double length keys.
Single, double and triple length keys are also supported with the ENC-ZERO
algorithm. Clear triple length keys are not supported. See “Cryptographic
key-verification techniques” on page 1021.

With the default method, the verb generates a verification pattern and it creates
and cryptographically processes a random number. This verb returns the random
number with the verification pattern.

For historical reasons, the verification information is passed in two 8-byte variables
pointed to by the value_1 and value_2 parameters. The GENERATE option uses
these variables for output, and the VERIFY option uses these variables as input.
For VERIFY, the verb returns a warning of return code 4, reason code 1 if the
information provided in these variables does not match the calculated values.

Table 71 on page 246 describes the use of the value_1 and value_2 variables for each
of the available verification-process rule keywords.

This document uses new names for two of the parameters. The former names were
misleading because they no longer reflected the use of these parameters. The
header file, csulincl.h, continues to use the former names. See Table 70.

Table 70. Key Test parameter changes

Current name (used in this document) Former name (used in header file)

value_1 random_number

value_2 verification_pattern

Key Part Import2 (CSNBKPI2)

Chapter 8. AES, DES, and HMAC cryptographic keys 245

Table 71. Key Test GENERATE outputs and VERIFY inputs

Verification-process rule
GENERATE outputs and VERIFY inputs

value_1 variable value_2 variable

ENC-ZERO Unused Contains the 4-byte KVP in the
high-order 4 bytes of the variable,
taken from the high-order 4 bytes of
the encrypted result. The low-order 4
bytes of the variable are unspecified.

MDC-4 Contains the 8-byte KVP taken from
the high-order 8 bytes of the MDC-4
hash value.

Contains the low-order 8 bytes of the
MDC-4 hash value.

SHA-1 Contains the 8-byte KVP taken from
the high-order 8 bytes of the SHA-1
hash value.

Contains the low-order 8 bytes of the
SHA-1 hash value.

SHA-256 Unused Contains the 8-byte KVP taken from
the high-order 8 bytes of the
SHA-256 hash value.

No keyword, and first and third
parts of the master key have different
values

Same as SHA-1 Same as SHA-1

No keyword, and first and third
parts of the master key have the
same value

Contains the 8-byte KVP taken from
the result of the z/OS-based
master-key verification method.

Unused

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBKYT.

CSNBKYT(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier,
value_1,
value_2)

This document uses new names for two of the parameters. The former names were
misleading because they no longer reflected the use of these parameters. The
header file, csulincl.h, continues to use the former names. See Table 70 on page
245.

Parameters
The parameters for CSNBKYT.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input

Key Test (CSNBKYT)

246 Common Cryptographic Architecture Application Programmer's Guide

|

Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 2, 3, 4, or 5.

rule_array

Direction: Input
Type: String array

Two to five keywords provide control information to the verb. The keywords
must be in contiguous storage with each of the keywords left-aligned in its
own 8-byte location and padded on the right with blanks. The rule_array
keywords are described in Table 72.

Table 72. Keywords for Key Test control information

Keyword Description

Key rule (One, required)

KEY-CLR Specifies the key supplied in key_identifier is a single-length clear key.

KEY-CLRD Specifies the key supplied in key_identifier is a double-length clear key.

KEY-ENC Specifies the key supplied in key_identifier is a single-length encrypted key.

KEY-ENCD Specifies the key supplied in key_identifier is a double-length encrypted key.

KEY-KM Specifies that the target is the master key register.

KEY-NKM Specifies that the target is the new master-key register.

KEY-OKM Specifies that the target is the old master-key register.

CLR-A128 Process a 128-bit AES clear-key or clear-key part.

CLR-A192 Process a 192-bit AES clear-key or clear-key part.

CLR-A256 Process a 256-bit AES clear-key or clear-key part.

TOKEN Process an AES clear or encrypted key contained in an AES key-token.

Master-key selector (One, optional). Use only with KEY-KM, KEY-NKM, or KEY-OKM keywords.

AES-MK Process one of the AES master-key registers.

APKA-MK Process one of the APKA master-key registers. This keyword was introduced with CCA
4.1.0.

ASYM-MK Specifies use of only the asymmetric master-key registers.

SYM-MK Specifies use of only the symmetric master-key registers.

Process rule (One, required)

GENERATE Generate a verification pattern for the key supplied in key_identifier.

VERIFY Verify a verification pattern for the key supplied in key_identifier.

Parity adjustment (One, optional)

ADJUST Adjust the parity of test key to odd before generating or verifying the verification pattern.
The key_identifier field itself is not adjusted.

NOADJUST Do not adjust the parity of test key to odd before generating or verifying the verification
pattern. This is the default.

Verification process rule (One, optional). See “Cryptographic key-verification techniques” on page 1021.

ENC-ZERO Specifies use of the "encrypted zeros" method. Use only with KEY-CLR, KEY-CLRD,
KEY-ENC, or KEY-ENCD keywords.

MDC-4 Specifies use of the MDC-4 master key verification method. Use only with the KEY-KM,
KEY-NKM, or KEY-OKM keywords. You must specify one master-key selector keyword to
use this keyword.

Key Test (CSNBKYT)

Chapter 8. AES, DES, and HMAC cryptographic keys 247

Table 72. Keywords for Key Test control information (continued)

Keyword Description

SHA-1 Specifies use of the SHA-1 master-key-verification method. Use only with KEY-KM,
KEY-NKM, or KEY-OKM keywords. You must specify one master-key selector keyword to
use this keyword.

SHA-256 Specifies use of the SHA-256 master-key-verification method.

No keyword, and first
and third parts of the
master key have
different values.

Defaults to the use of the SHA-1 master-key verification method when the ASYM-MK or
SYM-MK master-key selector keyword is specified.

No keyword, and first
and third parts of the
master key have the
same value.

Defaults to the use of the IBM z/OS-based master-key verification method when the
ASYM-MK or SYM-MK master-key selector keyword is specified.

key_identifier

Direction: Input/Output
Type: String

The key for which to generate or verify the verification pattern. The parameter
is a 64-byte string of an internal token, key label, or a clear key value
left-aligned.

Note: If you supply a key label for this parameter, it must be unique in the
key storage file.

value_1

Direction: Input/Output
Type: String

A pointer to a string variable. See Table 71 on page 246 for how this variable is
used. For process rule GENERATE this parameter is output only, and for
process rule VERIFY it is input only. This variable must be specified, even if it
is not used. With the ENC-ZERO method, this parameter is not used.

value_2

Direction: Input/Output
Type: String

A pointer to a string variable. See Table 71 on page 246 for how this variable is
used. For process rule GENERATE this parameter is output only, and for
process rule VERIFY it is input only. This variable must be specified, even if it
is not used. With the ENC-ZERO method, the high-order four bytes contain
the verification data. For more detail, see “Cryptographic key-verification
techniques” on page 1021.

Restrictions
The restrictions for CSNBKYT.

None.

Required commands
The required commands for CSNBKYT.

Key Test (CSNBKYT)

248 Common Cryptographic Architecture Application Programmer's Guide

In order to access key storage, this verb requires the Compute Verification
Pattern command (offset X'001D') to be enabled in the active role.

Usage notes
The usage notes for CSNBKYT.

You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms, that
is, clear, operational or external.

The parity of the key is not tested.

For triple-length keys, use KEY-ENC or KEY-ENCD with ENC-ZERO. Clear
triple-length keys are not supported.

In the Transaction Security System, KEY-ENC or KEY-ENCD both support
enciphered single-length and double-length keys. They use the key-form bits in
byte 5 of CV to determine the length of the key. To be consistent, in this
implementation of CCA, both KEY-ENC and KEY-ENCD handle single- and
double-length keys. Both products effectively ignore the keywords, which are
supplied only for compatibility reasons.

This document uses new names for two of the parameters. The former names were
misleading because they no longer reflected the use of these parameters. The
header file, csulincl.h, continues to use the former names. See Table 70 on page
245.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKYTJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKYTJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_identifier,
byte[] value_1,
byte[] value_2);

Key Test2 (CSNBKYT2)
Use the Key Test2 verb to generate or verify a secure, cryptographic verification
pattern for keys contained in a variable-length symmetric key-token.

A key to test can be in the clear or encrypted under the master key. In addition,
the verb permits you to test the CCA master keys. Keywords in the rule_array
parameter specify whether the verb generates or verifies a verification pattern. See
“Cryptographic key-verification techniques” on page 1021.

Key Test (CSNBKYT)

Chapter 8. AES, DES, and HMAC cryptographic keys 249

|
|

When the verb tests a verification pattern against a key, you must supply the
verification pattern from a previous call to Key Test2. This verb returns the
verification result in the return code and reason code.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBKYT2.

CSNBKYT2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_encrypting_key_identifier_length,
key_encrypting_key_identifier,
reserved_length,
reserved,
verification_pattern_length,
verification_pattern)

Parameters
The parameters for CSNBKYT2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 2, 3, 4, or 5.

rule_array

Direction: Input
Type: String array

The rule_array contains keywords that provide control information to the verb.
The keywords must be in contiguous storage with each of the keywords
left-aligned in its own 8-byte location and padded on the right with blanks.
The rule_array keywords are described in Table 73.

Table 73. Keywords for Key Test2 control information

Keyword Description

Token algorithm (Required)

AES Specifies that the key token is an AES key token.

DES Specifies that the key token is a DES token. CCA internal, CCA
external, and TR-31 token types are supported. Clear keys are not
supported for this rule.

HMAC Specifies that the key token is an HMAC key token.

Key Test2 (CSNBKYT2)

250 Common Cryptographic Architecture Application Programmer's Guide

|

Table 73. Keywords for Key Test2 control information (continued)

Keyword Description

Process rule (One required)

GENERATE Generate a verification pattern and an associated random number
for the input key or key part for the specified key.

VERIFY Verify that a verification pattern matches the specified key.

Key verification pattern (KVP) calculation algorithm (One optional). See “Cryptographic
key-verification techniques” on page 1021.

CMACZERO Specifies to use the CMAC-ZERO method for the key verification
pattern (KVP) calculation for AES and DES keys. Calculates the
KVP by performing the NIST SP 800-38B block cipher-based MAC
(CMAC) algorithm on a data block filled with bytes valued to
X'00'. For AES, the data block is 16 bytes, and for DES the data
block is 8 bytes. Not valid with HMAC.

ENC-ZERO KVP calculation using the ENC-ZERO method for AES and DES
keys: the KVP is calculated by encrypting a data block filled with
X'00' bytes.

This is the default for DES keys. Not valid with HMAC. This
method is only available for AES if the Key Test2 - AES, ENC-ZERO
access control point (offset X'0021)' is enabled.

SHA-256 Verification pattern will be calculated for an AES token using the
same method as the Key Test verb, with the SHA-256 rule.

This rule can be used to verify that the same key value is present
in a version X'04' DATA token and version X'05' AES CIPHER
token or to verify that the same key value is present in a version
X'05' AES IMPORTER/EXPORTER pair.

SHA2VP1 Specifies to use the SHA-256 based verification pattern calculation
algorithm. Valid only with HMAC. This is the default for HMAC.
For more information, see “SHAVP1 algorithm” on page 1024.

Token type rule (Required if TR-31 token passed and token algorithm DES is specified. Not
valid otherwise.)

TR-31 Specifies that key_identifier contains a TR-31 key block.

AESKWCV Specifies that the key_identifier contains an external variable
length symmetric key token whose type is DESUSECV. The
IKEK-AES keyword must be specified for the KEK identifier rule.

KEK identifier rules (Optional - see defaults. One required if the AESKWCV token type is
specified.)

IKEK-AES The wrapping KEK for the key to test is an AES KEK. This is the
default for AES and HMAC token algorithms, and is not allowed
with DES.

IKEK-DES The wrapping KEK for the key to test is a DES KEK. This is the
default for DES token algorithm, and is only allowed with DES
token algorithm.

IKEK-PKA The wrapping KEK for the key to test is an RSA or (other key
stored in PKA key storage.) This is not the default for any token
algorithm, and must be specified if an RSA KEK is used. This rule
is not allowed with DES token algorithm.

Verification pattern length rule (Optional - May only be used with both rules DES and
CMACZERO specified, otherwise not allowed.)

VPLEN3 Specifies that a 3-byte verification pattern is calculated. This is the
default.

Key Test2 (CSNBKYT2)

Chapter 8. AES, DES, and HMAC cryptographic keys 251

|
|

|
|

||
|

Table 73. Keywords for Key Test2 control information (continued)

Keyword Description

VPLEN5 Specifies that a 5-byte verification pattern is calculated.

key_identifier_length

Direction: Input
Type: Integer

The length of the key_identifier in bytes. The maximum value is 9992.

key_identifier

Direction: Input
Type: String

A pointer to the key for which to generate or verify the verification pattern.
The parameter is a variable length string of an internal token or the 64-byte
label of a key in key storage. This token may be a DES internal or external
token, AES internal version X'04' token, internal or external variable-length
symmetric token, or a TR-31 key block. Clear DES tokens are not supported. If
an internal token was supplied and was encrypted under the old master key,
the token will be returned encrypted under the current master key.

key_encrypting_key_identifier_length

Direction: Input
Type: Integer

The byte length of the key_encrypting_key_identifier parameter. When
key_identifier is an internal token, the value must be zero.

If key_encrypting_key_identifier is a label for a record in key storage, the value
must be 64. If the key_encrypting_key_identifier is an AES KEK, the value must
be between the actual length of the token and 725. If the
key_encrypting_key_identifier is a DES KEK, the value must be 64. If
key_encrypting_key_identifier is an RSA KEK, the maximum length is 3500.

key_encrypting_key_identifier

Direction: Input/Output
Type: String

When key_encrypting_key_identifier_length is non-zero, the
key_encrypting_key_identifier contains an internal key token containing the
key-encrypting key, or a key label. If the key identifier supplied was an AES or
DES token encrypted under the old master key, the token will be returned
encrypted under the current master key.

reserved_length

Direction: Input
Type: Integer

The byte length of the reserved parameter. This value must be 0.

reserved

Direction: Input/Output
Type: String

This parameter is ignored.

Key Test2 (CSNBKYT2)

252 Common Cryptographic Architecture Application Programmer's Guide

||

verification_pattern_length

Direction: Input/Output
Type: Integer

The length in bytes of the verification_pattern parameter.

On input: for GENERATE the length must be at least 8 bytes; for VERIFY the
length must be 8 bytes.

On output for GENERATE the length of the verification pattern returned.

verification_pattern

Direction: Input/Output
Type: String

For GENERATE, the verification pattern generated for the key.

For VERIFY, the supplied verification pattern to be verified.

Restrictions
The restrictions for CSNBKYT2.

The key_identifier parameter must not identify a key label when the input key is
in a TR-31 key block.

Required commands
The required commands for CSNBKYT2.

In order to access key storage, this verb also requires the Compute Verification
Pattern command (offset X'001D') to be enabled in the active role.

The commands shown in Table 74 must be enabled in the active role for each
combination of KVP calculation algorithm and token algorithms:

Table 74. Required commands for CSNBKYT2

Key verification
pattern
calculation

Token
algorithm Offset Command

ENC-ZERO AES X'0021' Key Test2 - AES, ENC-ZERO (not required
for algorithm keyword DES)

CMACZERO AES X'0022' Key Test2 - AES, CMAC-ZERO

CMACZERO DES X'0023' Key Test2 - DES, CMAC-ZERO

Usage notes
The usage notes for CSNBKYT2.

You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms, that
is, clear, operational or external.

Key Test2 (CSNBKYT2)

Chapter 8. AES, DES, and HMAC cryptographic keys 253

|
|

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKYT2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKYT2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length,
byte[] key_identifier,
hikmNativeNumber key_encrypting_key_identifier_length,
byte[] key_encrypting_key_identifier,
hikmNativeNumber reserved_length,
byte[] reserved,
hikmNativeNumber verification_pattern_length,
byte[] verification_pattern);

Key Test Extended (CSNBKYTX)
This verb is essentially the same as Key Test (CSNBKYT).

For further information, see “Key Test (CSNBKYT)” on page 245. The differences
are:
v In addition to operating on internal keys and key parts, this verb also operates

on external keys and key parts.
v This verb does not operate on clear keys, and does not accept rule_array

keywords CLR-A128, CLR-A192, CLR-A256, KEY-CLR, and KEY-CLRD.

See also “Key Test (CSNBKYT)” on page 245 for operating only on internal keys.

Use this verb to verify the value of a key or key part in an external or internal key
token. This verb supports two options:

GENERATE
To compute and return a verification pattern for a specified key.

VERIFY
To verify that a passed verification pattern is correct for the specified key.

The verification pattern and the verification process do not reveal any
information about the value of the tested key, other than equivalency of
two key values. Several verification algorithms are supported.

This verb supports testing of AES, DES, and PKA master keys, and enciphered
keys or key parts. rule_array keywords are used to specify information about the
target key that is not implicit from other verb parameters.

When testing the master keys, there are two sets of rule_array keywords to indicate
what key to test:
1. The SYM-MK, ASYM-MK, and AES-MK master-key selector keywords

indicate whether to test the DES (symmetric) master key, the PKA (asymmetric)
master key, or the AES master key.

Key Test2 (CSNBKYT2)

254 Common Cryptographic Architecture Application Programmer's Guide

2. The KEY-KM, KEY-NKM, and KEY-OKM key or key-part rule_array keywords
choose among the current-master-key register, the new-master-key register, and
the old-master-key register.

Not specifying a master-key selector keyword (SYM-MK, ASYM-MK, or AES-MK)
means that the DES (symmetric) and PKA (asymmetric) master keys have the same
value, and that you want to test that value.

Several key test algorithms are supported by the verb. See “Cryptographic
key-verification techniques” on page 1021. Some are implicitly selected based on
the type of key you are testing, while others are optional and selected by
specifying a verification process rule keyword. You can specify one of the
following:
1. The ENC-ZERO keyword to encrypt a block of binary zeros with the specified

key. This verb returns the leftmost 32 bits of the encryption result as the
verification pattern. The encrypted block consists of 16 bytes of binary zeros for
AES, and eight bytes for DES and Triple-DES keys. This method is valid only
with the TOKEN keyword for AES, and KEY-ENC and KEY-ENCD keywords
for DES.

2. The MDC-4 keyword to compute a 16-byte verification pattern using the
MDC-4 algorithm. This keyword is valid only when computing the verification
pattern for a DES (symmetric) or PKA (asymmetric) master key.

3. The SHA-1 keyword to compute the verification pattern using the SHA-1
hashing method. This keyword is valid only when computing the verification
pattern for the DES (symmetric) or PKA (asymmetric) master key.

4. The SHA-256 keyword to compute the verification pattern using the SHA-256
hashing method. This keyword is valid only when computing the verification
pattern for an AES key.

Table 71 on page 246 describes the use of the random_number and verification_pattern
fields for each of the available verification methods.

Note: For historical reasons, the verification information is passed in two 8-byte
variables pointed to by the random_number and verification_pattern parameters. The
GENERATE option returns information in these two variables, and the VERIFY
option uses the information provided in these two variables. If the verb cannot
verify the information provided, it returns a return code of 4 and a reason code of
1. For simplicity, these two variables can be two 8-byte elements of a 16-byte array,
which is processed by your application program as a single quantity. Both
parameters must be coded when calling the API.

DES and Triple-DES keys reserve the low-order bit of each byte for parity. If parity
is used, the low-order bit is set so that the total number of B'1' bits in the byte is
odd. These parity adjustment keywords allow you to control how the Key Test
Extended verb handles the parity bits:

NOADJUST
Specifies not to alter the parity bit values in any way. This is the default.

ADJUST
Specifies to modify the low-order bit of each byte as necessary for odd
parity.

Key Test Extended (CSNBKYTX)

Chapter 8. AES, DES, and HMAC cryptographic keys 255

This is done on the cleartext value of the key before the verification pattern
is computed. The parity adjustment is performed only on a temporary
copy of the key within the card, and does not affect the key value in the
key_identifier parameter.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBKYTX.

CSNBKYTX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier,
random_number,
verification_pattern
kek_key_identifier)

Parameters
The parameters for CSNBKYTX.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 2, 3, 4, or 5.

rule_array

Direction: Input
Type: String array

Between two and five keywords provide control information to the verb. The
keywords must be in contiguous storage with each of the keywords
left-aligned in its own 8-byte location and padded on the right with blanks.
The rule_array keywords are described in Table 75.

Table 75. Keywords for Key Test Extended control information

Keyword Description

Process rule (One required)

GENERATE Generate a verification pattern for the key supplied in key_identifier.

VERIFY Verify a verification pattern for the key supplied in key_identifier.

Key or key-part rule (One required)

KEY-ENC Specifies that the key supplied in key_identifier is a single-length encrypted key.

KEY-ENCD Specifies that the key supplied in key_identifier is a double-length encrypted key.

KEY-KM Specifies that the target is the master key register.

Key Test Extended (CSNBKYTX)

256 Common Cryptographic Architecture Application Programmer's Guide

|

Table 75. Keywords for Key Test Extended control information (continued)

Keyword Description

KEY-NKM Specifies that the target is the new master-key register.

KEY-OKM Specifies that the target is the old master-key register.

TOKEN Process an AES clear or encrypted key contained in an AES key-token.

Master-key selector (One, optional). Use only with KEY-KM, KEY-NKM, or KEY-OKM keywords. The default is to
process the ASYM-MK and SYM-MK key registers, which must have the same key for the default to be valid.

AES-MK Process one of the AES master-key registers.

APKA-MK Process one of the APKA master-key registers. This keyword was introduced with CCA 4.1.0.

ASYM-MK Specifies use of only the asymmetric master-key registers.

SYM-MK Specifies use of only the symmetric master-key registers.

Parity adjustment (One, optional) Not valid with the AES-MK Master-key selector keyword.

ADJUST Adjust the parity of test key to odd before generating or verifying the verification pattern. The
key_identifier field itself is not adjusted.

NOADJUST Do not adjust the parity of test key to odd before generating or verifying the verification pattern. This
is the default.

Verification process rule (One, optional) For the AES master key, SHA-256 is the default. For the DES or PKA
master keys, the default is SHA-1 if the first and third parts of the key are different, or the IBM z/OS method if the
first and third parts of the key are the same.

ENC-ZERO Specifies use of the "encrypted zeros" method. Use only with the KEY-CLR, KEY-CLRD, KEY-ENC,
or KEY-ENCD keywords.

MDC-4 Specifies use of the MDC-4 master key verification method. Use only with the KEY-KM, KEY-NKM,
or KEY-OKM keywords. You must specify one master-key selector keyword to use this keyword.

SHA-1 Specifies use of the SHA-1 master-key-verification method. Use only with the KEY-KM, KEY-NKM,
or KEY-OKM keywords. You must specify one master-key selector keyword to use this keyword.

SHA-256 Specifies use of the SHA-256 master-key-verification method.

key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an internal or external key-token, a
key label that identifies an internal or external key-token record, or a clear key.

The key token contains the key or the key part used to generate or verify the
verification pattern.

random_number

Direction: Input/Output
Type: String

A pointer to a string variable containing a number the verb might use in the
verification process. When you specify the GENERATE keyword, the verb
returns the random number. When you specify the VERIFY keyword, you
must supply the number. With the ENC-ZERO method, the random_number
variable is not used but must be specified.

verification_pattern

Direction: Input/Output
Type: String

Key Test Extended (CSNBKYTX)

Chapter 8. AES, DES, and HMAC cryptographic keys 257

A pointer to a string variable containing the binary verification pattern. When
you specify the GENERATE keyword, the verb returns the verification pattern.
When you specify the VERIFY keyword, you must supply the verification
pattern. With the ENC-ZERO method, the verification data occupies the
high-order four bytes, while the low-order four bytes are unspecified (the data
is passed between your application and the cryptographic engine but is
otherwise unused). For more detail, see “Cryptographic key-verification
techniques” on page 1021.

kek_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an operational key-token or the key
label of an operational key-token record containing an IMPORTER or
EXPORTER key-encrypting key. If the key_identifier parameter does not identify
an external key-token, the contents of the kek_key_identifier variable should
contain a null DES key-token.

Restrictions
The restrictions for CSNBKYTX.

None.

Required commands
The required commands for CSNBKYTX.

In order to access key storage, this verb requires the Compute Verification
Pattern command (offset X'001D') to be enabled in the active role.

To enable warning for the case when the rule-array keyword is inconsistent with
the key length, enable the command Key Test - Warn when keyword inconsistent
with key length (offset X'01CB').

Usage notes
The usage notes for CSNBKYTX.

You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms: clear,
operational, or external.

The parity of the key is not tested.

For triple-length keys, use KEY-ENC or KEY-ENCD with ENC-ZERO. Clear
triple-length keys are not supported.

In the Transaction Security System, KEY-ENC and KEY-ENCD both support
enciphered single-length and double-length keys. They use the key-form bits in
byte 5 of the control vector (CV) to determine the length of the key. To be
consistent, in this implementation of CCA, both KEY-ENC and KEY-ENCD handle
single- and double-length keys. Both products effectively ignore the keywords,
which are supplied only for compatibility reasons.

Key Test Extended (CSNBKYTX)

258 Common Cryptographic Architecture Application Programmer's Guide

|

|
|

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKYTXJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKYTXJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_identifier,
byte[] random_number,
byte[] verification_pattern,
byte[] kek_key_identifier);

Key Token Build (CSNBKTB)
The Key Token Build verb assembles a fixed-length symmetric key-token in
application storage from information you supply, either as an internal fixed-length
AES or DES key-token, or as an external fixed-length DES token. CCA does not
support fixed-length external AES key tokens,

This verb can include a control vector that you supply or can build a control vector
based on the key type and the control vector related keywords in the rule_array.
The Key Token Build verb does not perform cryptographic services on any key
value. You cannot use this verb to change a key or to change the control vector
related to a key.

Format
The format of CSNBKTB.

CSNBKTB(
return_code,
reason_code,
exit_data_length,
exit_data,
key_token,
key_type,
rule_array_count,
rule_array,
key_value,
reserved_1,
reserved_2,
token_data,
control_vector,
reserved_4,
reserved_5,
reserved_6,
master_key_verification_pattern)

Note: Previous implementations used the reserved_1 parameter to point to a
four-byte integer or string that represented the master key verification pattern. In
current versions, CCA requires this parameter to point to a four-byte value equal
to binary zero.

Key Test Extended (CSNBKYTX)

Chapter 8. AES, DES, and HMAC cryptographic keys 259

Parameters
The parameters for CSNBKTB.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_token

Direction: Input/Output
Type: String

The key_token parameter is a pointer to a string variable containing the
assembled key_token.

Note: This variable cannot contain a key label.

key_type

Direction: Input
Type: String

The key_type parameter is a pointer to a string variable containing a keyword
that defines the key type. The keyword is eight bytes in length and must be
left-aligned and padded on the right with space characters.

Valid AES key type keywords are:
CLRAES DATA

Valid DES key type keywords are:
CIPHER CVARXCVL DKYGENKY MAC USE-CV
CIPHERXI CVARXCVR ENCIPHER MACVER
CIPHERXL DATA EXPORTER OKEYXLAT
CIPHERXO DATAC IKEYXLAT OPINENC
CVARDEC DATAM IMPORTER PINGEN
CVARENC DATAMV IPINENC PINVER
CVARPINE DECIPHER KEYGENKY SECMSG

Specify the USE-CV keyword to indicate that the key type should be obtained
from the control_vector variable.

rule_array_count

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, 3, 4, 5, or 6.

rule_array

Direction: Output
Type: String array

One to four keywords that provide control information to the verb. The
keywords must be in contiguous storage with each of the keywords
left-aligned in its own 8-byte location and padded on the right with blanks. For
any key type, there are no more than four valid rule_array values. The
rule_array keywords are described in Table 76.

Table 76. Keywords for Key Token Build control information

Keyword Description

Token type (One required)

Key Token Build (CSNBKTB)

260 Common Cryptographic Architecture Application Programmer's Guide

Table 76. Keywords for Key Token Build control information (continued)

Keyword Description

EXTERNAL An external key token. Valid only for DES keys.

INTERNAL An internal key token. Valid for both AES and DES keys.

Token algorithm (One, optional)

AES An AES key. Only valid for CLRAES or DATA. If CLRAES is
specified, this is the default token algorithm.

DES A DES key. Not valid for CLRAES. If CLRAES is not specified, this
is the default token algorithm.

Key status (One, optional).

KEY The key token to build will contain an encrypted key. The key_value
parameter identifies the field that contains the key.

NO-KEY The key token to build will not contain a key. This is the default
key status.

Key length (one keyword required for AES keys, one optional for DES keys)

KEYLN8 Single-length or 8-byte key. Valid only for DES keys.

KEYLN16 Specifies that the key is 16 bytes long.

KEYLN24 Specifies that the key is 24 bytes long.

KEYLN32 Specifies that the key is 32 bytes long. Valid only for AES keys.

DOUBLE Double-length or 16-byte key. Synonymous with KEYLN16. Valid
only for DES keys.

DOUBLE-O Double-length key with guaranteed unique 8-byte key halves. The
key is 16 bytes long. Valid only for DES keys.

MIXED Double-length key. Indicates that the key can either be a replicated
single-length key (both key halves equal), or a double-length key
with two different 8–byte values. Valid only for DES keys.

SINGLE Single-length or 8-byte key. Synonymous with KEYLN8. Valid only
for DES keys.

Key Part Indicator (optional). Valid only for DES keys.

KEY-PART This token is to be used as input to the Key Part Import service.

CV source (One, optional). Valid only for DES keys.

CV The verb is to obtain the control vector from the variable identified
by the control_vector parameter.

NO-CV The control vector is to be supplied based on the key type and the
control vector related keywords. This is the default.

Control vector on the link specification (optional). Valid only for IMPORTER and
EXPORTER.

CV-KEK This keyword indicates marking the KEK as a CV KEK. The
control vector is applied to the KEK prior to its use in encrypting
other keys. This is the default.

NOCV-KEK This keyword indicates marking the KEK as a NOCV KEK. The
control vector is not applied to the KEK prior to its use in
encrypting other keys.

Key-wrapping method (One, optional). Valid only for DES keys.

WRAP-ENH Use enhanced key wrapping method, which is compliant with the
ANSI X9.24 standard.

Key Token Build (CSNBKTB)

Chapter 8. AES, DES, and HMAC cryptographic keys 261

Table 76. Keywords for Key Token Build control information (continued)

Keyword Description

WRAP-ECB Use original key wrapping method, which uses ECB wrapping for
DES key tokens and CBC wrapping for AES key tokens.

Translation control (Optional). Valid only for DES keys.

ENH-ONLY Restrict re-wrapping of the output_key_token. After the token has
been wrapped with the enhanced method, it cannot be re-wrapped
using the original method.

Compliance (Optional)

COMP-TAG Generate a compliant-tagged key. While a skeleton key token with
the compliance-tag can be created at any time, the skeleton must
be passed to an adapter domain that is in PCI-HSM 2016
compliance mode to be provisioned with key material (either
generated or imported).

NCOMPTAG Do not generate a compliant-tagged key. This is the default.

See Figure 3 on page 48 for the key usage keywords that can be specified for a
given key type.

The difference between Key Token Parse (CSNBKTP) and Control Vector
Generate (CSNBCVG) is that Key Token Parse returns the rule_array keywords
that apply to a parsed token, such as EXTERNAL, INTERNAL, and so forth.
These rule_array parameters are returned in addition to the key_type parameter.
AMEX-CSC DKYL0 EPINGEN KEYLN16 UKPT
ANSIX9.9 DKYL1 EPINGENA LMTD-KEK VISA-PVV
ANY DKYL2 EPINVER MIXED WRAP-ECB
ANY-MAC DKYL3 EXEX NO-SPEC WRAP-ENH
CLR8-ENC DKYL4 EXPORT NO-XPORT XLATE
CPINENC DKYL5 GBP-PIN NOOFFSET XPORT-OK
CPINGEN DKYL6 GBP-PINO NOT-KEK
CPINGENA DKYL7 IBM-PIN OPEX
CVVKEY-A DMAC IBM-PINO OPIM
CVVKEY-B DMKEY IMEX PIN
DALL DMPIN IMIM REFORMAT
DATA DMV IMPORT SINGLE
DDATA DOUBLE INBK-PIN SMKEY
DEXP DPVR KEY-PART SMPIN
DIMP ENH-ONLY KEYLN8 TRANSLAT

key_value

Direction: Output
Type: String

This parameter is a pointer to a string variable containing the enciphered key
or AES clear-key value which is placed into the key field of the key token
when you use the KEY rule_array keyword. If the KEY keyword is not
specified, this parameter is ignored.

The length of this variable depends on the type of key that is provided. The
length is 16 bytes for DES keys. A single-length DES key must be left-aligned
and padded on the right with eight bytes of X'00'. For a clear AES key, the
length is 16 bytes for KEYLN16, 24 bytes for KEYLN24, and 32 bytes for
KEYLN32. An enciphered AES key is 32 bytes.

reserved_1

Direction: Output
Type: Integer

Key Token Build (CSNBKTB)

262 Common Cryptographic Architecture Application Programmer's Guide

|

||
|
|
|
|

||

This parameter is a pointer to an integer variable or a 4-byte string variable.
The value must be equal to an integer valued 0.

reserved_2

Direction: Output
Type: Integer

This parameters is a pointer to an integer variable. The value must be 0 or a
null pointer.

token_data

Direction: Input
Type: String

This parameter is unused for DES keys and cleartext AES keys. In either of
those cases it must be a null pointer or point to a string variable containing
eight bytes of binary zeros. For encrypted AES keys, this parameter is a pointer
to a one-byte string variable containing the LRC value for the key passed in
the key_value parameter. For more information on LRC values, see IBM CCA
Basic Services Reference and Guide for the IBM 4765 PCIe and IBM 4764 PCI-X
Cryptographic Coprocessors.

control_vector

Direction: Output
Type: String

A parameter is a pointer to a string variable. If you specify the CV keyword in
the rule_array, the contents of this variable are copied to the control vector field
of the fixed-length DES key token. If the CV keyword is not specified, this
keyword is ignored.

reserved_4

Direction: Output
Type: String

This parameter is a pointer to a string variable. The value must be binary zeros
or a null pointer.

reserved_5

Direction: Output
Type: Integer

This parameter is a pointer to an integer variable. The value must be 0 or a
null pointer.

reserved_6

Direction: Output
Type: String

This parameter is a pointer to an 8-byte string variable. The value must eight
space characters or a null pointer.

master_key_verification_pattern

Direction: Output
Type: String

Key Token Build (CSNBKTB)

Chapter 8. AES, DES, and HMAC cryptographic keys 263

This parameter is a pointer to a string variable containing the master-key
verification pattern of the master key used to encipher the key in the internal
key-token. The contents of the variable are copied into the MKVP field of the
of the key token when keywords INTERNAL and KEY are specified, and
key_type keyword CLRAES is not specified.

Restrictions
The restrictions for CSNBKTB.

None.

Required commands
The required commands for CSNBKTB.

None.

Usage notes
The usage notes for CSNBKTB.

Because 24-byte (TRIPLE) DES keys can only be generated as DATA keys,
capability to create 24-byte DES tokens (with keywords TRIPLE or KEYLN24 has
not been added to Key Token Build (CSNBKTB). Instead, call Key Generate
(CSNBKGN) directly.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKTBJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKTBJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_token,
byte[] key_type,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_value,
byte[] reserved_1,
hikmNativeNumber reserved_2,
byte[] token_data,
byte[] control_vector,
hikmNativeNumber reserved_4,
byte[] reserved_5,
byte[] reserved_6,
byte[] master_key_verification_pattern);

Key Token Build2 (CSNBKTB2)

Use the Key Token Build2 verb to assemble an external or internal AES or HMAC
variable-length symmetric key-token in application storage from information that
you supply.

Key Token Build (CSNBKTB)

264 Common Cryptographic Architecture Application Programmer's Guide

|
|
|

This verb assembles the information as a skeleton HMAC or AES key token. This
skeleton token can be supplied to the Key Generate2 verb, which then provides a
completed key token with the attributes of the skeleton along with a randomly
generated key. These attributes become cryptographically bound to the key when it
is enciphered.

The Key Token Build2 verb cannot assemble a usable key-token that contains an
enciphered key. It can assemble an internal HMAC or AES key token that has
either a clear key, usable for a limited number of services, or no key, which is only
usable for passing to the Key Generate2 verb in order to receive an enciphered key.

The Key Token Build2 verb is a host-only verb and it does not use the
cryptographic coprocessor. This verb does not perform cryptographic services on
any key value. You cannot use this verb to change a key or to change the control
vector related to a key.

Format
The format of CSNBKTB2.

CSNBKTB2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_bit_length,
clear_key_value,
key_name_length,
key_name,
user_associated_data_length,
user_associated_data,
token_data_length,
token_data,
verb_data_length,
verb_data,
target_key_token_length,
target_key_token)

Parameters
The parameters for CSNBKTB2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

The number of keywords you supplied in the rule_array parameter. The
minimum value is 4.

rule_array

Direction: Input
Type: String array

The rule_array contains keywords that provide control information to the verb.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 265

|

|

The keywords must be in contiguous storage with each of the keywords
left-aligned in its own 8-byte location and padded on the right with blanks.
The rule_array keywords are described in Table 77.

Table 77. Keywords for Key Token Build2

Keyword Description

Header section

Token identifier (one required)

EXTERNAL Specifies to build an external variable-length symmetric key-token.

INTERNAL Specifies to build an internal variable-length symmetric key-token.

Wrapping information section

Key status (one, optional)

NO-KEY Build the key token without a key value. This creates a skeleton key token that can later be supplied
to the Key Generate2 (CSNBKGN2) verb. This is the default.

KEY-CLR Build the key token with a clear key, AES CIPHER and HMAC MAC keys only.

Associated data section

Type of algorithm for which the key can be used (one required)

AES Specifies to build an AES key token.

HMAC Specifies to build an HMAC key token.

CPACF export control

XPRTCPAC Allow this key token to be exported as a CPACF protected key. When CSU_HCPUAPRT is enabled, and
this key token (or a label referring to this key token) is used, the key token is translated to CPACF
by the CCA library and the handle is used with the CPACF.
Note: Only usable with AES keys of key type CIPHER.

NOEXCPAC Do not allow this key token to be exported as a CPACF protected key. This is the default.

Key type (one required)

CIPHER Build a CIPHER key for encryption, decryption, and translation operations. AES algorithm only.
v Refer to Figure 5 on page 270 for valid rule array keyword combinations.
v Refer to Table 79 on page 270 for token offsets, offset values, and meanings of these keywords.
v Refer to Table 271 on page 904 for the format of the key token.

DKYGENKY Build a diversifying key generating key. AES algorithm only.
v Refer to Figure 6 on page 273 for valid rule array keyword combinations.
v Refer to Table 80 on page 274 for token offsets, offset values, and meanings of these keywords.
v Refer to “AES DKYGENKY variable-length symmetric key token” on page 951 for the format of

the key token.

EXPORTER Build an EXPORTER key-encrypting key. AES algorithm only.
v Refer to Figure 7 on page 277 for valid rule array keyword combinations.
v Refer to Table 81 on page 278 for token offsets, offset values, and meanings of these keywords.
v Refer to “AES EXPORTER and IMPORTER variable-length symmetric key token” on page 927 for

the format of the key token.

IMPORTER Build an IMPORTER key-encrypting key. AES algorithm only.
v Refer to Figure 7 on page 277 for valid rule array keyword combinations.
v Refer to Table 81 on page 278 for token offsets, offset values, and meanings of these keywords.
v Refer to “AES EXPORTER and IMPORTER variable-length symmetric key token” on page 927 for

the format of the key token.

Key Token Build2 (CSNBKTB2)

266 Common Cryptographic Architecture Application Programmer's Guide

|

||
|
|
|

||

Table 77. Keywords for Key Token Build2 (continued)

Keyword Description

MAC Build a MAC key for message authentication code operations. AES and HMAC algorithms only.

For AES:
v Refer to Figure 9 on page 285 for valid rule array keyword combinations.
v Refer to Table 83 on page 285 for token offsets, offset values, and meanings of these keywords.
v Refer to “AES MAC variable-length symmetric key token” on page 911 for the format of the key

token.

For HMAC:
v Refer to Figure 10 on page 288 for valid rule array keyword combinations.
v Refer to Table 84 on page 288 for token offsets, offset values, and meanings of these keywords.
v Refer to “HMAC MAC variable-length symmetric key token” on page 920 for the format of the

key token.

PINCALC Build a DK PIN calculating key. AES algorithm only.
v Refer to Figure 11 on page 291 for valid rule array keyword combinations.
v Refer to Table 85 on page 291 for token offsets, offset values, and meanings of these keywords.
v Refer to “AES PINPROT, PINCALC, and PINPRW variable-length symmetric key token” on page

938 for the format of the key token.

PINPROT Build a DK PIN protection key. AES algorithm only.
v Refer to Figure 12 on page 293 for valid rule array keyword combinations.
v Refer to Table 86 on page 294 for token offsets, offset values, and meanings of these keywords.
v Refer to “AES PINPROT, PINCALC, and PINPRW variable-length symmetric key token” on page

938 for the format of the key token.

PINPRW Build a DK PIN PRW key. AES algorithm only.
v Refer to Figure 13 on page 296 for valid rule array keyword combinations.
v Refer to Table 87 on page 296 for token offsets, offset values, and meanings of these keywords.
v Refer to “AES PINPROT, PINCALC, and PINPRW variable-length symmetric key token” on page

938 for the format of the key token.

SECMSG Build a secure messaging key. AES algorithm only.
v Refer to Figure 14 on page 298 for valid rule array keyword combinations.
v Refer to Table 88 on page 299 for token offsets, offset values, and meanings of these keywords.
v Refer to “AES SECMSG variable-length symmetric key token” on page 960 for the format of the

key token.

clear_key_bit_length

Direction: Input
Type: Integer

The length of the clear key in bits. Specify 0 when no key value is supplied or
a valid HMAC key bit length, between 80 and 2048.

clear_key_value

Direction: Input
Type: String

This parameter is used when the KEY-CLR keyword is specified. This
parameter is the clear key value to be put into the token being built.

key_name_length

Direction: Input
Type: Integer

The length of the key_name parameter. Valid values are 0 and 64.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 267

key_name

Direction: Input
Type: String

A 64-byte key store label to be stored in the associated data structure of the
token.

user_associated_data_length

Direction: Input
Type: Integer

The length of the user-associated data. The valid values are 0 - 255 bytes.

user_associated_data

Direction: Input
Type: String

User-associated data to be stored in the associated data structure.

token_data_length

Direction: Input
Type: Integer

This parameter is reserved. This value must be 0.

token_data

Direction: n/a
Type: String

This parameter is ignored.

verb_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
verb_data variable. The value must be 0.

verb_data

Direction: Input
Type: String

A pointer to a string variable containing key-usage field keywords that are
related to the type of key to diversify.

DKYUSAGE specifies that the verb_data variable contains all of the keywords
necessary to define the key usage attributes related to the type of key to
diversify. Based on the verb_data keywords, CSNBKTB2 appends the key
usage attributes of the type of key to diversify to the key usage fields of the
DKYGENKY key. The related key usage fields control which key usage
attributes are permissible for the finally generated diversified key.

DKYUSAGE is not valid with D-ALL, because the type of key to diversify is
unspecified. DKYUSAGE is optional with D-CIPHER, D-EXP, and D-IMP. For
these key types, if DKYUSAGE is not specified, CSNBKTB2 assigns default key

Key Token Build2 (CSNBKTB2)

268 Common Cryptographic Architecture Application Programmer's Guide

usage attributes to the related KUF fields. DKYUSAGE is required for the
remaining values of type of key to diversify, because those key types do not
have default key usage attributes.

Table 78. Related key usage fields when Key Token Build2 builds a DKYGENKY key-token

Type of key to
diversify

DKYUSAGE
usage Related key usage fields for key type DKYGENKY

D-ALL Invalid None.

D-CIPHER Optional If keyword DKYUSAGE is specified, the verb_data variable must contain key
usage fields keywords related to an AES CIPHER key. If not specified, the
related key usage fields are those of a default AES CIPHER key.

D-EXP Optional If keyword DKYUSAGE is specified, the verb_data variable must contain key
usage fields keywords related to an AES EXPORTER key. If not specified, the
related key usage fields will be that of a default AES EXPORTER key.

D-IMP Optional If keyword DKYUSAGE is specified, the verb_data variable must contain key
usage fields keywords related to an AES IMPORTER key. If not specified, the
related key usage fields will be that of a default AES IMPORTER key.

D-MAC Required The verb_data variable must contain key usage fields keywords related to an
AES MAC key.

D-PCALC Required The verb_data variable must contain key usage fields keywords related to an
AES PINCALC key.

D-PPROT Required The verb_data variable must contain key usage fields keywords related to an
AES PINPROT key.

D-PPRW Required The verb_data variable must contain key usage fields keywords related to an
AES PINPRW key.

D-SECMSG Required The verb_data variable must contain key usage fields keywords related to an
AES SECMSG key.

target_key_token_length

Direction: Input/Output
Type: Integer

On input, the length of the target_key_token parameter supplied to receive the
token. On output, the actual length of the token returned to the caller.
Maximum length is 725 bytes.

target_key_token

Direction: Output
Type: String

The key token built by this verb.

Keywords reference
Here you find a keywords reference for the CSNBKTB2 rule_array parameter.

Figure 5 on page 270 shows all the valid keyword combinations and their defaults
for AES key type CIPHER. For a description of these keywords, refer to Table 79
on page 270.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 269

Note:

1. V0PYLD is the default. V1PYLD is recommended because it provides improved
security.

2. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of a high-order byte (HOB) and a
low-order byte (LOB).

3. DECRYPT and ENCRYPT are defaults if neither of these keywords is specified,
regardless of whether C-XLATE is specified or not. C-XLATE is for Release 4.3
or later.

4. ANY-MODE is Release 4.4 or later.
5. Choose any number of keywords in this group. No keywords in this group are

defaults.
6. NOEX-RAW and XPRT-RAW are defined for future use and their meanings are

currently undefined. To avoid this export restriction in the future when the
meaning is defined, specify XPRT-RAW.

Table 79. Key Token Build2 rule array keywords for AES CIPHER keys

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V0PYLD
required. is default. is default.

>>──AES──────────>CIPHER─────────┬>EXTERNAL─┐ ┌─────┬>─────────┐ ┌─────┬>─────────┐
└>INTERNAL─┴────┘ ├>KEY-CLR──┤ │ ├>V0PYLD───┤

└>NO─KEY───┴─────┘ └>V1PYLD───┤
┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ See Note 3. See Note 5. Note: XPRT-SYM Note: XPRT-DES
└─┬>───────────────┐ ┌───┬>───────────────┐ is default. is default.

│ ┌>───────────┐ │ │ │ ┌<───────────┐ │ ┌───────┬>─────────┐ ┌───────┬>─────────┐
│ │ │ │ │ │ │ │ │ │ ├>NOEX-SYM─┤ │ ├>NOEX-DES─┤
└>┴─┬>C-XLATE──┤ │ │ └>┴─┬>UDX-ONLY─┤ │ │ └>XPRT-SYM─┤ │ └>XPRT-DES─┤

├>DECRYPT──┤ │ │ ├>UDX-001──┤ │ │ ┌────────────┘ │ ┌────────────┘
└>ENCRYPT──┴>┤ │ ├>UDX-010──┤ │ │ │ Note: XPRTUASY │ │ Note: XPRT-AES

┌──────────────────┘ │ └>UDX-100──┴>┴─┘ │ is default. │ │ is default.
│ ┌────────────────┐ │ └─┬>─────────┐ │ └─┬>─────────┐
│ │ KUF2 HOB │ │ ├>NOEXUASY─┤ │ ├>NOEX-AES─┤
│ └────────────────┘ │ └>XPRTUASY─┤ │ └>XPRT-AES─┤
│ Note: CBC │ ┌────────────┘ │ ┌────────────┘
│ is default. │ │ Note: XPRTAASY │ │ Note: XPRT-RSA
└─────┬>─────────┐ │ │ is default. │ │ is default.

├>ANY-MODE─┤ │ └─┬>─────────┐ │ └─┬>─────────┐
├>CBC──────┤ │ ├>NOEXAASY─┤ │ ├>NOEX-RSA─┤
├>CFB──────┤ │ └>XPRTAASY─┤ │ └>XPRT-RSA─┤
├>ECB──────┤ │ ┌────────────┘ │ ┌────────────┘
├>GCM──────┤ │ │ Note: NOEX-RAW │ │ Note: NOEXCPAC

└─────┬>─────────┐ │ │ is default. │ │ is default.
├>OFB──────┤ │ │ is default. │ └─┬>─────────┐
└>XTS──────┴──>┘ └─┬>─────────┐ │ ├>NOEXCPAC─┤

├>NOEX-RAW─┤ │ └>XPRTCPAC─┴────>>
└>XPRT-RAW─┴───┘

Figure 5. Key Token Build2 keyword combinations for AES CIPHER keys

Key Token Build2 (CSNBKTB2)

270 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 79. Key Token Build2 rule array keywords for AES CIPHER keys (continued)

Token
offset Rule-array keyword Offset value Meaning

Token identifier (one required)

000 EXTERNAL X'02' Build a key token that is not to be used locally.

INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional)

008 KEY-CLR X'01' Build a key token that contains a clear key.

NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload.

000 V0PYLD X'00' Build a key token with a version 0 payload format. This
format has a variable length and the key length can be
inferred from the size of the payload. This format is
compatible with all releases. This is the default.

V1PYLD X'01' Build the key token with a version 1 payload format. This
format has a fixed length and the key length cannot be
inferred by the size of the payload. An obscured key length is
considered more secure. This format is not compatible in
releases before Release 4.4.

Associated data section

Algorithm type (one required).

041 AES X'02' Key can be used for AES algorithm.

Key type (one required)

042 CIPHER X'0001' Key can be used for encryption, decryption, and translation of
data.

Encryption and translation control (one or more, optional). Key-usage field 1, high-order byte. Keywords DECRYPT
and ENCRYPT are defaults unless one or more keywords in the group are specified.

045 C-XLATE (Release
4.3 or later)

B'xx1x xxxx' Key can only be used for Cipher Text Translate2 (CSNBCTT2)
operations. This is only valid with AES CIPHER keys.

DECRYPT B'x1xx xxxx' Key can be used for decryption.
Symmetric_Algorithm_Decipher.

ENCRYPT B'1xxx xxxx' Key can be used for encryption.
Symmetric_Algorithm_Encipher.

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

Encryption mode (one, optional). Key-usage field 2, high-order byte.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 271

Table 79. Key Token Build2 rule array keywords for AES CIPHER keys (continued)

Token
offset Rule-array keyword Offset value Meaning

047 ANY-MODE
(Release 4.4 or later)

X'FF' Key can be used for any encryption mode.

CBC X'00' Key can be used for Cipher Block Chaining. This is the
default.

CFB X'02' Key can be used for Cipher Feedback.

ECB X'01' Key can be used for Electronic Code Book.

GCM X'04' Key can be used for Galois/Counter Mode.

OFB X'03' Key can be used for Output Feedback.

XTS X'05' Key can be used for Xor-Encrypt-Xor-based Tweaked Stealing.

Symmetric-key export control (one, optional). Key-management field 1, high-order byte.

050 NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

XPRT-SYM B'1xxx xxxx' Allow export using symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

050 NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

XPRTUASY B'x1xx xxxx' Allow export using an unauthenticated asymmetric key (not a
trusted block). This is the default.

Authenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

050 NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

XPRTAASY B'xx1x xxxx' Allow export using an authenticated asymmetric key (trusted
block). This is the default.

Raw-key export control (one, optional). Key-management field 1, high-order byte.

050 NOEX-RAW B'xxx0 xxxx' Prohibit export using raw key. Defined for future use.
Currently ignored. This is the default.

XPRT-RAW B'xxx1 xxxx' Allow export using raw key. Defined for future use. Currently
ignored.

CPACF export control (one, optional). Key-management field 1, high-order byte.

050 XPRTCPAC B'xxxx 1xxx' Allow export of key to CPACF.

NOEXCPAC B'xxxx 0xxx' Prohibit export of key to CPACF. This is the default.

DES-key export control (one, optional). Key-management field 1, low-order byte.

051 NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

XPRT-DES B'0xxx xxxx Allow export using a DES key. This is the default.

AES-key export control (one, optional). Key-management field 1, low-order byte.

051 NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

XPRT-AES B'x0xx xxxx' Allow export using an AES key.

RSA-key export control (one, optional). Key-management field 1, low-order byte.

051 NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

XPRT-RSA B'xxxx 0xxx' Allow export using an RSA key. This is the default.

Figure 6 on page 273 shows all the valid keyword combinations and their defaults
for AES key type DKYGENKY. For a description of these keywords, refer to

Key Token Build2 (CSNBKTB2)

272 Common Cryptographic Architecture Application Programmer's Guide

|

||||

|||

Table 80 on page 274.

Note:

1. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of two bytes: a high-order byte
(HOB) and a low-order byte (LOB).

2. D-PCALC, D-PPROT, and D-PPRW are Release 4.4 or later. D-SECMSG,
DKYL1, and DKYL2 are Release 4.4 or later.

3. NOEX-RAW and XPRT-RAW are defined for future use and their meanings are
currently undefined. To avoid this export restriction in the future when the
meaning is defined, specify XPRT-RAW.

4. DKYUSAGE specifies that the verb_data variable contains all of the keywords
necessary to define the key usage attributes related to the type of key to
diversify. Based on the verb_data keywords, CSNBKTB2 appends the key usage
attributes of the type of key to diversify to the key usage fields of the
DKYGENKY key. The related key usage fields control which key usage
attributes are permissible for the final generated diversified key. DKYUSAGE is

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V1PYLD
required. is default. is default.

>>──AES──────────>DKYGENKY───────┬>EXTERNAL─┐ ┌─────┬>─────────┐ ┌─────┬>─────────┐
└>INTERNAL─┴────┘ └>NO─KEY───┴─────┘ └>V1PYLD───┤

┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ Note: One Note: XPRT-SYM Note: XPRT-DES
│ required. See Note 6. is default. is default.
└─────┬>D-ALL───────>┬───┬>───────────────┐ ┌───────┬>─────────┐ ┌───────┬>─────────┐

├>D-CIPHER─┐ │ │ ┌────────────┐ │ │ ├>NOEX-SYM─┤ │ ├>NOEX-DES─┤
├>D-EXP────┤ │ │ V │ │ │ └>XPRT-SYM─┤ │ └>XPRT-DES─┤
├>D-IMP────┴─┐ │ └>──┬>UDX-ONLY─┤ │ │ ┌────────────┘ │ ┌────────────┘
├>D-MAC────┐ │ │ ├>UDX-001──┤ │ │ │ Note: XPRTUASY │ │ Note: XPRT-AES
├>D-PCALC──┤ │ │ ├>UDX-010──┤ │ │ │ is default. │ │ is default.
├>D-PPROT──┤ │ │ └>UDX-100──┤ │ │ └─┬>─────────┐ │ └─┬>─────────┐
├>D-PPRW───┤ │ │ ┌────────────────┴─┘ │ ├>NOEXUASY─┤ │ ├>NOEX-AES─┤
└>D-SECMSG─┤ │ │ │ ┌────────────────┐ │ └>XPRTUASY─┤ │ └>XPRT-AES─┤

┌──────────────────┘ │ │ │ │ KUF2 LOB │ │ ┌────────────┘ │ ┌────────────┘
│ ┌──────────────────┘ │ │ └────────────────┘ │ │ Note: XPRTAASY │ │ Note: XPRT-RSA
│ │ ┌────────────────┐ │ │ Note: One │ │ is default. │ │ is default.
│ │ │ KUF3 HOB │ │ │ required. │ └─┬>─────────┐ │ └─┬>─────────┐
│ │ └────────────────┘ │ └─────┬>DKYL0────┐ │ ├>NOEXAASY─┤ │ ├>NOEX-RSA─┤
│ │ Note: No │ ├>DKYL1────┤ │ └>XPRTAASY─┤ │ └>XPRT-RSA─┴─────>>
│ │ default. │ └>DKYL2────┴───┘ ┌────────────┘ │
│ └─────┬>─────────┐ │ │ Note: NOEX-RAW │
│ └>DKYUSAGE─┤ │ │ is default. │
│ │ │ └─┬>─────────┐ │
└────────>DKYUSAGE─┤ │ ├>NOEX-RAW─┤ │

┌────────────────┘ │ └>XPRT-RAW─┴───┘
│ ┌────────────────┐ │
│ │ KUF2 HOB │ │
│ └────────────────┘ │
│ Note: KUF-MBE │
│ is default. │
│ See Note 5. │
└─────┬>───────────┐ │

├>KUF-MBE────┤ │
└>KUF-MBP────┴>┘

Figure 6. Key Token Build2 keyword combinations for AES DKYGENKY keys

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 273

not valid with D-ALL because the type of key to diversify is unspecified.
DKYUSAGE is optional with D-CIPHER, D-EXP, and D-IMP because key types
CIPHER, EXPORTER and IMPORTER have default key usage attributes. For
these key types, if DKYUSAGE is not specified, CSNBKTB2 assigns default key
usage attributes to the related KUF fields. DKYUSAGE is required for the
remaining values of type of key to diversify because those key types do not
have default key usage attributes.

5. KUF-MBP is not valid if DKADMIN1, DKADMIN2, DKPINOP, or DKPINOPP
is specified in the verb_data variable (that is, the type of key to diversify is DK
enabled).

6. Choose any number of keywords in this group. No keywords in this group are
defaults.

Table 80. Key Token Build2 rule array keywords for AES DKYGENKY keys

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

Token identifier (one required).

000 EXTERNAL X'02' Build a key token that is not to be used locally.

INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional).

008 NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload. Release 4.4 or later.

028 V1PYLD X'01' Build the key token with a version 1 payload format. This
format has a fixed length and the key length cannot be
inferred by the size of the payload. An obscured key length is
considered more secure. This is the default.

Associated data section

Algorithm type (one required).

041 AES X'02' Key can be used for AES algorithm.

Key type (one required).

042 DKYGENKY X'0009' Key can be used for generating a diversified key.

Type of key to diversify (one required). Key-usage field 1, high-order byte.

045 D-ALL X'00' Key can generate a diversified key for any key type listed
herafter.

D-CIPHER X'01' Key can generate a diversified CIPHER key.

D-EXP X'03' Key can generate a diversified EXPORTER key.

D-IMP X'04' Key can generate a diversified IMPORTER key.

D-MAC X'02' Key can generate a diversified MAC key.

D-PCALC X'06' Key can generate a diversified PINCALC key.

D-PPROT X'05' Key can generate a diversified PINPROT key.

D-PPRW X'07' Key can generate a diversified PINPRW key.

D-SECMSG X'08' Key can generate a diversified SECMSG key.

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

Key Token Build2 (CSNBKTB2)

274 Common Cryptographic Architecture Application Programmer's Guide

Table 80. Key Token Build2 rule array keywords for AES DKYGENKY keys (continued)

Token
offset Rule-array keyword Offset value Meaning

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

Related generated key-usage field level of control (one required). Key-usage field 2, high-order byte. If D-ALL is
specified, KUF-MBE and KUF-MBP are not valid and there is no default. Otherwise, the default is KUF-MBE.
KUF-MBP is not valid if DKYUSAGE is specified and DKPINOP, DKPINOPP, DKADMIN1, or DKADMIN2 is
specified in the verb_data variable (that is, the type of key to diversify is DK enabled).

047 KUF-MBE B'1xxx xxxx' The key usage fields of the key to be generated must be equal
to the related generated key-usage fields that start with key
usage field 3.

KUF-MBP B'0xxx xxxx' The key usage fields of the key to be generated must be
permissible based on the related generated key usage fields
that start with key-usage field 3. A key to be diversified is not
permitted to have a higher level of usage than any of the
related key usage fields permit. The key to be diversified is
only permitted to have key usage that is less than or equal to
the related key usage fields. One exception is the UDX-ONLY
setting in the generated key usage fields. The UDX-ONLY
setting must always be equal to the UDX-ONLY setting in the
related key usage fields.

Key-derivation sequence level (one required). Key-usage field 2, low-order byte.

048 DKYL0 X'00' Use this diversifying key to generate a Level 0 diversified key.
The type of key to diversify (value at offset 45) determines the
key type of the generated key. Level 0 is a completed key.

DKYL1 X'01' Use this diversifying key to generate a Level 1 diversified key.

DKYL2 X'02' Use this diversifying key to generate a Level 2 diversified key.

Related generated key usage fields (not allowed for D-ALL, one, optional, for D-CIPHER, D-EXP, and D-IMP,
otherwise one required). Key-usage field 3, high-order byte.

049 DKYUSAGE Based on
verb_data
keywords.

The verb_data variable contains key-usage field keywords
related to the type of key to diversify. These related attributes
become part of the key usage fields of the DKYGENKY
diversifying key, beginning with key-usage field 3, high-order
byte. They are related because they are used to control which
key usage attributes are permissible in the generated
diversified key. To generate a diversified key, use the
Diversified Key Generate2 (CSNBDKG2) verb.

Symmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

XPRT-SYM B'1xxx xxxx' Allow export using symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

XPRTUASY B'x1xx xxxx' Allow export using an unauthenticated asymmetric key (not a
trusted block). This is the default.

Authenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 275

Table 80. Key Token Build2 rule array keywords for AES DKYGENKY keys (continued)

Token
offset Rule-array keyword Offset value Meaning

052 NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

XPRTAASY B'xx1x xxxx' Allow export using an authenticated asymmetric key (trusted
block). This is the default.

RAW-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEX-RAW B'xxx0 xxxx' Prohibit export using raw key. Defined for future use.
Currently ignored. This is the default.

XPRT-RAW B'xxx1 xxxx' Allow export using raw key. Defined for future use. Currently
ignored.

DES-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

XPRT-DES B'0xxx xxxx Allow export using a DES key. This is the default.

AES-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

XPRT-AES B'x0xx xxxx' Allow export using an AES key.

RSA-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

XPRT-RSA B'xxxx 0xxx' Allow export using an RSA key. This is the default.

Figure 7 on page 277 shows all the valid keyword combinations and their defaults
for AES key type EXPORTER. For a description of these keywords, refer to Table 81
on page 278.

Key Token Build2 (CSNBKTB2)

276 Common Cryptographic Architecture Application Programmer's Guide

Note:

1. V0PYLD and V1PYLD are for Release 4.4 or later. V0PYLD is the default for
compatibility reasons. V1PYLD is recommended because it provides improved
security.

2. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of a high-order byte (HOB) and a
low-order byte (LOB).

3. All keywords in this group are defaults unless one or more keywords in this
group are specified.

4. There is no default. This keyword is defined for future use and its meaning is
currently undefined. To avoid this restriction in the future when the meaning is
defined, specify this keyword.

5. WR-AES, WR-DES, and WR-HMAC are defaults unless one or more keywords
in this group are specified.

6. Choose any number of keywords in this group. No keywords in this group are
defaults.

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V0PYLD
required. is default. is default.

>>──AES──────────>EXPORTER───────┬>EXTERNAL─┐ ┌─────┬>─────────┐ ┌─────┬>─────────┐
└>INTERNAL─┴────┘ └>NO─KEY───┴─────┘ ├>V0PYLD───┤

└>V1PYLD───┤
┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ See Note 3. See Note 6. Note: XPRT-SYM Note: XPRT-DES
└─┬>───────────────┐ ┌───┬>───────────────┐ is default. is default.

│ ┌<───────────┐ │ │ │ ┌<───────────┐ │ ┌───────┬>─────────┐ ┌───────┬>─────────┐
│ │ │ │ │ │ │ │ │ │ ├>NOEX-SYM─┤ │ ├>NOEX-DES─┤
└>┴─┬>EXPORT───┤ │ │ └>┴─┬>UDX-ONLY─┤ │ │ └>XPRT-SYM─┤ │ └>XPRT-DES─┤

├>GEN-EXEX─┤ │ │ ├>UDX-001──┤ │ │ ┌────────────┘ │ ┌────────────┘
├>GEN-IMEX─┤ │ │ ├>UDX-010──┤ │ │ │ Note: XPRTUASY │ │ Note: XPRT-AES
├>GEN-OPEX─┤ │ │ └>UDX-100──┤ │ │ │ is default. │ │ is default.
├>GEN-PUB──┤ │ │ ┌────────────────┴─┘ │ └─┬>─────────┐ │ └─┬>─────────┐
└>TRANSLAT─┤ │ │ │ ┌────────────────┐ │ ├>NOEXUASY─┤ │ ├>NOEX-AES─┤

┌────────────────┴─┘ │ │ │ KUF2 LOB │ │ └>XPRTUASY─┤ │ └>XPRT-AES─┤
│ ┌────────────────┐ │ │ └────────────────┘ │ ┌────────────┘ │ ┌────────────┘
│ │ KUF2 HOB │ │ │ See Note 4. │ │ Note: XPRTAASY │ │ Note: XPRT-RSA
│ └────────────────┘ │ └─────┬>─────────┐ │ │ is default. │ │ is default.
│ See Note 4. │ └>KEK-RAW──┤ │ └─┬>─────────┐ │ └─┬>─────────┐
└─────┬>─────────┐ │ ┌────────────────┘ │ ├>NOEXAASY─┤ │ ├>NOEX-RSA─┤

└>WR-TR31──┤ │ │ ┌────────────────┐ │ └>XPRTAASY─┤ │ └>XPRT-RSA─┴────>>
┌────────────────┘ │ │ │ KUF3 LOB │ │ ┌────────────┘ │
│ ┌────────────────┐ │ │ └────────────────┘ │ │ Note: NOEX-RAW │
│ │ KUF3 HOB │ │ │ See Note 7. │ │ is default. │
│ └────────────────┘ │ └─┬>───────────────┐ │ └─┬>─────────┐ │
│ See Note 5. │ │ ┌<───────────┐ │ │ ├>NOEX-RAW─┤ │
└─┬>───────────────┐ │ │ │ │ │ │ └>XPRT-RAW─┴───┘

│ ┌<───────────┐ │ │ └>┴─┬>WR-CARD──┤ │ │
│ │ │ │ │ ├>WR-CVAR──┤ │ │
└>┴─┬>WR-AES───┤ │ │ ├>WR-DATA──┤ │ │

├>WR-DES───┤ │ │ ├>WR-KEK───┤ │ │
├>WR-ECC───┤ │ │ ├>WR-PIN───┤ │ │
├>WR-HMAC──┤ │ │ └>WRDERIVE─┴─┴─┘
└>WR-RSA───┴─┴─┘

Figure 7. Key Token Build2 keyword combinations for AES EXPORTER keys

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 277

7. WR-CARD, WR-DATA, WR-KEK, WR-PIN, and WRDERIVE are defaults
unless one or more keywords in this group are specified. WR-CVAR is for
Release 4.4 or later.

8. NOEX-RAW and XPRT-RAW are defined for future use and their meanings are
currently undefined. To avoid this export restriction in the future when the
meaning is defined, specify XPRT-RAW.

Table 81. Key Token Build2 rule array keywords for AES EXPORTER keys

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

Token identifier (one required).

000 EXTERNAL X'02' Build a key token that is not to be used locally.

INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional)

008 NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload. Release 4.4 or later; otherwise, undefined.

028 V0PYLD X'00' Build a key token with a version 0 payload format. This
format has a variable length and the key length can be
inferred from the size of the payload. This format is
compatible with all releases. This is the default.

V1PYLD X'01' Build the key token with a version 1 payload format. This
format has a fixed length and the key length cannot be
inferred by the size of the payload. An obscured key length is
considered more secure.

Associated data section

Algorithm type (one required)

041 AES X'02' Key can be used for AES algorithm.

Key type (one required)

042 EXPORTER X'0003' Key can be used to wrap an external key to be taken from this
local node or to wrap an output key in the Key_Translate2
verb.

KEK control (one or more, optional). Key-usage field 1, high-order byte. All keywords in the group are defaults
unless one or more keywords in the group are specified.

045 EXPORT B'1xxx xxxx' Key can be used to wrap a key taken from this local node.
Symmetric_Key_Export.

GEN-EXEX B'xxxx 1xxx' Key can be used to wrap the first or the second key that is
generated by the CSNBKGN2 verb as part of an EXEX key
pair.

GEN-IMEX B'xxx1 xxxx' Key can be used to wrap the second key that is generated by
the CSNBKGN2 verb as part of an IMEX key pair.

GEN-OPEX B'xx1x xxxx' Key can be used to wrap the second key that is generated by
the CSNBKGN2 verb as part of an OPEX key pair.

GEN-PUB B'xxxx x1xx' Key can be used to wrap the private key (to be used at
another node) generated by the CSNDPKG verb as part of an
ECC public-private key pair.

TRANSLAT B'x1xx xxxx' Key can be used to wrap an output key in the Key_Translate2
verb. Key_Translate2.

Key Token Build2 (CSNBKTB2)

278 Common Cryptographic Architecture Application Programmer's Guide

Table 81. Key Token Build2 rule array keywords for AES EXPORTER keys (continued)

Token
offset Rule-array keyword Offset value Meaning

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

TR-31 wrap control (one, optional). Key-usage field 2, high-order byte.

047 WR-TR31 B'1xxx xxxx' Key can wrap a TR-31 key. Defined for future use. Currently
ignored.

Raw key wrap control (one, optional). Key-usage field 2, low-order byte.

048 KEK-RAW B'xxxx xxx1' Key can wrap a raw key. Defined for future use. Currently
ignored.

Algorithm wrap control (one or more, optional). Key-usage field 3, high-order byte. Keywords WR-AES, WR-DES,
and WR-HMAC are defaults unless one or more keywords in the group are specified.

000 WR-AES B'x1xx xxxx' Key can wrap AES keys.

WR-DES B'1xxx xxxx' Key can wrap DES keys.

WR-ECC B'xxxx 1xxx' Key can wrap ECC keys.

WR-HMAC B'xx1x xxxx' Key can wrap HMAC keys.

WR-RSA B'xxx1 xxxx' Key can wrap RSA keys.

Class wrap control (one or more, optional). Key-usage field 4, high-order byte. Keywords WR-CARD, WR-DATA,
WR-KEK, WR-PIN, and WRDERIVE are defaults unless one or more keywords in the group are specified.

051 WR-CARD B'xxxx 1xxx' Key can wrap card class keys.

WR-CVAR (Release
4.4 or later)

B'xxxx x1xx' Key can wrap cryptovariable class keys.

WR-DATA B'1xxx xxxx' Key can wrap data class keys.

WR-KEK B'x1xx xxxx' Key can wrap KEK class keys.

WR-PIN B'xx1x xxxx' Key can wrap PIN class keys.

WRDERIVE B'xxx1 xxxx' Key can wrap derivation class keys.

Symmetric-key export control (one, optional). Key-management field 1, high-order byte.

054 NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

XPRT-SYM B'1xxx xxxx' Allow export using symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

054 NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

XPRTUASY B'x1xx xxxx' Allow export using an unauthenticated asymmetric key (not a
trusted block). This is the default.

Authenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

054 NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

XPRTAASY B'xx1x xxxx' Allow export using an authenticated asymmetric key (trusted
block). This is the default.

RAW-key export control (one, optional). Key-management field 1, high-order byte.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 279

Table 81. Key Token Build2 rule array keywords for AES EXPORTER keys (continued)

Token
offset Rule-array keyword Offset value Meaning

054 NOEX-RAW B'xxx0 xxxx' Prohibit export using raw key. Defined for future use.
Currently ignored. This is the default.

XPRT-RAW B'xxx1 xxxx' Allow export using raw key. Defined for future use. Currently
ignored.

DES-key export control (one, optional). Key-management field 1, low-order byte.

055 NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

XPRT-DES B'0xxx xxxx Allow export using a DES key. This is the default.

AES-key export control (one, optional). Key-management field 1, low-order byte.

055 NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

XPRT-AES B'x0xx xxxx' Allow export using an AES key.

RSA-key export control (one, optional). Key-management field 1, low-order byte.

055 NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

XPRT-RSA B'xxxx 0xxx' Allow export using an RSA key. This is the default.

Figure 8 on page 281 shows all the valid keyword combinations and their defaults
for AES key type IMPORTER. For a description of these keywords, refer to Table 82
on page 282.

Key Token Build2 (CSNBKTB2)

280 Common Cryptographic Architecture Application Programmer's Guide

Note:

1. V0PYLD and V1PYLD are for Release 4.4 or later. V0PYLD is the default for
compatibility reasons. V1PYLD is recommended because it provides improved
security.

2. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of a high-order byte (HOB) and a
low-order byte (LOB).

3. All keywords in this group are defaults unless one or more keywords in this
group are specified.

4. This keyword is defined for future use and its meaning is currently undefined.
To avoid this restriction in the future when the meaning is defined, specify this
keyword.

5. WR-AES, WR-DES, and WR-HMAC are defaults unless one or more keywords
in this group are specified.

6. Choose any number of keywords in this group. No keywords in this group are
defaults.

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V0PYLD
required. is default. is default.

>>──AES──────────>IMPORTER───────┬>EXTERNAL─┐ ┌─────┬>─────────┐ ┌─────┬>─────────┐
└>INTERNAL─┴────┘ └>NO─KEY───┴─────┘ ├>V0PYLD───┤

└>V1PYLD───┤
┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ See Note 3. See Note 6. Note: XPRT-SYM Note: XPRT-DES
└─┬>───────────────┐ ┌───┬>───────────────┐ is default. is default.

│ ┌<───────────┐ │ │ │ ┌<───────────┐ │ ┌───────┬>─────────┐ ┌───────┬>─────────┐
│ │ │ │ │ │ │ │ │ │ ├>NOEX-SYM─┤ │ ├>NOEX-DES─┤
└>┴─┬>GEN-IMEX─┤ │ │ └>┴─┬>UDX-ONLY─┤ │ │ └>XPRT-SYM─┤ │ └>XPRT-DES─┤

├>GEN-IMIM─┤ │ │ ├>UDX-001──┤ │ │ ┌────────────┘ │ ┌────────────┘
├>GEN-OPIM─┤ │ │ ├>UDX-010──┤ │ │ │ Note: XPRTUASY │ │ Note: XPRT-AES
├>GEN-PUB──┤ │ │ └>UDX-100──┤ │ │ │ is default. │ │ is default.
├>IMPORT───┤ │ │ ┌────────────────┴─┘ │ └─┬>─────────┐ │ └─┬>─────────┐
└>TRANSLAT─┤ │ │ │ ┌────────────────┐ │ ├>NOEXUASY─┤ │ ├>NOEX-AES─┤

┌────────────────┴─┘ │ │ │ KUF2 LOB │ │ └>XPRTUASY─┤ │ └>XPRT-AES─┤
│ ┌────────────────┐ │ │ └────────────────┘ │ ┌────────────┘ │ ┌────────────┘
│ │ KUF2 HOB │ │ │ See Note 4. │ │ Note: XPRTAASY │ │ Note: XPRT-RSA
│ └────────────────┘ │ └─────┬>─────────┐ │ │ is default. │ │ is default.
│ See Note 4. │ └>KEK-RAW──┤ │ └─┬>─────────┐ │ └─┬>─────────┐
└─────┬>─────────┐ │ ┌────────────────┘ │ ├>NOEXAASY─┤ │ ├>NOEX-RSA─┤

└>WR-TR31──┤ │ │ ┌────────────────┐ │ └>XPRTAASY─┤ │ └>XPRT-RSA─┴────>>
┌────────────────┘ │ │ │ KUF3 LOB │ │ ┌────────────┘ │
│ ┌────────────────┐ │ │ └────────────────┘ │ │ Note: NOEX-RAW │
│ │ KUF3 HOB │ │ │ See Note 7. │ │ is default. │
│ └────────────────┘ │ └─┬────────────────┐ │ └─┬>─────────┐ │
│ See Note 5. │ │ ┌<───────────┐ │ │ ├>NOEX-RAW─┤ │
└─┬>───────────────┐ │ │ │ │ │ │ └>XPRT-RAW─┴───┘

│ ┌<───────────┐ │ │ └>┴─┬>WR-CARD──┤ │ │
│ │ │ │ │ ├>WR-CVAR──┤ │ │
└>┴─┬>WR-AES───┤ │ │ ├>WR-DATA──┤ │ │

├>WR-DES───┤ │ │ ├>WR-KEK───┤ │ │
├>WR-ECC───┤ │ │ ├>WR-PIN───┤ │ │
├>WR-HMAC──┤ │ │ └>WRDERIVE─┴─┴─┘
└>WR-RSA───┴─┴─┘

Figure 8. Key Token Build2 keyword combinations for AES IMPORTER keys

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 281

7. WR-CARD, WR-DATA, WR-KEK, WR-PIN, and WRDERIVE are defaults unless
one or more keywords in this group are specified. WR-CVAR is for Release 4.4
or later.

8. NOEX-RAW and XPRT-RAW are defined for future use and their meanings are
currently undefined. To avoid this export restriction in the future when the
meaning is defined, specify XPRT-RAW.

Table 82. Key Token Build2 rule array keywords for AES IMPORTER keys

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

Token identifier (one required)

000 EXTERNAL X'02' Build a key token that is not to be used locally.

INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional)

008 NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload.

028 V0PYLD X'00' Build a key token with a version 0 payload format. This
format has a variable length and the key length can be
inferred from the size of the payload. This format is
compatible with all releases. This is the default.

V1PYLD X'01' Build the key token with a version 1 payload format. This
format has a fixed length and the key length cannot be
inferred by the size of the payload. An obscured key length is
considered more secure. This format is not compatible in
releases before Release 4.4.

Associated data section

Algorithm type (one required)

041 AES X'02' Key can be used for AES algorithm.

Key type (one required)

042 IMPORTER X'0004' Key can be used to unwrap an external key brought to this
local node, wrap a generated key to be brought to this local
node, or unwrap an input key in the Key_Translate2 verb.

KEK control (one or more, optional). Key-usage field 1, high-order byte. All keywords in the group are defaults
unless one or more keywords in the group are specified.

Key Token Build2 (CSNBKTB2)

282 Common Cryptographic Architecture Application Programmer's Guide

Table 82. Key Token Build2 rule array keywords for AES IMPORTER keys (continued)

Token
offset Rule-array keyword Offset value Meaning

045 GEN-IMEX B'xxx1 xxxx' Key can be used to wrap the first key that is generated by the
CSNBKGN2 verb as part of an IMEX key pair.

GEN-IMIM B'xxxx 1xxx' Key can be used to wrap the first or second key that is
generated by the CSNBKGN2 verb as part of an IMIM key
pair.

GEN-OPIM B'xx1x xxxx' Key can be used to wrap the second key that is generated by
the CSNBKGN2 verb as part of an OPIM key pair.

GEN-PUB B'xxxx x1xx' Key can be used to wrap the private key (to be used at the
local node) generated by the CSNDPKG verb as part of an
ECC public-private key pair.

IMPORT B'1xxx xxxx' Key can be used to unwrap a key brought to this local node.
Symmetric_Key_Import.

TRANSLAT B'x1xx xxxx' Key can be used to unwrap an input key in the
Key_Translate2 verb. Key_Translate2.

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

TR-31 wrap control (one, optional). Key-usage field 2, high-order byte.

047 WR-TR31 B'1xxx xxxx' Key can unwrap a TR-31 key. Defined for future use.
Currently ignored.

Raw key wrap control (one, optional). Key-usage field 2, low-order byte.

048 KEK-RAW B'xxxx xxx1' Key can unwrap a raw key. Defined for future use. Currently
ignored.

Algorithm wrap control (one or more, optional). Key-usage field 3, high-order byte. Keywords WR-AES, WR-DES,
and WR-HMAC are defaults unless one or more keywords in the group are specified.

000 WR-AES B'x1xx xxxx' Key can unwrap AES keys.

WR-DES B'1xxx xxxx' Key can unwrap DES keys.

WR-ECC B'xxxx 1xxx' Key can unwrap ECC keys.

WR-HMAC B'xx1x xxxx' Key can unwrap HMAC keys.

WR-RSA B'xxx1 xxxx' Key can unwrap RSA keys.

Class wrap control (one or more, optional). Key-usage field 4, high-order byte. Keywords WR-CARD, WR-DATA,
WR-KEK, WR-PIN, and WRDERIVE are defaults unless one or more keywords in the group are specified.

051 WR-CARD B'xxxx 1xxx' Key can unwrap card class keys.

WR-CVAR (Release
4.4 or later)

B'xxxx x1xx' Key can unwrap cryptovariable class keys.

WR-DATA B'1xxx xxxx' Key can unwrap data class keys.

WR-KEK B'x1xx xxxx' Key can unwrap KEK class keys.

WR-PIN B'xx1x xxxx' Key can unwrap PIN class keys.

WRDERIVE B'xxx1 xxxx' Key can wrap derivation class keys.

Symmetric-key export control (one, optional). Key-management field 1, high-order byte.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 283

Table 82. Key Token Build2 rule array keywords for AES IMPORTER keys (continued)

Token
offset Rule-array keyword Offset value Meaning

054 NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

XPRT-SYM B'1xxx xxxx' Allow export using symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

054 NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

XPRTUASY B'x1xx xxxx' Allow export using an unauthenticated asymmetric key (not a
trusted block). This is the default.

Authenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

054 NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

XPRTAASY B'xx1x xxxx' Allow export using an authenticated asymmetric key (trusted
block). This is the default.

RAW-key export control (one, optional). Key-management field 1, high-order byte.

054 NOEX-RAW B'xxx0 xxxx' Prohibit export using raw key. Defined for future use.
Currently ignored. This is the default.

XPRT-RAW B'xxx1 xxxx' Allow export using raw key. Defined for future use. Currently
ignored.

DES-key export control (one, optional). Key-management field 1, low-order byte.

055 NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

XPRT-DES B'0xxx xxxx Allow export using a DES key. This is the default.

AES-key export control (one, optional). Key-management field 1, low-order byte.

055 NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

XPRT-AES B'x0xx xxxx' Allow export using an AES key.

RSA-key export control (one, optional). Key-management field 1, low-order byte.

055 NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

XPRT-RSA B'xxxx 0xxx' Allow export using an RSA key. This is the default.

Figure 9 on page 285 shows all the valid keyword combinations and their defaults
for AES key type MAC. For a description of these keywords, refer to Table 83 on
page 285.

Key Token Build2 (CSNBKTB2)

284 Common Cryptographic Architecture Application Programmer's Guide

Note:

1. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of two bytes: a high-order byte
(HOB) and a low-order byte (LOB).

2. NOEX-RAW and XPRT-RAW are defined for future use and their meanings are
currently undefined. To avoid this export restriction in the future when the
meaning is defined, specify XPRT-RAW.

3. Choose any number of keywords in this group. No keywords in this group are
defaults.

Table 83. Key Token Build2 rule array keywords for AES MAC keys

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

Token identifier (one required).

000 EXTERNAL X'02' Build a key token that is not to be used locally.

INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional).

008 NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload.

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V1PYLD
required. is default. is default.

>>──AES──────────>MAC────────────┬>EXTERNAL─┐ ┌─────┬>─────────┐ ┌─────┬>─────────┐
└>INTERNAL─┴────┘ └>NO─KEY───┴─────┘ └>V1PYLD───┤

┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ Note: One Note: XPRT-SYM Note: XPRT-DES
│ required. See Note 3. is default. is default.
└─────┬>GENERATE────>┬───┬>───────────────┐ ┌───────┬>─────────┐ ┌──────┬>─────────┐

├>GENONLY──┐ │ │ ┌<───────────┐ │ │ ├>NOEX-SYM─┤ │ ├>NOEX-DES─┤
└>VERIFY───┤ │ │ │ │ │ │ └>XPRT-SYM─┤ │ └>XPRT-DES─┤

┌────────────────┘ │ └>┴─┬>UDX-ONLY─┤ │ │ ┌────────────┘ │ ┌────────────┘
│ ┌────────────────┐ │ ├>UDX-001──┤ │ │ │ Note: XPRTUASY │ │ Note: XPRT-AES
│ │ KUF3 HOB │ │ ├>UDX-010──┤ │ │ │ is default. │ │ is default.
│ └────────────────┘ │ └>UDX-100──┤ │ │ └─┬>─────────┐ │ └─┬>─────────┐
│ Note: One │ ┌────────────────┴─┘ │ ├>NOEXUASY─┤ │ ├>NOEX-AES─┤
│ optional, │ │ ┌────────────────┐ │ └>XPRTUASY─┤ │ └>XPRT-AES─┤
│ no default. │ │ │ KUF2 LOB │ │ ┌────────────┘ │ ┌────────────┘
└─────┬>─────────┐ │ │ └────────────────┘ │ │ Note: XPRTAASY │ │ Note: XPRT-RSA

├>DKPINAD1─┤ │ │ Note: One │ │ is default. │ │ is default.
├>DKPINAD2─┤ │ │ required. │ └─┬>─────────┐ │ └─┬>─────────┐
└>DKPINOP──┴──>┘ └──────>CMAC─────────┘ ├>NOEXAASY─┤ │ ├>NOEX-RSA─┤

└>XPRTAASY─┤ │ └>XPRT-RSA─┴─────>>
┌────────────┘ │
│ Note: NOEX-RAW │
│ is default. │
└─┬>─────────┐ │
├>NOEX-RAW─┤ │
└>XPRT-RAW─┴───┘

Figure 9. Key Token Build2 keyword combinations for AES MAC keys

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 285

Table 83. Key Token Build2 rule array keywords for AES MAC keys (continued)

Token
offset Rule-array keyword Offset value Meaning

028 V1PYLD X'01' Build the key token with a version 1 payload format. This
format has a fixed length and the key length cannot be
inferred by the size of the payload. An obscured key length is
considered more secure. This is the default.

Associated data section

Algorithm type (one required).

041 AES X'02' Key can be used for AES algorithm.

Key type (one required)

042 MAC X'0002' Key can be used for generation and verification of message
authentication codes.

MAC operation (one required). Key-usage field 1, high-order byte.

045 GENERATE B'11xx xxxx' Key can be used for generate; key can be used for verify. Not
valid with keywords DKPINOP, DKPINAD1, and
DKPINAD2. MAC_Generate2 and MAC_Verify2.

GENONLY B'10xx xxxx' Key can be used for generate; key cannot be used for verify.

VERIFY B'01xx xxxx' Key cannot be used for generate; key can be used for verify.
MAC_Verify2.

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

MAC mode (one required). Key-usage field 2, high-order byte.

047 CMAC X'01' Key can be used for block cipher-based MAC algorithm, called
CMAC (NIST SP 800-38B).

Common control (one, optional). Key-usage field 3, high-order byte. Use of a common control keyword causes
key-usage field 3, low-order byte (field format identifier at token offset 050) to be set to X'01' (DK enabled).

049 DKPINOP X'01' PIN_OP

DKPINAD1 X'03' PIN_AD1

DKPINAD2 X'04' PIN_AD2

Symmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 if DK
enabled,
else 050

NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

XPRT-SYM B'1xxx xxxx' Allow export using symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 if DK
enabled,
else 050

NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

XPRTUASY B'x1xx xxxx' Allow export using an unauthenticated asymmetric key (not a
trusted block). This is the default.

Authenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

Key Token Build2 (CSNBKTB2)

286 Common Cryptographic Architecture Application Programmer's Guide

Table 83. Key Token Build2 rule array keywords for AES MAC keys (continued)

Token
offset Rule-array keyword Offset value Meaning

052 if DK
enabled,
else 050

NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

XPRTAASY B'xx1x xxxx' Allow export using an authenticated asymmetric key (trusted
block). This is the default.

RAW-key export control (one, optional). Key-management field 1, high-order byte.

052 if DK
enabled,
else 050

NOEX-RAW B'xxx0 xxxx' Prohibit export using raw key. Defined for future use.
Currently ignored. This is the default.

XPRT-RAW B'xxx1 xxxx' Allow export using raw key. Defined for future use. Currently
ignored.

DES-key export control (one, optional). Key-management field 1, low-order byte.

053 if DK
enabled,
else 051

NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

XPRT-DES B'0xxx xxxx Allow export using a DES key. This is the default.

AES-key export control (one, optional). Key-management field 1, low-order byte.

053 if DK
enabled,
else 051

NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

XPRT-AES B'x0xx xxxx' Allow export using an AES key.

RSA-key export control (one, optional). Key-management field 1, low-order byte.

053 if DK
enabled,
else 051

NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

XPRT-RSA B'xxxx 0xxx' Allow export using an RSA key. This is the default.

Figure 10 on page 288 shows all the valid keyword combinations and their defaults
for HMAC key type MAC. For a description of these keywords, refer to Table 84
on page 288.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 287

Note:

1. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of two bytes: a high-order byte
(HOB) and a low-order byte (LOB).

2. NOEX-RAW and XPRT-RAW are defined for future use and their meanings are
currently undefined. To avoid this export restriction in the future when the
meaning is defined, specify XPRT-RAW.

3. All keywords in this group are defaults unless one or more keywords in this
group are specified.

4. Choose any number of keywords in this group. No keywords in this group are
defaults.

Table 84. Key Token Build2 rule array keywords for HMAC MAC keys

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

Token identifier (one required).

000 EXTERNAL X'02' Build a key token that is not to be used locally.

INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional)

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V0PYLD
required. is default. is default.

>>──HMAC─────────>MAC────────────┬>EXTERNAL─┐ ┌─────┬>─────────┐ ┌─────┬>─────────┐
└>INTERNAL─┴────┘ ├>KEY-CLR──┤ │ └>V0PYLD───┤

└>NO─KEY───┴─────┘ │
┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ Note: One See Note 4. Note: XPRT-SYM Note: XPRT-DES
│ required. ┌───┬>───────────────┐ is default. is default.
└─────┬>GENERATE─┐ │ │ ┌<───────────┐ │ ┌───────┬>─────────┐ ┌──────┬>─────────┐

└>VERIFY───┤ │ │ │ │ │ │ ├>NOEX-SYM─┤ │ ├>NOEX-DES─┤
┌────────────────┘ │ └>┴─┬>UDX-ONLY─┤ │ │ └>XPRT-SYM─┤ │ └>XPRT-DES─┤
│ ┌────────────────┐ │ ├>UDX-001──┤ │ │ ┌────────────┘ │ ┌────────────┘
│ │ KUF2 HOB │ │ ├>UDX-010──┤ │ │ │ Note: XPRTUASY │ │ Note: XPRT-AES
│ └────────────────┘ │ └>UDX-100──┴─┴─┘ │ is default. │ │ is default.
│ See Note 3. │ └─┬>─────────┐ │ └─┬>─────────┐
└─┬>───────────────┐ │ ├>NOEXUASY─┤ │ ├>NOEX-AES─┤

│ ┌<───────────┐ │ │ └>XPRTUASY─┤ │ └>XPRT-AES─┤
│ │ │ │ │ ┌────────────┘ │ ┌────────────┘
└>┴─┬>SHA-1────┤ │ │ │ Note: XPRTAASY │ │ Note: XPRT-RSA

├>SHA-224──┤ │ │ │ is default. │ │ is default.
├>SHA-256──┤ │ │ └─┬>─────────┐ │ └─┬>─────────┐
├>SHA-384──┤ │ │ ├>NOEXAASY─┤ │ ├>NOEX-RSA─┤
└>SHA-512──┴─┴─┘ └>XPRTAASY─┤ │ └>XPRT-RSA─┴─────>>

┌────────────┘ │
│ Note: NOEX-RAW │
│ is default. │
└─┬>─────────┐ │
├>NOEX-RAW─┤ │
└>XPRT-RAW─┴───┘

Figure 10. Key Token Build2 keyword combinations for HMAC MAC keys

Key Token Build2 (CSNBKTB2)

288 Common Cryptographic Architecture Application Programmer's Guide

Table 84. Key Token Build2 rule array keywords for HMAC MAC keys (continued)

Token
offset Rule-array keyword Offset value Meaning

008 KEY-CLR X'01' Build a key token that contains a clear key.

NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload. Release 4.4 or later; otherwise, undefined.

028 V0PYLD X'00' Build a key token with a version 0 payload format. This
format has a variable length and the key length can be
inferred from the size of the payload. This is the default. This
format is compatible with all releases.

Associated data section

Algorithm type (one required).

041 HMAC X'03' Key can be used for HMAC algorithm.

Key type (one required)

042 MAC X'0002' Key can be used for generation or verification of message
authentication codes.

MAC operation (one required). Key-usage field 1, high-order byte.

045 GENERATE B'11xx xxxx' Key can be used for generate; key can be used for verify.
HMAC_Generate and HMAC_Verify.

VERIFY B'01xx xxxx' Key cannot be used for generate; key can be used for verify.
HMAC_Verify.

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

Hash method (one, optional). Key-usage field 2, high-order byte. All keywords in the group are defaults unless one or
more keywords in the group are specified.

047 SHA-1 B'1xxx xxxx' SHA-1 hash method is allowed for the key.

SHA-224 B'x1xx xxxx' SHA-224 hash method is allowed for the key.

SHA-256 B'xx1x xxxx' SHA-256 hash method is allowed for the key.

SHA-384 B'xxx1 xxxx' SHA-384 hash method is allowed for the key.

SHA-512 B'xxxx 1xxx' SHA-512 hash method is allowed for the key.

Symmetric-key export control (one, optional). Key-management field 1, high-order byte.

050 NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

XPRT-SYM B'1xxx xxxx' Allow export using symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

050 NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

XPRTUASY B'x1xx xxxx' Allow export using an unauthenticated asymmetric key (not a
trusted block). This is the default.

Authenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 289

Table 84. Key Token Build2 rule array keywords for HMAC MAC keys (continued)

Token
offset Rule-array keyword Offset value Meaning

050 NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

XPRTAASY B'xx1x xxxx' Allow export using an authenticated asymmetric key (trusted
block). This is the default.

RAW-key export control (one, optional). Key-management field 1, high-order byte.

050 NOEX-RAW B'xxx0 xxxx' Prohibit export using raw key. Defined for future use.
Currently ignored. This is the default.

XPRT-RAW B'xxx1 xxxx' Allow export using raw key. Defined for future use. Currently
ignored.

DES-key export control (one, optional). Key-management field 1, low-order byte.

051 NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

XPRT-DES B'0xxx xxxx Allow export using a DES key. This is the default.

AES-key export control (one, optional). Key-management field 1, low-order byte.

051 NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

XPRT-AES B'x0xx xxxx' Allow export using an AES key.

RSA-key export control (one, optional). Key-management field 1, low-order byte.

051 NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

XPRT-RSA B'xxxx 0xxx' Allow export using an RSA key. This is the default.

Figure 11 on page 291 shows all the valid keyword combinations and their defaults
for AES key type PINCALC. For a description of these keywords, refer to Table 85
on page 291.

Key Token Build2 (CSNBKTB2)

290 Common Cryptographic Architecture Application Programmer's Guide

Note:

1. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of two bytes: a high-order byte
(HOB) and a low-order byte (LOB).

2. NOEX-RAW and XPRT-RAW are defined for future use and their meanings are
currently undefined. To avoid this export restriction in the future when the
meaning is defined, specify XPRT-RAW.

3. Choose any number of keywords in this group. No keywords in the group are
defaults.

Table 85. Key Token Build2 rule array keywords for AES PINCALC keys

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

Token identifier (one required)

000 EXTERNAL X'02' Build a key token that is not to be used locally.

INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional)

008 NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload.

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V1PYLD
required. is default. is default.

>>──AES──────────>PINCALC────────┬>EXTERNAL─┐ ┌─────┬>─────────┐ ┌─────┬>─────────┐
└>INTERNAL─┴────┘ └>NO─KEY───┴─────┘ └>V1PYLD───┤

┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ Note: One See Note 3. Note: XPRT-SYM Note: XPRT-DES
│ required. ┌───┬>───────────────┐ is default. is default.
└──────>GENONLY──┐ │ │ ┌<───────────┐ │ ┌───────┬>─────────┐ ┌──────┬>─────────┐
┌────────────────┘ │ │ │ │ │ │ ├>NOEX-SYM─┤ │ ├>NOEX-DES─┤
│ ┌────────────────┐ │ └>┴─┬>UDX-ONLY─┤ │ │ └>XPRT-SYM─┤ │ └>XPRT-DES─┤
│ │ KUF2 HOB │ │ ├>UDX-001──┤ │ │ ┌────────────┘ │ ┌────────────┘
│ └────────────────┘ │ ├>UDX-010──┤ │ │ │ Note: XPRTUASY │ │ Note: XPRT-AES
│ Note: One │ └>UDX-100──┴─┴─┘ │ is default. │ │ is default.
│ required. │ └─┬>─────────┐ │ └─┬>─────────┐
└──────>CBC──────┐ │ ├>NOEXUASY─┤ │ ├>NOEX-AES─┤
┌────────────────┘ │ └>XPRTUASY─┤ │ └>XPRT-AES─┤
│ ┌────────────────┐ │ ┌────────────┘ │ ┌────────────┘
│ │ KUF3 HOB │ │ │ Note: XPRTAASY │ │ Note: XPRT-RSA
│ └────────────────┘ │ │ is default. │ │ is default.
│ Note: One │ └─┬>─────────┐ │ └─┬>─────────┐
│ required. │ ├>NOEXAASY─┤ │ ├>NOEX-RSA─┤
└──────>DKPINOP──────┘ └>XPRTAASY─┤ │ └>XPRT-RSA─┴─────>>

┌────────────┘ │
│ Note: NOEX-RAW │
│ is default. │
└─┬>─────────┐ │
├>NOEX-RAW─┤ │
└>XPRT-RAW─┴───┘

Figure 11. Key Token Build2 keyword combinations for AES PINCALC keys

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 291

Table 85. Key Token Build2 rule array keywords for AES PINCALC keys (continued)

Token
offset Rule-array keyword Offset value Meaning

028 V1PYLD X'01' Build the key token with a version 1 payload format. This
format has a fixed length and the key length cannot be
inferred by the size of the payload. An obscured key length is
considered more secure. This is the default.

Associated data section

Algorithm type (one required).

041 AES X'02' Key can be used for AES algorithm.

Key type (one required)

042 PINCALC X'0006' Key can be used for generation and verification of message
authentication codes.

MAC operation (one required). Key-usage field 1, high-order byte.

045 GENONLY B'1xxx xxxx' Key can only be used for generate.

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

Encryption mode (one required). Key-usage field 2, high-order byte.

047 CBC X'00' Key can be used for Cipher Block Chaining.

Common control (one required). Key-usage field 3, high-order byte. Use of a common control keyword causes
key-usage field 3, low-order byte (field format identifier at token offset 050) to be set to X'01' (DK enabled).

049 DKPINOP X'01' PIN_OP

Symmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

XPRT-SYM B'1xxx xxxx' Allow export using symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

XPRTUASY B'x1xx xxxx' Allow export using an unauthenticated asymmetric key (not a
trusted block). This is the default.

Authenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

XPRTAASY B'xx1x xxxx' Allow export using an authenticated asymmetric key (trusted
block). This is the default.

RAW-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEX-RAW B'xxx0 xxxx' Prohibit export using raw key. Defined for future use.
Currently ignored. This is the default.

XPRT-RAW B'xxx1 xxxx' Allow export using raw key. Defined for future use. Currently
ignored.

DES-key export control (one, optional). Key-management field 1, low-order byte.

Key Token Build2 (CSNBKTB2)

292 Common Cryptographic Architecture Application Programmer's Guide

Table 85. Key Token Build2 rule array keywords for AES PINCALC keys (continued)

Token
offset Rule-array keyword Offset value Meaning

053 NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

XPRT-DES B'0xxx xxxx Allow export using a DES key. This is the default.

AES-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

XPRT-AES B'x0xx xxxx' Allow export using an AES key.

RSA-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

XPRT-RSA B'xxxx 0xxx' Allow export using an RSA key. This is the default.

Figure 12 shows all the valid keyword combinations and their defaults for AES key
type PINPROT. For a description of these keywords, refer to Table 86 on page 294.

Note:

1. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of two bytes: a high-order byte
(HOB) and a low-order byte (LOB).

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V1PYLD
required. is default. is default.

>>──AES──────────>PINPROT────────┬>EXTERNAL─┐ ┌─────┬>─────────┐ ┌─────┬>─────────┐
└>INTERNAL─┴────┘ └>NO─KEY───┴─────┘ └>V1PYLD───┤

┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ Note: One See Note 3. Note: XPRT-SYM Note: XPRT-DES
│ required. ┌───┬>───────────────┐ is default. is default.
└─────┬>DECRYPT──┐ │ │ ┌<───────────┐ │ ┌───────┬>─────────┐ ┌──────┬>─────────┐

└>ENCRYPT──┤ │ │ │ │ │ │ ├>NOEX-SYM─┤ │ ├>NOEX-DES─┤
┌────────────────┘ │ └>┴─┬>UDX-ONLY─┤ │ │ └>XPRT-SYM─┤ │ └>XPRT-DES─┤
│ ┌────────────────┐ │ ├>UDX-001──┤ │ │ ┌────────────┘ │ ┌────────────┘
│ │ KUF2 HOB │ │ ├>UDX-010──┤ │ │ │ Note: XPRTUASY │ │ Note: XPRT-AES
│ └────────────────┘ │ └>UDX-100──┴─┴─┘ │ is default. │ │ is default.
│ Note: One │ └─┬>─────────┐ │ └─┬>─────────┐
│ required. │ ├>NOEXUASY─┤ │ ├>NOEX-AES─┤
└──────>CBC──────┐ │ └>XPRTUASY─┤ │ └>XPRT-AES─┤
┌────────────────┘ │ ┌────────────┘ │ ┌────────────┘
│ ┌────────────────┐ │ │ Note: XPRTAASY │ │ Note: XPRT-RSA
│ │ KUF3 HOB │ │ │ is default. │ │ is default.
│ └────────────────┘ │ └─┬>─────────┐ │ └─┬>─────────┐
│ Note: One │ ├>NOEXAASY─┤ │ ├>NOEX-RSA─┤
│ required. │ └>XPRTAASY─┤ │ └>XPRT-RSA─┴─────>>
└─────┬>DKPINAD1─┐ │ ┌────────────┘ │

├>DKPINOP──┤ │ │ Note: NOEX-RAW │
└>DKPINOPP─┴───┘ │ is default. │

└─┬>─────────┐ │
├>NOEX-RAW─┤ │
└>XPRT-RAW─┴───┘

Figure 12. Key Token Build2 keyword combinations for AES PINPROT keys

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 293

2. NOEX-RAW and XPRT-RAWare defined for future use and their meanings are
currently undefined. To avoid this export restriction in the future when the
meaning is defined, specify XPRT-RAW.

3. Choose any number of keywords in this group. No keywords in the group are
defaults.

Table 86. Key Token Build2 rule array keywords for AES PINPROT keys

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

Token identifier (one required)

000 EXTERNAL X'02' Build a key token that is not to be used locally.

INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional)

008 NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload.

028 V1PYLD X'01' Build the key token with a version 1 payload format. This
format has a fixed length and the key length cannot be
inferred by the size of the payload. An obscured key length is
considered more secure. This is the default.

Associated data section

Algorithm type (one required)

041 AES X'02' Key can be used for AES algorithm.

Key type (one required).

042 PINPROT X'0005' Key can be used for encrypting PIN blocks.

Encryption operation (one required). Key-usage field 1, high-order byte.

045 DECRYPT B'01xx xxxx' Key cannot be used for encryption; key can be used for
decryption.

ENCRYPT B'10xx xxxx' Key can be used for encryption; key cannot be used for
decryption.

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

Encryption mode (one required). Key-usage field 2, high-order byte.

047 CBC X'00' Key can be used for Cipher Block Chaining.

Common control (one required). Key-usage field 3, high-order byte. Use of a common control keyword causes
key-usage field 3, low-order byte (field format identifier at token offset 050) to be set to X'01' (DK enabled).

049 DKPINOP X'01' PIN_OP

DKPINOPP X'02' PIN_OPP

DKPINAD1 X'03' PIN_AD1

Symmetric-key export control (one, optional). Key-management field 1, high-order byte.

Key Token Build2 (CSNBKTB2)

294 Common Cryptographic Architecture Application Programmer's Guide

Table 86. Key Token Build2 rule array keywords for AES PINPROT keys (continued)

Token
offset Rule-array keyword Offset value Meaning

052 NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

XPRT-SYM B'1xxx xxxx' Allow export using symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

XPRTUASY B'x1xx xxxx' Allow export using an unauthenticated asymmetric key (not a
trusted block). This is the default.

Authenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

XPRTAASY B'xx1x xxxx' Allow export using an authenticated asymmetric key (trusted
block). This is the default.

RAW-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEX-RAW B'xxx0 xxxx' Prohibit export using raw key. Defined for future use.
Currently ignored. This is the default.

XPRT-RAW B'xxx1 xxxx' Allow export using raw key. Defined for future use. Currently
ignored.

DES-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

XPRT-DES B'0xxx xxxx Allow export using a DES key. This is the default.

AES-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

XPRT-AES B'x0xx xxxx' Allow export using an AES key.

RSA-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

XPRT-RSA B'xxxx 0xxx' Allow export using an RSA key. This is the default.

Figure 13 on page 296 shows all the valid keyword combinations and their defaults
for AES key type PINPRW. For a description of these keywords, refer to Table 87
on page 296.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 295

Note:

1. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of two bytes: a high-order byte
(HOB) and a low-order byte (LOB).

2. NOEX-RAW and XPRT-RAWare defined for future use and their meanings are
currently undefined. To avoid this export restriction in the future when the
meaning is defined, specify XPRT-RAW.

3. Choose any number of keywords in this group. No keywords in the group are
defaults.

Table 87. Key Token Build2 PINPRW related key words

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

Token identifier (one required).

000 EXTERNAL X'02' Build a key token that is not to be used locally.

INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional).

008 NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload.

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V1PYLD
required. is default. is default.

>>──AES──────────>PINPRW─────────┬>EXTERNAL─┐ ┌─────┬>─────────┐ ┌─────┬>─────────┐
└>INTERNAL─┴────┘ └>NO─KEY───┴─────┘ └>V1PYLD───┤

┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ Note: One See Note 3. Note: XPRT-SYM Note: XPRT-DES
│ required. ┌───┬>───────────────┐ is default. is default.
└─────┬>GENONLY──┐ │ │ ┌<───────────┐ │ ┌───────┬>─────────┐ ┌──────┬>─────────┐

└>VERIFY───┤ │ │ │ │ │ │ ├>NOEX-SYM─┤ │ ├>NOEX-DES─┤
┌────────────────┘ │ └>┴─┬>UDX-ONLY─┤ │ │ └>XPRT-SYM─┤ │ └>XPRT-DES─┤
│ ┌────────────────┐ │ ├>UDX-001──┤ │ │ ┌────────────┘ │ ┌────────────┘
│ │ KUF2 HOB │ │ ├>UDX-010──┤ │ │ │ Note: XPRTUASY │ │ Note: XPRT-AES
│ └────────────────┘ │ └>UDX-100──┴─┴─┘ │ is default. │ │ is default.
│ Note: One │ └─┬>─────────┐ │ └─┬>─────────┐
│ required. │ ├>NOEXUASY─┤ │ ├>NOEX-AES─┤
└──────>CMAC─────┐ │ └>XPRTUASY─┤ │ └>XPRT-AES─┤
┌────────────────┘ │ ┌────────────┘ │ ┌────────────┘
│ ┌────────────────┐ │ │ Note: XPRTAASY │ │ Note: XPRT-RSA
│ │ KUF3 HOB │ │ │ is default. │ │ is default.
│ └────────────────┘ │ └─┬>─────────┐ │ └─┬>─────────┐
│ Note: One │ ├>NOEXAASY─┤ │ ├>NOEX-RSA─┤
│ required. │ └>XPRTAASY─┤ │ └>XPRT-RSA─┴─────>>
└──────>DKPINOP──────┘ ┌────────────┘ │

│ Note: NOEX-RAW │
│ is default. │
└─┬>─────────┐ │
├>NOEX-RAW─┤ │
└>XPRT-RAW─┴───┘

Figure 13. Key Token Build2 keyword combinations for AES PINPRW keys

Key Token Build2 (CSNBKTB2)

296 Common Cryptographic Architecture Application Programmer's Guide

Table 87. Key Token Build2 PINPRW related key words (continued)

Token
offset Rule-array keyword Offset value Meaning

028 V1PYLD X'01' Build the key token with a version 1 payload format. This
format has a fixed length and the key length cannot be
inferred by the size of the payload. An obscured key length is
considered more secure. This is the default.

Associated data section

Algorithm type (one required).

041 AES X'02' Key can be used for AES algorithm.

Key type (one required)

042 PINPRW X'0007' Key can be used for generation and verification of message
authentication codes.

MAC operation (one required). Key-usage field 1, high-order byte.

045 GENONLY B'10xx xxxx' Key can be used for generate; key cannot be used for verify.

VERIFY B'01xx xxxx Key cannot be used for generate; key can be used for verify.

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

MAC mode (one required). Key-usage field 2, high-order byte.

047 CMAC X'01' Key can be used for block cipher-based MAC algorithm, called
CMAC (NIST SP 800-38B).

Common control (one, required). Key-usage field 3, high-order byte. Use of a common control keyword causes
key-usage field 3, low-order byte (field format identifier at token offset 050) to be set to X'01' (DK enabled).

049 DKPINOP X'01' PIN_OP

Symmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

XPRT-SYM B'1xxx xxxx' Allow export using symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

XPRTUASY B'x1xx xxxx' Allow export using an unauthenticated asymmetric key (not a
trusted block). This is the default.

Authenticated asymmetric-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

XPRTAASY B'xx1x xxxx' Allow export using an authenticated asymmetric key (trusted
block). This is the default.

RAW-key export control (one, optional). Key-management field 1, high-order byte.

052 NOEX-RAW B'xxx0 xxxx' Prohibit export using raw key. Defined for future use.
Currently ignored. This is the default.

XPRT-RAW B'xxx1 xxxx' Allow export using raw key. Defined for future use. Currently
ignored.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 297

Table 87. Key Token Build2 PINPRW related key words (continued)

Token
offset Rule-array keyword Offset value Meaning

DES-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

XPRT-DES B'0xxx xxxx Allow export using a DES key. This is the default.

AES-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

XPRT-AES B'x0xx xxxx' Allow export using an AES key.

RSA-key export control (one, optional). Key-management field 1, low-order byte.

053 NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

XPRT-RSA B'xxxx 0xxx' Allow export using an RSA key. This is the default.

Figure 14 shows all the valid keyword combinations and their defaults for AES key
type SECMSG.

Note:

1. AES SECMSG is Release 4.4 or later.
2. An AES SECMSG key is always derived. The derived key is the result of a key

derivation function (KDF) applied to a fixed diversified key generating key
(DKYGENKY) and derivation data. The final derived key is used as a session
key and is typically used to encipher and decipher PIN information between

┌───────────┐ ┌──────────┐ ┌──────────────────┐ ┌────────────────────┐ ┌─────────────────────┐
│ Algorithm │ │ Key type │ │ Token identifier │ │ Key material state │ │ Payload format ver. │
└───────────┘ └──────────┘ └──────────────────┘ └────────────────────┘ └─────────────────────┘

Note: One Note: NO-KEY Note: V1PYLD
required. is default. is default.

>>──AES──────────>SECMSG──────────>INTERNAL────────────┬>─────────┐ ┌─────┬>─────────┐
└>NO─KEY───┴─────┘ └>V1PYLD───┤

┌──┘
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ │ KUF1 HOB │ │ KUF1 LOB │ │ KMF1 HOB │ │ KMF1 LOB │
│ └────────────────┘ └────────────────┘ └────────────────┘ └────────────────┘
│ Note: One See Note 4. Note: One Note: One
│ required. ┌───┬>───────────────┐ required. required.
└──────>SMPIN────┐ │ │ ┌<───────────┐ │ ┌─┬──────>NOEX-SYM─┐ ┌───────>NOEX-DES─┐
┌────────────────┘ │ │ │ │ │ │ │ ┌────────────┘ │ ┌────────────┘
│ ┌────────────────┐ │ └>┴─┬>UDX-ONLY─┤ │ │ │ │ Note: One │ │ Note: One
│ │ KUF2 HOB │ │ ├>UDX-001──┤ │ │ │ │ required. │ │ required.
│ └────────────────┘ │ ├>UDX-010──┤ │ │ │ └──>NOEXUASY─┐ │ └──>NOEX-AES─┐
│ Note: ANY-USE │ └>UDX-100──┴─┴─┘ │ ┌────────────┘ │ ┌────────────┘
│ is default. │ │ │ Note: One │ │ Note: One
└─────┬>─────────┐ │ │ │ required. │ │ required.

├>ANY-USE──┤ │ │ └──>NOEXAASY─┐ │ └──>NOEX-RSA──────┐
└>DPC-ONLY─┴───┘ │ ┌────────────┘ │ │

│ │ Note: NOEX-RAW │ │
│ │ is default. │ │
│ └─┬>─────────┐ │ │
│ └>NOEX-RAW─┴───┘ │
│ ┌───────────────────────────────────────┐ │
│ │ KMF1 HOB and KMF1 LOB │ │
│ └───────────────────────────────────────┘ │
│ See Note 6. │
└─────────────────>NOEXPORT─────────────────┴──>>

Figure 14. Key Token Build2 keyword combinations for AES SECMSG keys

Key Token Build2 (CSNBKTB2)

298 Common Cryptographic Architecture Application Programmer's Guide

devices. An AES SECMSG key can only be wrapped by an AES master key and
cannot be stored in an external key-token.

3. Each key-usage field (KUF) and key-management field (KMF) of a version X'05'
variable-length symmetric key-token consists of two bytes: a high-order byte
(HOB) and a low-order byte (LOB).

4. Choose any number of keywords in this group. No keywords in this group are
defaults.

5. NOEX-RAW is defined for future use.
6. There is no default. Specifying NOEXPORT is equivalent to specifying all of

the export control keywords (NOEX-SYM, NOEXUASY, NOEXAASY,
NOEX-RAW,NOEX-DES, NOEX-AES, and NOEX-RSA). Do not specify any
export control keywords together with NOEXPORT. If NOEXPORT is not
specified, NOEX-SYM, NOEXUASY, NOEXAASY, NOEX-DES, NOEX-AES,
and NOEX-RSA all must be specified, and NOEX-RAW is optional.

Table 88. Key Token Build2 SECMSG related key words

Token
offset Rule-array keyword Offset value Meaning

Key-token header section

Token identifier (one required).

000 INTERNAL X'01' Build a key token that is to be used locally.

Wrapping-information section

Key status (one, optional).

008 NO-KEY X'00' Build a key token that does not contain a key value. This is
the default.

Payload format version (one, optional). Identifies format of the payload.

028 V1PYLD X'01' Build the key token with a version 1 payload format. This
format has a fixed length and the key length cannot be
inferred by the size of the payload. An obscured key length is
considered more secure. This is the default.

Associated data section

Algorithm type (one required)

041 AES X'02' Key can be used for AES algorithm.

Associated data section

Key type (one required)

042 SECMSG X'000A' Key can be used as an EMV secure messaging key for
encrypting PINs or for encrypting keys.

Secure message encryption enablement (one required). Key-usage field 1, high-order byte

045 SMPIN X'00' Enable the encryption of PINs in an EMV secure message.

User-defined extension (UDX) control (one or more, optional). Key-usage field 1, low-order byte. No keywords in the
group are defaults.

046 UDX-ONLY B'xxxx 1xxx' Key can only be used in UDXs.

UDX-100 B'xxxx x1uu' Leftmost user-defined UDX bit is set on.

UDX-010 B'xxxx xu1u' Middle user-defined UDX bit is set on.

UDX-001 B'xxxx xuu1' Rightmost user-defined UDX bit is set on.

Verb restriction (one, optional)

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 299

Table 88. Key Token Build2 SECMSG related key words (continued)

Token
offset Rule-array keyword Offset value Meaning

047 ANY-USE X'00' Any verb (service) can use this key. This is the default.

DPC-ONLY X'01' Only CSNBDPC can use this key.

General export control (one, optional). Equivalent to specifying all export control keywords (NOEX-SYM,
NOEXUASY, NOEXAASY, NOEX-RAW , NOEX-DES, NOEX-AES, and NOEX-RSA). Not valid with any other
export control keyword. There is no default. Key-management field 1, high-order byte and low-order byte.

050 NOEXPORT B'0000 xxxx' Prohibits the export of this key in all cases. Equivalent to
specifiying NOEX-SYM, NOEXUASY, NOEXAASY,
NOEX-RAW, NOEX-DES, NOEX-AES, and NOEX-RSA.

051 B'11xx 1xxx'

Symmetric-key export control (one required if NOEXPORT not specified, otherwise not valid). Key-management field
1, high-order byte.

050 NOEX-SYM B'0xxx xxxx' Prohibit export using symmetric key.

Unauthenticated asymmetric-key export control (one required if NOEXPORT not specified, otherwise not valid).
Key-management field 1, high-order byte.

050 NOEXUASY B'x0xx xxxx' Prohibit export using an unauthenticated asymmetric key (not
a trusted block).

Authenticated asymmetric-key export control (one required if NOEXPORT not specified, otherwise not valid).
Key-management field 1, high-order byte.

050 NOEXAASY B'xx0x xxxx' Prohibit export using an authenticated asymmetric key
(trusted block).

RAW-key export control (one optional if NOEXPORT not specified; otherwise not valid). Key-management field 1,
high-order byte.

050 NOEX-RAW B'xxx0 xxxx' Prohibit export using RAW key. Defined for future use.
Currently ignored. This is the default.

DES-key export control (one required if NOEXPORT not specified, otherwise not valid). Key-management field 1,
low-order byte.

051 NOEX-DES B'1xxx xxxx' Prohibit export using a DES key.

AES-key export control (one required if NOEXPORT not specified, otherwise not valid). Key-management field 1,
low-order byte

051 NOEX-AES B'x1xx xxxx' Prohibit export using an AES key.

RSA-key export control (one required if NOEXPORT not specified, otherwise not valid). Key-management field 1,
low-order byte.

051 NOEX-RSA B'xxxx 1xxx' Prohibit export using an RSA key.

Restrictions
The restrictions for CSNBKTB2.

None.

Required commands
The required commands for CSNBKTB2.

None.

Key Token Build2 (CSNBKTB2)

300 Common Cryptographic Architecture Application Programmer's Guide

Usage notes
The usage notes for CSNBKTB2.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKTB2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKTB2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber clear_key_bit_length,
byte[] clear_key_value,
hikmNativeNumber key_name_length,
byte[] key_name,
hikmNativeNumber user_associated_data_length,
byte[] user_associated_data,
hikmNativeNumber token_data_length,
byte[] token_data,
hikmNativeNumber verb_data_length,
byte[] verb_data,
hikmNativeNumber target_key_token_length,
byte[] target_key_token);

Key Token Change (CSNBKTC)
Use the Key Token Change verb to re-encipher a DES or AES key from encryption
under the old master-key to encryption under the current master-key and to
update the keys in internal DES or AES key-tokens.

Note:

1. An application system is responsible for keeping all of its keys in a usable
form. When the master key is changed, the CEX*C implementations can use an
internal key that is enciphered by either the current or the old master-key.
Before the master key is changed a second time, it is important to have a key
re-enciphered under the current master-key for continued use of the key. Use
the Key Token Change verb to re-encipher such a keys.

2. Previous implementations of IBM CCA products had additional capabilities
with this verb such as deleting key records and key tokens in key storage. Also,
use of a wild card (*) was supported in those implementations.

Key Token Build2 (CSNBKTB2)

Chapter 8. AES, DES, and HMAC cryptographic keys 301

Format
The format of CSNBKTC.

CSNBKTC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier)

Parameters
The parameters for CSNBKTC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, 3, or 4.

rule_array

Direction: Input
Type: String array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords are
described in Table 89.

Table 89. Keywords for Key Token Change control information

Keyword Description

Re-encipherment method (Required)

RTCMK Re-enciphers a DES or AES key to the current master-key in an internal key-token in application
storage or in key storage. If the supplied key is already enciphered under the current master-key
the verb returns a positive response (return code 0, reason code 0). If the supplied key is
enciphered under the old master-key, the key is updated to encipherment by the current
master-key and the verb returns a positive response (return code 0, reason code 0). Other cases
return some form of abnormal response.

Key Token Change (CSNBKTC)

302 Common Cryptographic Architecture Application Programmer's Guide

Table 89. Keywords for Key Token Change control information (continued)

Keyword Description

RTNMK Re-enciphers an internal DES or AES key to the new master-key.

A key enciphered under the new master key is not usable. It is expected that the user will use this
keyword (RTNMK) to take a preparatory step in re-enciphering an external key store that they
manage themselves to a new master-key, before the set operation has occurred. Note also that the
new master-key register must be full; it must have had the last key part loaded and therefore not
be empty or partially full (partially full means that one or more key parts have been loaded but
not the last key part).

The SET operation makes the new master-key operational, moving it to the current master-key
register, and the current master-key is displaced into the old master-key register. When this
happens, all the keys that were re-enciphered to the new master-key are now usable, because the
new master-key is not 'new' any more, it is 'current'.

Because the RTNMK keyword is added primarily for support of externally managed key storage
(see “Key Storage on z/OS (RTNMK-focused)” on page 453, it is not valid to pass a key_identifer
when the RTNMK keyword is used. Only a full internal key token (encrypted under the current
master-key) can be passed for re-encipherment with the RTNMK keyword. When a key label is
passed along with the RTNMK keyword, the error return code 8 with reason code 181 will be
returned.

For more information, see “Key storage with Linux on Z, in contrast to z/OS” on page 451.

VALIDATE Validate an internal key token as described in the key_identifier which is enciphered under the
current master key. That is, the same processing as RTNMK is applied. However, after a successful
checking of the token, no re-enciphering of the token to the new master key takes place. There is
just a return code for a successful validation.

REFORMAT Rewrap the input_key_token with the key wrapping method specified. Only the
input_KEK_identifier will be used. The output_KEK_identifier is ignored. This keyword was
introduced with CCA 4.1.0.

Algorithm (Optional)

AES Specifies that the key token is for an AES key.

DES Specifies that the key token is for a DES key. This is the default.

Key wrapping method (Optional)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the default
wrapping method. The default wrapping method configuration setting may be changed using the
TKE. This keyword is ignored for AES keys.

WRAP-ENH Use enhanced key wrapping method, which is compliant with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB wrapping for DES key tokens and CBC
wrapping for AES key tokens.

Translation control (Optional)

ENH-ONLY Restrict rewrapping of the output_key_token. After the token has been wrapped with the enhanced
method, it cannot be rewrapped using the original method.

key_identifier

Direction: Input/Output
Type: String

The key_identifier parameter is a pointer to a string variable containing the DES
internal key-token or the key label of an internal key-token record in key
storage.

Key Token Change (CSNBKTC)

Chapter 8. AES, DES, and HMAC cryptographic keys 303

Restrictions
The restrictions for CSNBKTC.

None.

Required commands
The required commands for CSNBKTC.

If you specify the RTCMK keyword, the Key Token Change verb requires the
Symmetric Key Token Change - RTCMK command (offset X'0090') to be enabled in
the active role.

If you specify the REFORMAT keyword, the Key Token Change verb requires the
CKDS Conversion2 - Allow use of REFORMAT command (offset X'014C') to be
enabled in the active role.

If you specify the WRAP-ECB or WRAP-ENH key wrapping method, and the
default key-wrapping method setting does not match this keyword, the CKDS
Conversion2 - Allow wrapping override keywords command (offset X'0146') must
be enabled in the active role.

If the WRAP-ECB translation-control keyword is specified, and the key in the
input key token is wrapped by the enhanced wrapping method (WRAP-ENH), the
verb requires the CKDS Conversion2 - Convert from enhanced to original
command (offset X'0147') to be enabled. An active role with offset X'0147' enabled
can also use the Key Translate2 verb to translate a key from the enhanced
key-wrapping method to the less-secure legacy method.

Usage notes
The usage notes for CSNBKTC.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKTCJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKTCJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_identifier);

Key Token Change2 (CSNBKTC2)
Use the Key Token Change2 verb to re-encipher a variable-length HMAC or AES
key from encryption under the old master-key to encryption under the current
master-key and to update the keys in internal HMAC or AES key tokens.

Note:

Key Token Change (CSNBKTC)

304 Common Cryptographic Architecture Application Programmer's Guide

1. An application system is responsible for keeping all of its keys in a usable
form. When the master key is changed, the CEX*C implementations can use an
internal key that is enciphered by either the current or the old master-key.
Before the master key is changed a second time, it is important to have a key
re-enciphered under the current master-key for continued use of the key. Use
the Key Token Change2 verb to re-encipher such a keys.

2. Previous implementations of IBM CCA products had additional capabilities
with this verb such as deleting key records and key tokens in key storage. Also,
use of a wild card (*) was supported in those implementations.

Format
The format of CSNBKTC2.

CSNBKTC2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length
key_identifier)

Parameters
The parameters for CSNBKTC2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 2.

rule_array

Direction: Input
Type: String array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords are
described in Table 90.

Table 90. Keywords for Key Token Change2 control information

Keyword Description

Algorithm (One, required)

HMAC Specifies that the key token is for an HMAC key.

AES Specifies that the key token is for an AES key in a variable-length symmetric key token.

Re-encipherment method (Required)

Key Token Change2 (CSNBKTC2)

Chapter 8. AES, DES, and HMAC cryptographic keys 305

Table 90. Keywords for Key Token Change2 control information (continued)

Keyword Description

RTCMK Re-enciphers the internal key provided by the key_identifier to the current master-key in an
internal key-token in application storage or in key storage. If the supplied key is already enciphered
under the current master-key the verb returns a positive response (return code 0, reason code 0). If
the supplied key is enciphered under the old master-key, the key is updated to encipherment by the
current master-key and the verb returns a positive response (return code 0, reason code 0). Other
cases return some form of abnormal response.

RTNMK Re-enciphers the internal key provided by the key_identifier to the new master-key.

A key enciphered under the new master key is not usable. It is expected that the user will use this
keyword (RTNMK) to take a preparatory step in re-enciphering an external key store that they
manage themselves to a new master-key, before the SET operation has occurred. Note also that the
new master-key register must be full. It must have had the last key part loaded and therefore not
be empty or partially full (partially full means that one or more key parts have been loaded, but
not the last key part).

The SET operation makes the new master-key operational, moving it to the current master-key
register, and the current master-key is displaced into the old master-key register. When this
happens, all the keys that were re-enciphered to the new master-key are now usable, because the
new master-key is not new anymore, it is current.

Because the RTNMK keyword is added primarily for support of externally managed key storage
(see “Key Storage on z/OS (RTNMK-focused)” on page 453), it is not valid to pass a key_identifer
when the RTNMK keyword is used. Only a full internal key token (encrypted under the current
master-key) can be passed for re-encipherment with the RTNMK keyword. When a key label is
passed along with the RTNMK keyword, the error return code 8 with reason code 181 will be
returned.

For more information, see “Key storage with Linux on Z, in contrast to z/OS” on page 451.

VALIDATE Validate an internal key token as described in the key_identifier which is enciphered under the
current master key. That is, the same processing as RTNMK is applied. However, after a successful
checking of the token, no re-enciphering of the token to the new master key takes place. There is
just a return code for a successful validation.

key_identifier_length

Direction: Input/Output
Type: Integer

The key_identifier_length parameter is a pointer to a string variable
containing the length in bytes of the key_identifier parameter. On input, this
variable contains the number of bytes for the key_identifier buffer, and must be
large enough to hold the key token or key label. On output, this variable
contains the number of bytes of data returned in the key_identifier variable.

key_identifier

Direction: Input/Output
Type: String

A pointer to a string variable containing an internal variable-length symmetric
key-token, or a key label of such a key in AES key-storage. The key token
referred to is processed according to the rule-array keywords..

Restrictions
The restrictions for CSNBKTC2.

This verb was introduced with CCA 4.1.0.

Key Token Change2 (CSNBKTC2)

306 Common Cryptographic Architecture Application Programmer's Guide

Required commands
The required commands for CSNBKTC2.

If you specify the RTNMK keyword, this verb requires the Reencipher CKDS2
command (offset X'00F0') to be enabled in the active role.

If you specify the RTCMK keyword, this verb requires the Symmetric Key Token
Change2 - RTCMK command (offset X'00F1') to be enabled in the active role.

Usage notes
The usage notes for CSNBKTC2.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKTC2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKTC2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length,
byte[] key_identifier);

Key Token Parse (CSNBKTP)
The Key Token Parse verb disassembles a key token into separate pieces of
information.

This verb can disassemble an external key token or an internal key token in
application storage.

Use the key_token parameter to specify the key token to disassemble.

This verb returns some of the key token information in a set of variables identified
by individual parameters and the remaining key token information as keywords in
the rule_array.

Control vector information is returned in keywords found in the rule_array when
the verb can fully parse the control vector. Otherwise, the verb returns return code
4, reason code 2039.

The Key Token Parse verb performs no cryptographic services.

Key Token Change2 (CSNBKTC2)

Chapter 8. AES, DES, and HMAC cryptographic keys 307

Format
The format of CSNBKTP.

CSNBKTP(
return_code,
reason_code,
exit_data_length,
edit_data,
key_token,
key_type,
rule_array_count,
rule_array,
key_value,
masterkey_verification_pattern_v03,
reserved_2,
reserved_3,
control_vector,
reserved_4,
reserved_5,
reserved_6,
master_key_verification_pattern_v00)

Parameters
The parameters for CSNBKTP.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_token

Direction: Input
Type: String

The key_token parameter is a pointer to a string variable in application storage
containing an external or internal key-token to be disassembled.

Note: You cannot use a key label for a key-token record in key storage. The
key token must be in application storage.

key_type

Direction: Output
Type: String

The key_type parameter is a pointer to a string variable containing a keyword
defining the key type. The keyword is eight bytes in length and must be
left-aligned and padded on the right with space characters. Valid key_type
keywords are shown here:
CIPHER CVARXCVL DKYGENKY MAC
CIPHERXI CVARXCVR ENCIPHER MACVER
CIPHERXL DATA EXPORTER OKEYXLAT
CIPHERXO DATAC IKEYXLAT OPINENC
CVARDEC DATAM IMPORTER PINGEN
CVARENC DATAMV IPINENC PINVER
CVARPINE DECIPHER KEYGENKY SECMSG

Key types are described in “Types of keys” on page 41.

rule_array_count

Direction: Input/Output

Key Token Parse (CSNBKTP)

308 Common Cryptographic Architecture Application Programmer's Guide

Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be a minimum of 4.

On input, specify the maximum number of usable array elements that are
allocated. On output, the verb sets the value to the number of keywords
returned to the application.

rule_array

Direction: Output
Type: String array

The rule_array parameter is a pointer to a string variable containing an array of
keywords that expresses the contents of the key token. The keywords are eight
bytes in length and are left-aligned and padded on the right with space
characters. The rule_array keywords are described in Table 91.

Table 91. Keywords for Key Token Parse control information

Keyword Description

Token type (One returned)

INTERNAL Specifies an internal key-token.

EXTERNAL Specifies an external key-token.

Key status (One returned)

KEY Indicates the key token contains a key. The key_value parameter contains the key.

NO-KEY Indicates the key token does not contain a key.

Key-wrapping method (One returned)

WRAP-ECB The wrapping method for this key is legacy. This keyword was introduced with CCA 4.1.0.

WRAP-ENH The wrapping method for this key is enhanced. This keyword was introduced with CCA
4.1.0.

Control-vector (CV) status (One returned)

CV The key token specifies that a control vector is present. The verb sets the control vector
variable with the value of the control vector found in the key token.

NO-CV The key token does not specify the presence of a control vector. The verb sets the control
vector variable with the value of the control vector variable found in the key token.

The difference between Key Token Parse (CSNBKTP) and Control Vector
Generate (CSNBCVG) is that Key Token Parse returns the rule_array keywords
that apply to a parsed token, such as EXTERNAL, INTERNAL, and so forth.
These rule_array parameters are returned in addition to key_type parameter.
Refer to “Key Token Build (CSNBKTB)” on page 259 and “Key Token Build2
(CSNBKTB2)” on page 264 for keyword discussion.
AMEX-CSC DKYL0 EPINGEN KEYLN16 UKPT
ANSIX9.9 DKYL1 EPINGENA LMTD-KEK VISA-PVV
ANY DKYL2 EPINVER MIXED WRAP-ECB
ANY-MAC DKYL3 EXEX NO-SPEC WRAP-ENH
CLR8-ENC DKYL4 EXPORT NO-XPORT XLATE
CPINENC DKYL5 GBP-PIN NOOFFSET XPORT-OK
CPINGEN DKYL6 GBP-PINO NOT-KEK
CPINGENA DKYL7 IBM-PIN OPEX
CVVKEY-A DMAC IBM-PINO OPIM
CVVKEY-B DMKEY IMEX PIN
DALL DMPIN IMIM REFORMAT
DATA DMV IMPORT SINGLE

Key Token Parse (CSNBKTP)

Chapter 8. AES, DES, and HMAC cryptographic keys 309

DDATA DOUBLE INBK-PIN SMKEY
DEXP DPVR KEY-PART SMPIN
DIMP ENH-ONLY KEYLN8 TRANSLAT

key_value

Direction: Input
Type: String

The key_value parameter is a pointer to a string variable. If the verb returns
the KEY keyword in the rule_array, the key_value parameter contains the
16-byte enciphered key.

masterkey_verification_pattern_v03

Direction: Output
Type: Integer

The masterkey_verification_pattern_v03 parameter is a pointer to an integer
variable. The verb writes zero into the variable except when parsing a version
X'03' internal key-token.

reserved_2/5

Direction: Output
Type: Integer

The reserved_2 and reserved_5 parameters are either null pointers or pointers
to integer variables. If the parameter is not a null pointer, the verb writes zero
into the reserved variable.

reserved_3/4

Direction: Output
Type: String

The reserved_3 and reserved_4 parameters are either null pointers or pointers
to string variables. If the parameter is not a null pointer, the verb writes eight
bytes of X'00' into the reserved variable.

reserved_6

Direction: Output
Type: String

The reserved_6 parameter is either a null pointer or a pointer to a string
variable. If the parameter is not a null pointer, the verb writes eight space
characters into the reserved variable.

control_vector

Direction: Output
Type: String

The control_vector parameter is a pointer to a string variable in application
storage. If the verb returns the NO-CV keyword in the rule_array, the key
token did not contain a control-vector value and the control vector variable is
filled with 16 space characters.

master_key_verification_pattern_v00

Direction: Output
Type: String

Key Token Parse (CSNBKTP)

310 Common Cryptographic Architecture Application Programmer's Guide

The master_key_verification_pattern_v00 parameter is a pointer to a string
variable in application storage. For version 0 key-tokens that contain a key, the
8-byte master key version number is copied to the variable. Otherwise the
variable is filled with eight space characters.

Restrictions
The restrictions for CSNBKTP.

None.

Required commands
The required commands for CSNBKTP.

None.

Usage notes
The usage notes for CSNBKTP.

Be aware that Key Token Parse (CSNBKTP) will fail (return code 8, reason code 49)
when given a DES INTERNAL key token that is version X'01'. These tokens are
DOUBLE and TRIPLE length DES INTERNAL DATA key tokens.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKTPJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKTPJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_token,
byte[] key_type,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_value,
hikmNativeNumber master_key_verification_pattern_v03,
hikmNativeNumber reserved_2,
byte[] reserved_3,
byte[] control_vector,
byte[] reserved_4,
hikmNativeNumber reserved_5,
byte[] reserved_6,
byte[] master_key_verification_pattern_v00);

Key Token Parse2 (CSNBKTP2)
Use the Key Token Parse2 verb to disassemble a variable-length symmetric
key-token into separate pieces of information.

The verb can disassemble an external or internal variable-length symmetric
key-token in application storage into separate pieces of information. To parse a
fixed-length symmetric key-token, see “Key Token Parse (CSNBKTP)” on page 307.

Key Token Parse (CSNBKTP)

Chapter 8. AES, DES, and HMAC cryptographic keys 311

The key_token input parameter specifies the external or internal key token to
disassemble. The verb returns some of the key-token information in a set of
variables identified by individual parameters, and returns the remaining
information as keywords in the rule array.

The key-usage field and key-management field information is returned in
keywords found in the rule array when the verb can fully parse the fields. See the
rule_array parameter on page “rule_array” on page 314 for a table of supported
keywords. If the token cannot be parsed successfully, the verb returns a warning
using reason code 2039 X'7F7'). If a warning or error occurs during processing, the
verb updates all of the count and length variables with a value of zero.

The Key Token Parse2 verb performs no cryptographic services.

To use this verb, specify the following:
v An external or internal variable-length symmetric key-token (version X'05') to be

parsed.
This parameter does not accept a key label. The key token must be provided
from application storage. If a key token located in key storage needs to be
parsed, use the AES Key Record Read verb to retrieve it into application storage
before calling this verb.
See “HMAC key token” on page 888 for the format of this key token. A review
of this format information will greatly assist in understanding the output
variables of this verb.

v A rule-array-count value large enough for the verb to return keywords about the
input key-token in the rule-array buffer .
To determine the exact count required, and also the required lengths of the other
string variables, specify a value of zero. This causes the verb to return all count
and length values without updating any string variables.

v Adequate buffer sizes for all of the output variables using the length parameters.

Key Token Parse2 (CSNBKTP2)

312 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNBKTP2.

CSNBKTP2(
return_code,
reason_code,
exit_data_length,
exit_data,
key_token_length,
key_token,
key_type,
rule_array_count,
rule_array,
key_material_state,
payload_bit_length,
payload,
key_verification_pattern_type,
key_verification_pattern_length,
key_verification_pattern,
key_wrapping_method,
key_hash_algorithm,
key_name_length,
key_name,
TLV_data_length,
TLV_data,
user_associated_data_length,
user_associated_data,
verb_data_length,
verb_data)

Parameters
The parameters for CSNBKTP2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_token_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_token variable.

key_token

Direction: Input
Type: String

A pointer to a string variable containing an external or internal variable-length
symmetric key-token to be disassembled. This parameter must not point to a
key label.

key_type

Direction: Output
Type: String

A pointer to a string variable containing a keyword for the key type of the
input key. The keyword is 8 bytes in length and is left-aligned and padded on
the right with space characters. Valid key_type keywords are shown here:

Key Token Parse2 (CSNBKTP2)

Chapter 8. AES, DES, and HMAC cryptographic keys 313

CIPHER DESUESCV DKYGENKY EXPORTER IMPORTER
MAC PINCALC PINPROT PINPRW SECMSG

Key types are described in “Types of keys” on page 41.

rule_array_count

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of 8-byte elements in
the rule_array variable. The minimum returned value is 3, and the maximum
returned value is approximately 50. To determine the exact count required, and
also the required lengths of the other string variables, specify a value of zero.
This causes the verb to return all count and length values without updating
any string variables.

On output, the variable is updated with the actual count of the rule-array
keywords. An error is returned if a key token cannot be parsed or any of the
output buffers are too small.

rule_array

Direction: Output
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are 8 bytes in length, and are left-aligned and padded on the right with space
characters. The returned rule array keywords express the contents of the token.

While Key Token Build2 (CSNBKTB2) assembles an internal variable-length
symmetric key-token in application storage from information that you supply
via the key words in the verb's rule_array parameter, Key Token Parse2
disassembles an input key-token into separate pieces of information which are
stored in this verb's rule_array as output. Some of the keywords of Key Token
Build2 and Key Token Parse2 therefore have the same meaning.

Table 92. Keywords for Key Token Parse2

Keyword Description

Header section

Token identifier (one required)

EXTERNAL Specifies to disassemble an external variable-length symmetric key-token.

INTERNAL Specifies to disassemble an internal variable-length symmetric key-token.

Wrapping information section

Key status (one returned). Refer to the key_material_state variable for additional details.

NO-KEY Key token does not contain a key. The payload variable is empty.

KEY Key token contains a partial or complete key. The payload variable contains the clear or encrypted
key.

Key verification pattern (KVP) type
Note: Not a keyword. Value returned in key_verification_pattern_type variable.

KVP
Note: Not a keyword. Value returned in key_verification_pattern variable.

Encrypted section key-wrapping method
Note: Not a keyword. Value returned in key_wrapping_method variable.

Hash algorithm used for wrapping
Note: Not a keyword. Value returned in key_hash_algorithm variable.

Key Token Parse2 (CSNBKTP2)

314 Common Cryptographic Architecture Application Programmer's Guide

Table 92. Keywords for Key Token Parse2 (continued)

Keyword Description

Associated data section

Type of algorithm for which the key can be used (one returned)

AES Specifies the AES algorithm.

DES Specifies the DES algorithm.

HMAC Specifies the HMAC algorithm.

Key type
Note: Not a keyword. Value returned in key_type variable.

Key-usage field keywords depend on key type:

Key type
Reference

CIPHER
Refer to Table 79 on page 270.

DESUESCV
No key-usage field keywords.

DKYGENKY
Refer to Table 80 on page 274.

EXPORTER
Refer to Table 81 on page 278.

IMPORTER
Refer to Table 82 on page 282.

MAC For AES token algorithm, refer to Table 83 on page 285. For HMAC token algorithm, refer to Table 84 on
page 288.

PINCALC
Refer to Table 85 on page 291.

PINPROT
Refer to Table 86 on page 294.

PINPRW
Refer to Table 87 on page 296.

SECMSG
Refer to Table 88 on page 299.

Key-management field 1, high order byte

Symmetric-key export control (one returned, all key types)

NOEX-SYM Prohibit export using symmetric key.

XPRT-SYM Allow export using symmetric key.

Unauthenticated asymmetric-key export control (one returned, all key types)

NOEXUASY Prohibit export using an unauthenticated asymmetric key.

XPRTUASY Allow export using unauthenticated asymmetric key.

Authenticated asymmetric-key export control (one returned, all key types)

NOEXAASY Prohibit export using authenticated asymmetric key.

XPRTAASY Allow export using authenticated asymmetric key.

Key-management field 1, low-order byte

DES-key export control (one returned, AES algorithm only)

NOEX-DES Prohibit export using DES key

Key Token Parse2 (CSNBKTP2)

Chapter 8. AES, DES, and HMAC cryptographic keys 315

Table 92. Keywords for Key Token Parse2 (continued)

Keyword Description

XPRT-DES Allow export using DES key.

AES-key export control (one returned, AES algorithm only)

NOEX-AES Prohibit export using AES key.

XPRT-AES Allow export using AES key.

RSA-key export control (one returned, AES algorithm only)

NOEX-RSA Prohibit export using RSA key

XPRT-RSA Allow export using RSA key.

NOEX-RAW Prohibit export using raw key

XPRT-RAW Allow export using raw key.

Key-management field 2, high order byte

Key completeness (one returned, all key types)

MIN3PART Key if present is incomplete. Key requires at least 2 more parts.

MIN2PART Key if present is incomplete. Key requires at least 1 more part.

MIN1PART Key if present is incomplete. Key can be completed or have more parts added.

KEYCMPLT Key if present is complete. No more parts can be added.

Key-management field 2, low-order byte

Security history (one returned, all key types)

UNTRUSTD Key was encrypted with an untrusted KEK.

WOTUATTR Key was in a format without type/usage attributes.

WWEAKKEY Key was encrypted with key weaker than itself.

NOTCCAFM Key was in a non-CCA format.

WECBMODE Key was encrypted in ECB mode.

Key-management field 3, high order byte

Pedigree original rules (one returned, all key types)

POUNKNWN Unknown.

POOTHER Other. Method other than those defined here, probably used in UDX.

PORANDOM Randomly generated.

POKEYAGR Established by key agreement such as Diffie-Hellman.

POCLRKC Created from cleartext key components.

POCLRKV Entered as a cleartext key value.

PODERVD Derived from another key.

POKPSEC Cleartext keys or key parts that were entered at TKE and secured from there to the target card.

Key-management field 3, low-order byte

Pedigree current rule (one returned, all key types)

PCUNKNWN Unknown.

PCOTHER Other. Method other than those defined here, probably used in UDX.

PCRANDOM Randomly generated.

PCKEYAGR Established by key agreement such as Diffie-Hellman.

PCCLCOMP Created from cleartext key components.

PCCLVAL Entered as a cleartext key value.

Key Token Parse2 (CSNBKTP2)

316 Common Cryptographic Architecture Application Programmer's Guide

Table 92. Keywords for Key Token Parse2 (continued)

Keyword Description

PCDERVD Derived from another key.

PCMVARWP Imported from CCA version X'05' variable-length symmetric key-token with pedigree field.

PCMVARNP Imported from CCA version X'05' variable-length symmetric key-token with no pedigree field.

PCMWCV Imported from CCA key-token that contained a nonzero control vector.

PCMNOCV Imported from CCA key-token that had no control vector or contained a zero control vector.

PCMT31WC Imported from a TR-31 key block that contained a control vector (ATTR-CV option).

PCMT31NC Imported from a TR-31 key block that did not contain a control vector.

PCMPK1-2 Imported using PKCS 1.2 RSA encryption.

PCMOAEP Imported using PKCS OAEP encryption.

PCMPKA92 Imported using PKA92 RSA encryption.

PCMZ-PAD Imported using RSA ZERO-PAD encryption.

PCCNVTWC Converted from a CCA key-token that contained a nonzero control vector.

PCCNVTNC Converted from a CCA key-token that had no control vector or contained a zero control vector.

PCKPSEC Cleartext keys or key parts that were entered at TKE and secured from there to the target card.

PCXVARWP Exported from CCA version X'05' variable-length symmetric key-token with pedigree field.

PCXVARNP Exported from CCA version X'05' variable-length symmetric key-token with no pedigree field.

PCXOAEP Exported using PKCS OAEP encryption.

Optional clear key or encrypted AESKW payload section

Payload
Note: Not a keyword. Value returned in the payload variable.

key_material_state

Direction: Output
Type: Integer

A pointer to an integer variable containing the indicator for the current state of
the key material. The valid values are:
0 No key present (internal or external)
1 Key is clear (internal), payload bit length is clear-key bit length
2 Key is encrypted under a KEK (external)
3 Key is encrypted under the master key (internal)

payload_bit_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bits in the token
payload. If no key is present, the returned value is 0.

If a clear key is present, the returned value is in the following range:
AES 128, 192, or 256
HMAC

80 - 2048

payload

Direction: Output

Key Token Parse2 (CSNBKTP2)

Chapter 8. AES, DES, and HMAC cryptographic keys 317

Type: String

A pointer to a string variable containing the key material payload. The payload
parameter must be addressable up to the nearest byte boundary above the
payload_bit_length if the payload_bit_length is not a multiple of 8. This field will
contain the clear key or the encrypted key material.

key_verification_pattern_type

Direction: Output
Type: Integer

A pointer to an integer variable containing the indicator for the type of key
verification pattern used. The valid values are:
0 No KVP
1 AESMK (8 left-most bytes of SHA-256 hash(X'01' || clear AES MK))
2 KEK VP (8 left-most bytes of SHA-256 hash(X'01' || clear KEK))

key_verification_pattern_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_verification_pattern parameter. The valid values are 0, 8, or 16. The value 16
is reserved.

key_verification_pattern

Direction: Output
Type: String

A pointer to a string variable containing the key verification pattern (KVP) of
the key-encrypting key used to wrap this key. If the key_verification_pattern_type
value indicates that a key verification pattern is present, the pattern will be
copied from the token, otherwise this variable is empty.

key_wrapping_method

Direction: Output
Type: Integer

A pointer to an integer variable containing the indicator for the encrypted
section key-wrapping method used to protect the key payload. The valid
values are:
0 NONE (for clear keys or no key)
2 AESKW (for external or internal key wrapped with an AES KEK)
3 PKOAEP2 (for external tokens wrapped with an RSA public key)

key_hash_algorithm

Direction: Output
Type: Integer

A pointer to an integer variable containing the indicator for the hash algorithm
used for wrapping in the key token. The valid values are as follows:

Value Hash algorithm

Key-wrapping method

X'00' (clear key) X'02' (AESKW) X'03' (PKOAEP2)

0 No hash X

1 SHA-1 X

Key Token Parse2 (CSNBKTP2)

318 Common Cryptographic Architecture Application Programmer's Guide

Value Hash algorithm

Key-wrapping method

X'00' (clear key) X'02' (AESKW) X'03' (PKOAEP2)

2 SHA-256 X X

4 SHA-384 X

8 SHA-512 X

key_name_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_name variable. The returned value can be 0 or 64.

key_name

Direction: Output
Type: String

A pointer to a string variable containing the optional key label to be stored in
the associated data structure of the key token. If there is no key name, then
this variable is empty.

TLV_data_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
TLV_data variable. The returned value is currently always zero.

TLV_data

Direction: Output
Type: String

A pointer to a string variable containing the optional tag-length-value (TLV)
section. This field is currently unused.

user_associated_data_length

Direction: Input/Output
Type: Integer

The user_associated_data_length parameter is a pointer to an integer variable
containing the number of bytes of data in the user_associated_data variable. The
returned value is 0 - 255.

user_associated_data

Direction: Output
Type: String

A pointer to a string variable containing the user-associated data to be stored
in the key token. This user-definable data is cryptographically bound to the
key if it is encrypted. If there is no user-defined associated data, this variable is
empty.

verb_data_length

Direction: Input/Output

Key Token Parse2 (CSNBKTP2)

Chapter 8. AES, DES, and HMAC cryptographic keys 319

Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
verb_data variable. The returned value is zero if the returned key_type variable
is not DKYGENKY. Otherwise the value can be greater than zero and is a
multiple of 8.

verb_data

Direction: Output
Type: String

A pointer to a string variable containing any related key-usage field keywords
of an AES DKYGENKY key for the for the type of key to be diversified:

DKYGENKY type of key to diversify Meaning of verb_data keywords

D-CIPHER Key usage fields for AES CIPHER key.

D-EXP Key usage fields for AES EXPORTER key.

D-IMP Key usage fields for AES IMPORTER key.

D-MAC Key usage fields for AES MAC key.

D-PPROT Key-usage fields for AES PINPROT key.

D-PCALC Key-usage fields for AES PINCALC key.

D-PPRW Key-usage fields for AES PINPRW key.

D-SECMSG Key-usage fields for AES SECMSG key.

Required commands
The required commands for CSNBKTP2.

None.

Usage notes
The usage notes for CSNBKTP2.

If an error occurs while processing the input token, all output lengths are updated
to zero and an error is returned.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKTP2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKTP2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber key_token_length,
byte[] key_token,
byte[] key_type,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_material_state,
hikmNativeNumber payload_bit_length,

Key Token Parse2 (CSNBKTP2)

320 Common Cryptographic Architecture Application Programmer's Guide

byte[] payload,
hikmNativeNumber key_verification_pattern_type,
hikmNativeNumber key_verification_pattern_length,
byte[] key_verification_pattern,
hikmNativeNumber key_wrapping_method,
hikmNativeNumber key_hash_algorithm,
hikmNativeNumber key_name_length,
byte[] key_name,
hikmNativeNumber TLV_data_length,
byte[] TLV_data,
hikmNativeNumber user_associated_data_length,
byte[] user_associated_data,
hikmNativeNumber verb_data_length,
byte[] verb_data);

Key Translate (CSNBKTR)
The Key Translate verb uses one key-encrypting key to decipher an input key and
then enciphers this key using another key-encrypting key within the secure
environment.

Note:

v All key labels must be unique.
v This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBKTR.

CSNBKTR(
return_code,
reason_code,
exit_data_length,
exit_data,
input_key_token,
input_KEK_key_identifier,
output_KEK_key_identifier,
output_key_token)

Parameters
The parameters for CSNBKTR.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

input_key_token

Direction: Input
Type: String

A 64-byte string variable containing an external key token. The external key
token contains the key to be re-enciphered (translated).

input_KEK_key_identifier

Direction: Input/Output
Type: String

A 64-byte string variable containing the internal key token or the key label of
an internal key token record in the DES key storage file. The internal key token
contains the key-encrypting key used to decipher the key. The internal key

Key Token Parse2 (CSNBKTP2)

Chapter 8. AES, DES, and HMAC cryptographic keys 321

|

token must contain a control vector that specifies an IMPORTER or IKEYXLAT
key type. The control vector for an IMPORTER key must have the XLATE bit
set to B'1'.

output_KEK_key_identifier

Direction: Input/Output
Type: String

A 64-byte string variable containing the internal key token or the key label of
an internal key token record in the DES key storage file. The internal key token
contains the key-encrypting key used to encipher the key. The internal key
token must contain a control vector that specifies an EXPORTER or
OKEYXLAT key type. The control vector for an EXPORTER key must have the
XLATE bit set to B'1'.

output_key_token

Direction: Output
Type: String

A 64-byte string variable containing an external key token. The external key
token contains the re-enciphered key.

Restrictions
The restrictions for CSNBKTR.

Triple length DATA key tokens are not supported.

Required commands
The required commands for CSNBKTR.

This verb requires the Key Translate command (offset X'001F') to be enabled in the
active role.

Usage notes
The usage notes for CSNBKTR.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKTRJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKTRJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] input_key_token,
byte[] input_KEK_key_identifier,
byte[] output_KEK_key_identifier,
byte[] output_key_token);

Key Translate (CSNBKTR)

322 Common Cryptographic Architecture Application Programmer's Guide

Key Translate2 (CSNBKTR2)
The Key Translate2 verb uses one key-encrypting key to decipher an input key and
then enciphers this key using another key-encrypting key within the secure
environment.

It can also be used to change the wrapping method of the key with a single
key-encrypting key.

To reencipher a key token, specify the external key token, input and output
key-encrypting keys. You can specify which key wrapping method to use. If no
wrapping method is specified, the wrapping method of the input_key_token will be
used.

To change the wrapping method of an external key token, specify the REFORMAT
rule array keyword, the wrapping method to use, the external key token, and the
input key-encrypting key. If no wrapping method is specified, the wrapping
method of the input_key_token will be used. Note that the output_KEK_identifier will
be ignored.

Note:

v All key labels must be unique.
v This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBKTR2.

CSNBKTR2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_key_token_length,
input_key_token,
input_KEK_key_identifier_length,
input_KEK_key_identifier,
output_KEK_key_identifier_length,
output_KEK_key_identifier,
output_key_token_length,
output_key_token)

Parameters
The parameters for CSNBKTR2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 0, 1, 2, or 3.

rule_array

Key Translate2 (CSNBKTR2)

Chapter 8. AES, DES, and HMAC cryptographic keys 323

|

Direction: Input
Type: String array

Keywords that provide control information to the verb. The keywords must be
8 bytes of contiguous storage with the keyword left-aligned in its 8-byte
location and padded on the right with blanks. The rule_array keywords are
described in Table 93.

Table 93. Keywords for Key Translate2 control information

Keyword Description

Encipherment (Optional)

COMP-CHK Check if the key token to be translated or reformatted can have the PCI-HSM 2016 compliance
tag.

COMP-TAG Convert the input key token into a PCI-HSM 2016 compliant-tagged token. This requires that the
domain at first is in full PCI-HSM 2016 compliance mode and from there enters into the
migration mode, which is a temporary reduced mode of an active PCI-HSM 2016 mode (see also
“Migration mode” on page 1090).

REFORMAT Reformat the input_key_token.

v When the input_key_token is a DES key token, reformat with the Key Wrapping Method
specified.

v When the input_key_token is an operational AES key token, either reformat an AES DATA
key (version X‘04’) to an AES CIPHER key (version X‘05’) or the reverse (version X’05’ to
version X’04’).

TRANSLAT Translate the input_key_token from encipherment under the input_KEK_identifier to
encipherment under the output_KEK_identifier. This is the default.

V1PYLD Reencipher an input variable-length AES key token (version X‘05’) to a payload version1
(fixed-length) key token. This keyword is only valid for the CIPHER, EXPORTER and
IMPORTER key types.

V0PYLD Reencipher an input variable-length AES key token (version X‘05’) to a payload version 0
(variable-length) key token. This keyword is only valid for the CIPHER, EXPORTER and
IMPORTER key types.

Key-wrapping method (optional, valid only if input_key_token is an external DES key token)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the default
wrapping method. The default wrapping method configuration setting may be changed using
the TKE. This keyword is ignored for AES keys.

WRAP-ENH Use enhanced key wrapping method, which is compliant with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB wrapping for DES key tokens.

Translation control (Optional, valid only with WRAP-ENH)

ENH-ONLY Restrict the re-wrapping of the output_key_token. Once the token has been wrapped with the
enhanced method, it cannot be re-wrapped using the original method.

Algorithm (One required, if the V0PYLD or V1PYLD keyword is specified)

AES Specifies that the input key is an AES key. Where used, the key-encrypting keys will be AES
transport keys.

DES Specifies that the input key is a DES key. Where used, the key-encrypting keys will be DES
transport keys. This is the default.

HMAC Specifies that the input key is an HMAC key. Where used, the key-encrypting keys will be AES
transport keys.

input_key_token_length

Direction: Input

Key Translate2 (CSNBKTR2)

324 Common Cryptographic Architecture Application Programmer's Guide

||
|

||
|
|
|

Type: Integer

The length of the input_key_token in bytes. The maximum value allowed is 725.

input_key_token

Direction: Input
Type: String

A variable length string variable containing the external key token. The
external key token contains the key to be re-enciphered (or re-wrapped).

input_KEK_key_identifier_length

Direction: Input
Type: Integer

The length of the input_KEK_key_identifier in bytes. The maximum value
allowed is 725.

input_KEK_key_identifier

Direction: Input/Output
Type: String

A variable length string variable containing the internal key token or the key
label of an internal key token record in the key storage file. The internal key
token contains the key-encrypting key used to decipher the key. The internal
key token must contain a control vector that specifies an IMPORTER or
IKEYXLAT key type. The control vector for an IMPORTER key must have the
XLATE bit set to B'1'.

output_KEK_key_identifier_length

Direction: Input
Type: Integer

The length of the output_KEK_key_identifier in bytes. The maximum value is
725.

If the REFORMAT keyword is specified, this value must be 0.

output_KEK_key_identifier

Direction: Input/Output
Type: String

A variable length string variable containing the internal key token or the key
label of an internal key token record in the key storage file. The internal key
token contains the key-encrypting key used to encipher the key. The internal
key token must contain a control vector that specifies an EXPORTER or
OKEYXLAT key type. The control vector for an exporter key must have the
XLATE bit set to B'1'.

If the REFORMAT keyword is specified, this parameter is ignored.

output_key_token_length

Direction: Input/Output
Type: Integer

On input, the length of the output area provided for the output_key_token. This
must be at least 64 bytes. On output, the parameter is updated with the length
of the token copied to the output_key_token.

Key Translate2 (CSNBKTR2)

Chapter 8. AES, DES, and HMAC cryptographic keys 325

output_key_token

Direction: Input/Output
Type: String

A variable length string variable containing an external key token. The external
key token contains the re-enciphered key.

Restrictions
The restrictions for CSNBKTR2.

This verb does not support version X'10' external DES key tokens (RKX key
tokens).

This verb was introduced with CCA 4.1.0.

Required commands
The required commands for CSNBKTR2.

This verb requires the Key Translate2 - Allow use of REFORMAT command (offset
X'014B') to be enabled in the active role if the REFORMAT reencipherment
keyword is used.

Otherwise, the verb requires the Key Translate2 command (offset X'0149') to be
enabled.

To use the translation control keyword WRAP-ECB or WRAP-ENH when the
default key-wrapping method setting does not match the keyword, the Key
Translate2 - Allow wrapping override keywords command (offset X'014A') must
be enabled.

If the WRAP-ECB translation-control keyword is specified and the key in the input
key token is wrapped by the enhanced wrapping method (WRAP-ENH), the verb
requires the CKDS Conversion2 - Convert from enhanced to original command
(offset X'0147') to be enabled. An active role with offset X'0149' enabled can also
use the Key Token Change verb to translate a key from the enhanced
key-wrapping method to the less-secure legacy method.

The Key Translate2 - Disallow AES ver 5 to ver 4 conversion command (offset
X'032A') prevents CIPHER keys, which are in variable-length AES key tokens
(newer version X'05') and wrapped under the AES master-key, from being
reformatted into DATA keys, which are in fixed-length AES key tokens (older
version X'04') and wrapped under the less-secure DES master-key. This command
overrides the Key Translate2 - Allow use of REFORMAT command (offset X'014B').

Usage notes
The usage notes for CSNBKTR2.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKTR2J.

See “Building Java applications using the CCA JNI” on page 28.

Key Translate2 (CSNBKTR2)

326 Common Cryptographic Architecture Application Programmer's Guide

Format
public native void CSNBKTR2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber input_key_token_length,
byte[] input_key_token,
hikmNativeNumber input_KEK_key_identifier_length,
byte[] input_KEK_key_identifier,
hikmNativeNumber output_KEK_key_identifier_length,
byte[] output_KEK_key_identifier,
hikmNativeNumber output_key_token_length,
byte[] output_key_token);

PKA Decrypt (CSNDPKD)
Use this verb to decrypt (unwrap) a formatted key value. This verb unwraps the
key, parses it, and returns the parsed value to the application in the clear.

PKCS 1.2 and ZERO-PAD formatting are supported. For PKCS 1.2, the decrypted
data is examined to ensure that it meets RSA DSI PKCS #1 block type 2 format
specifications. ZERO-PAD is supported only for external or clear RSA private keys.

For the PKCSOAEP recovery method keyword, the decrypted data is examined to
ensure that it meets the RSAES-OAEP scheme of the RSA PKCS #1 v2.0 standard.
See also “PKCS #1 hash formats” on page 1044.

This verb allows the use of clear or encrypted RSA private keys. If an external
clear key token is used, the master keys are not required to be installed in any
cryptographic coprocessor and PKA verbs do not have to be enabled.

Format
The format of CSNDPKD.

CSNDPKD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_enciphered_keyvalue_length,
PKA_enciphered_keyvalue,
data_structure_length,
data_structure,
PKA_key_identifier_length,
PKA_key_identifier,
target_keyvalue_length,
target_keyvalue)

Parameters
The parameters for CSNDPKD.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

Key Translate2 (CSNBKTR2)

Chapter 8. AES, DES, and HMAC cryptographic keys 327

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1 or 2.

rule_array

Direction: Input
Type: String array

The keyword that provides control information to the verb. The keyword is
left-aligned in an 8-byte field and padded on the right with blanks. The
rule_array keywords are described in Table 94.

Table 94. Keywords for PKA Decrypt control information

Keyword Description

Recovery method (one required). Specifies the method to use to recover the key value.

PKCS-1.2 Specifies that the key is formatted as defined in the RSA PKCS #1 v2.0 standard for the
RSAES-PKCS1-v1_5 encryption/decryption scheme. Formerly known as the block-type 02 method.
See “PKCS #1 hash formats” on page 1044.

PKCSOAEP Specifies that the key is formatted as defined in the RSA PKCS #1 v2.0 standard for the
RSAES-OAEP encryption/decryption scheme. See “PKCS #1 hash formats” on page 1044.

ZERO-PAD The input PKA_enciphered_keyvalue is decrypted using the RSA private key. The entire result
(including leading zeros) is returned in the target_keyvalue field. The PKA_key_identifier must be an
external RSA token or the label of an external token.

Hash method (One required for PKCSOAEP, not allowed for any other recovery method).

SHA-1 Specifies to use the SHA-1 hash method to calculate the OAEP message hash.

SHA-256 Specifies to use the SHA-256 hash method to calculate the OAEP message hash.

PKA_enciphered_keyvalue_length

Direction: Input
Type: Integer

The length of the PKA_enciphered_keyvalue parameter in bytes. The maximum
size that you can specify is 256 bytes. The length should be the same as the
modulus length of the PKA_key_identifier.

PKA_enciphered_keyvalue

Direction: Input
Type: String

This field contains the key value protected under an RSA public key. This
byte-length string is left-aligned within the PKA_enciphered_keyvalue parameter.

data_structure_length

Direction: Input
Type: Integer

This value must be 0.

data_structure

Direction: Input

PKA Decrypt (CSNDPKD)

328 Common Cryptographic Architecture Application Programmer's Guide

Type: String

This parameter is ignored.

PKA_key_identifier_length

Direction: Input
Type: Integer

The length of the PKA_key_identifier parameter. When the PKA_key_identifier is
a key label, this field specifies the length of the label. The maximum size that
you can specify is 2500 bytes.

PKA_key_identifier

Direction: Input
Type: String

An internal RSA private key token, the label of an internal RSA private key
token, or an external RSA private key token containing a clear RSA private key
in Modulus-Exponent or Chinese Remainder Theorem format. The
corresponding public key was used to wrap the key value.

target_keyvalue_length

Direction: Input/Output
Type: Integer

The length of the target_keyvalue parameter. The maximum size that you can
specify is 256 bytes. On return, this field is updated with the actual length of
target_keyvalue.

If ZERO-PAD is specified, this length will be the same as the
PKA_enciphered_keyvalue_length which is equal to the RSA modulus byte length.

target_keyvalue

Direction: Output
Type: String

This field will contain the decrypted, parsed key value. If ZERO-PAD is
specified, the decrypted key value, including leading zeros, will be returned.

Restrictions
The restrictions for CSNDPKD.
v The exponent of the RSA public key must be odd.
v Rule array keywords PKCSOAEP, SHA-1, and SHA-256 are not supported in

releases before Release 4.4.
v The PKA Decipher - Key Data Disallow PKCS-1.2 command (offset X'020A'), the

PKA Decipher - Key Data Disallow ZERO-PAD command (offset X'020B'), and the
PKA Decipher - Key Data Disallow PKCSOAEP command (offset X'020C') are not
defined in releases before Release 4.4.

Required commands
The required commands for CSNDPKD.

This verb requires the PKA Decrypt command (offset X'011F') to be enabled in the
active role.

PKA Decrypt (CSNDPKD)

Chapter 8. AES, DES, and HMAC cryptographic keys 329

The PKA Decrypt verb also requires the following commands to be enabled in the
active role to disallow the unwrapping of an encrypted key that has been
formatted:

Rule-array keyword Offset Command

PKCS-1.2 X'020A' PKA Decipher - Key Data Disallow PKCS-1.2

ZERO-PAD X'020B' PKA Decipher - Key Data Disallow ZERO-PAD

PKCSOAEP X'020C' PKA Decipher - Key Data Disallow PKCSOAEP

Usage notes
The usage notes for CSNDPKD.

The RSA private key must be enabled for key management functions.

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this verb will fail if the RSA key modulus bit length exceeds
this limit.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDPKDJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDPKDJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PKA_enciphered_keyvalue_length,
byte[] PKA_enciphered_keyvalue,
hikmNativeNumber data_structure_length,
byte[] data_structure,
hikmNativeNumber PKA_key_identifier_length,
byte[] PKA_key_identifier,
hikmNativeNumber target_keyvalue_length,
byte[] target_keyvalue);

PKA Encrypt (CSNDPKE)
This verb encrypts a supplied clear key value under an RSA public key.

The supplied key can be formatted using the PKCS 1.2 or ZERO-PAD methods
prior to encryption. Beginning with Release 4.4, the supplied key can also be
formatted using the PKCSOAEP method. The rule_array keyword specifies the
format of the key prior to encryption.

PKA Decrypt (CSNDPKD)

330 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNDPKE.

CSNDPKE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
keyvalue_length,
keyvalue,
data_structure_length,
data_structure,
PKA_key_identifier_length,
PKA_key_identifier,
PKA_enciphered_keyvalue_length,
PKA_enciphered_keyvalue)

Parameters
The parameters for CSNDPKE.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1 or 2.

rule_array

Direction: Input
Type: String array

A keyword that provides control information to the verb. The keyword is
left-aligned in an 8-byte field and padded on the right with blanks. The
rule_array keywords are described in Table 95.

Table 95. Keywords for PKA Encrypt control information

Keyword Description

Formatting Method (One, required). Specifies the method to use to format the key value prior to encryption.

MRP The key value will be padded on the left with binary zeros to the length of the PKA key modulus.
The RSA public key can have an even or odd exponent.

PKCS-1.2 RSA DSI PKCS #1 block type 02 format will be used to format the supplied key value. In the RSA
PKCS #1 v2.0 standard, RSA terminology describes this as the RSAES-PKCS1-v1_5 format.

PKCSOAEP Specifies that the key is formatted as defined in the RSA PKCS #1 v2.0 standard for the
RSAES-OAEP encryption/decryption scheme. See “PKCS #1 hash formats” on page 1044.

ZERO-PAD Places the clear_source_data variable in the low-order bit positions of a bit string of the same length
as the modulus. The data is padded on the left as needed with binary zeros to the length of the
PKA key modulus. The RSA public key must have an odd exponent.

Hash method (One required for PKCSOAEP, not allowed for any other recovery method).

SHA-1 Specifies to use the SHA-1 hash method to calculate the OAEP message hash.

PKA Encrypt (CSNDPKE)

Chapter 8. AES, DES, and HMAC cryptographic keys 331

Table 95. Keywords for PKA Encrypt control information (continued)

Keyword Description

SHA-256 Specifies to use the SHA-256 hash method to calculate the OAEP message hash.

keyvalue_length

Direction: Input
Type: Integer

The length of the keyvalue parameter. The maximum field size is 256 bytes. The
actual maximum size depends on the modulus length of PKA_key_identifier and
the formatting method you specify in the rule_array parameter. See “Usage
notes” on page 333.

keyvalue

Direction: Input
Type: String

This field contains the supplied clear key value to be encrypted under the
PKA_key_identifier.

data_structure_length

Direction: Input
Type: Integer

This value must be 0.

data_structure

Direction: Input
Type: String

This field is currently ignored.

PKA_key_identifier_length

Direction: Input
Type: Integer

The length of the PKA_key_identifier parameter. When the PKA_key_identifier is
a key label, this field specifies the length of the label. The maximum size that
you can specify is 2500 bytes.

PKA_key_identifier

Direction: Input
Type: String

The RSA public or private key token or the label of the RSA public or private
key to be used to encrypt the supplied key value.

PKA_enciphered_keyvalue_length

Direction: Input/Output
Type: Integer

The length of the PKA_enciphered_keyvalue parameter in bytes. The maximum
size that you can specify is 256 bytes. On return, this field is updated with the
actual length of PKA_enciphered_keyvalue.

PKA Encrypt (CSNDPKE)

332 Common Cryptographic Architecture Application Programmer's Guide

This length should be the same as the modulus length of the
PKA_key_identifier.

PKA_enciphered_keyvalue

Direction: Output
Type: String

This field contains the key value protected under an RSA public key. This
byte-length string is left-aligned within the PKA_enciphered_keyvalue parameter.

Restrictions
The restrictions for CSNDPKE.
v A message can be encrypted provided that it is smaller than the public key

modulus.
The term 'smaller' refers to the exact bit count, not the byte count of the
modulus. For example, counting bits, the hexadecimal number X'FF' is several
bits longer than the number X'1F', even though both numbers are one byte long
as represented in computer memory.

v The exponent of the RSA public key must be odd unless the MRP keyword is
supplied.

v The RSA public key modulus size (key size) is limited by the Function Control
Vector to accommodate governmental export and import regulations.

v Rule array keywords PKCSOAEP, SHA-1, and SHA-256 are not supported in
releases before Release 4.4.

v The PKA Encipher - Clear Key Disallow MRP (offset X'0208'), PKA Encipher -
Clear Key Disallow PKCS-1.2 (offset X'0206'), PKA Encipher - Clear Key
Disallow PKCSOAEP (offset X'0209), and PKA Encipher - Clear Key Disallow
ZERO-PAD (offset X'0207') are not defined in releases before Release 4.4.

Required commands
The required commands for CSNDPKE.

This verb requires the PKA Encrypt command (offset X'011E') to be enabled in the
active role.

The PKA Encrypt verb also requires the following commands to be enabled in the
active role to disallow the encryption of clear source data:

Rule-array keyword Offset Command

MRP X'0208' PKA Encipher - Clear Key Disallow MRP

PKCS-1.2 X'0206' PKA Encipher - Clear Key Disallow PKCS-1.2

PKCSOAEP X'0209' PKA Encipher - Clear Key Disallow PKCSOAEP

ZERO-PAD X'0207' PKA Encipher - Clear Key Disallow ZERO-PAD

Usage notes
The usage notes for CSNDPKE.
v For RSA DSI PKCS #1 formatting, the key value length must be a minimum of

11 bytes less than the modulus length of the RSA key.
v The hardware configuration sets the limit on the modulus size of keys for key

management; thus, this service will fail if the RSA key modulus bit length
exceeds this limit.

PKA Encrypt (CSNDPKE)

Chapter 8. AES, DES, and HMAC cryptographic keys 333

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDPKEJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDPKEJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_value_length,
byte[] key_value,
hikmNativeNumber data_struct_length,
byte[] data_struct,
hikmNativeNumber PKA_key_identifier_length,
byte[] PKA_key_identifier,
hikmNativeNumber PKA_enciphered_keyvalue_length,
byte[] PKA_enciphered_keyvalue);

Prohibit Export (CSNBPEX)
Use this verb to modify an operational key so that it cannot be exported.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBPEX.

CSNBPEX(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier)

Parameters
The parameters for CSNBPEX.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_identifier

Direction: Input/Output
Type: String

A 64-byte string variable containing the internal key token to be modified. The
returned key_identifier will be encrypted under the current master key.

Restrictions
The restrictions for CSNBPEX.

None.

PKA Encrypt (CSNDPKE)

334 Common Cryptographic Architecture Application Programmer's Guide

|

Required commands
The required commands for CSNBPEX.

This verb requires the Prohibit Export command (offset X'00CD') to be enabled in
the active role.

The following access-control points are added beginning with Release 4.3:
v To disable the wrapping of a key with a weaker master key, the Prohibit weak

wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

v To receive a warning when wrapping a key with a weaker master key, enable
the Warn when weak wrap - Master keys command (offset X'0332') in the active
role. The Prohibit weak wrapping - Master keys command overrides this
command.

Usage notes
The usage notes for CSNBPEX.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBPEXJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBPEXJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_identifier);

Prohibit Export Extended (CSNBPEXX)
Use this verb to modify an exportable external CCA DES key-token so that its key
can no longer be exported.

This verb performs the following functions:
v Multiply deciphers the source key under a key formed by the XOR of the source

key’s control vector and the specified key-encrypting key (KEK).
v Turns from on to off the XPORT-OK bit in the source key’s control vector (bit

17).
v Multiply enciphers the key under a key formed by the XOR of the KEK key and

the source key’s modified control vector. The encrypted key and the modified
control vector are stored in the source-key key token, and the TVV is updated.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Prohibit Export (CSNBPEX)

Chapter 8. AES, DES, and HMAC cryptographic keys 335

|

Format
The format of CSNBPEXX.

CSNBPEXX(
return_code,
reason_code,
exit_data_length,
exit_data,
source_key_token,
KEK_key_identifier)

Parameters
The parameters for CSNBPEXX.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

source_key_token

Direction: Input/Output
Type: String

A pointer to a string variable containing an external key-token.

KEK_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an internal key-encrypting token, or
the key label of an internal key-encrypting token record.

Restrictions
The restrictions for CSNBPEXX.

This verb does not support version X'10' external DES key tokens (RKX key
tokens).

Required commands
The required commands for CSNBPEXX.

This verb requires the Prohibit Export Extended command (offset X'0301') to be
enabled in the active role.

Usage notes
The usage notes for CSNBPEXX.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBPEXXJ.

See “Building Java applications using the CCA JNI” on page 28.

Prohibit Export Extended (CSNBPEXX)

336 Common Cryptographic Architecture Application Programmer's Guide

Format
public native void CSNBPEXXJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] source_key_token,
byte[] KEK_key_identifier);

Restrict Key Attribute (CSNBRKA)
Use the Restrict Key Attribute verb to modify an exportable internal or external
variable-length symmetric key-token so that its key can no longer be exported.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBRKA.

CSNBRKA (
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array
key_identifier_length
key_identifier
key_encrypting_key_identifier_length
key_encrypting_key_identifier
opt_parameter1_length
opt_parameter1
opt_parameter2_length
opt_parameter2)

Parameters
The parameters for CSNBRKA.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 - 10.

rule_array

Direction: Input
Type: String array

The rule_array contains keywords that provide control information to the verb.
The keywords must be in contiguous storage with each of the keywords
left-aligned in its own 8-byte location and padded on the right with blanks.
The rule_array keywords are described in Table 96 on page 338.

Prohibit Export Extended (CSNBPEXX)

Chapter 8. AES, DES, and HMAC cryptographic keys 337

|

Table 96. Keywords for Restrict Key Attribute control information

Token algorithm (one required)

AES Specifies to further restrict one or more attributes of a variable-length AES key-token. This
keyword is not supported for a fixed-length AES key-token.

DES Specifies to further restrict one or more attributes of a fixed-length DES key-token.

HMAC Specifies to further restrict one or more attributes of a variable-length HMAC key-token.

Keywords for AES or HMAC variable-length key tokens (key token for clear key not allowed)

General attribute restriction (one, optional). Ignored if attribute restriction keyword is specified.

NOEXPORT Prohibits the key from being exported by any verb. This keyword is equivalent to providing all
of the export control attribute restrictions keywords (NOEX-AES, NOEX-DES, NOEX-RSA,
NOEX-RAW, NOEXSYM, NOEXAASY, and NOEXUASY). This is the default when no
attribute restrictions keywords (export control and key usage) are specified.

Export control attribute restrictions (one or more, optional).

NOEX-AES Prohibits the key from being exported using an AES key.

NOEX-DES Prohibits the key from being exported using a DES key.

NOEX-RSA Prohibits the key from being exported using an RSA key.

NOEX-RAW Prohibits the key from being exported using a RAW key. Defined for future use. Currently
ignored.

NOEX-SYM Prohibits the key from being exported using a symmetric key.

NOEXAASY Prohibits the key form being exported using an authenticated asymmetric key (for example, an
RSA key in a trusted block).

NOEXUASY Prohibits the key from being exported using an unauthenticated asymmetric key.

Ciphertext translation restriction (one, optional). Only valid for AES CIPHER keys.

C-XLATE Restricts the key to being used by the Cipher_Text_Translate2 (CSNBCTT2) verb.

KEK identifier rule (one, optional). Not allowed if KEK_identifier_length variable is 0. Required if KEK identifier is a
key label and the key in key storage is an RSA KEK). Release 4.2 or later.

IKEK-AES The inbound key-encrypting key for the external key is an AES KEK. This is the default.

IKEK-PKA The inbound key-encrypting key for the external key is an asymmetric key. Required if an RSA
transport key is used (that is, the key being changed is wrapped using the PKOAEP2 method).

Keywords for DES fixed-length key tokens

General attribute restriction (one, optional). Ignored if attribute restriction or key restriction keyword is specified.

NOEXPORT Prohibits the key from being exported by any verb. Use this keyword to set XPORT-OK off (CV
bit 17 = B'0') and NOT31XPT (CV bit 27 = B'1'). This is the default if no attribute restriction or
key restriction keywords are specified.

Attribute to restrict (one, optional). Keywords CCAXPORT and NOT31XPT in this group are defaults if no keyword
is provided. Only valid for DES. Make multiple calls to this verb as needed to restrict more than one of these
attributes.

CCAXPORT Prohibits the key from being exported by any verb. Use this keyword to set XPORT-OK off (CV
bit 17 = B'0').

DOUBLE-O For double-length DES key tokens that do not have equal key halves (ignoring parity bits), sets
CV bit 40 = B'1' to guarantee that the two 8-byte key values of a DES double-length key are
unique, that is, the key halves are not replicated. Key type must be EXPORTER, IKEYXLAT,
IMPORTER, or OKEYXLAT.
Note: A double-length key with replicated key halves has an effective strength of a
single-length key.

Restrict Key Attribute (CSNBRKA)

338 Common Cryptographic Architecture Application Programmer's Guide

Table 96. Keywords for Restrict Key Attribute control information (continued)

NOT31XPT
(Release 4.2 or
later)

Sets export control CV to NOT31XPT (bit 57 = B'1') to prohibit TR-31 export of the key.

KEK identifier rule (one, optional). Not allowed if KEK_identifier_length variable is 0. Release 4.2 or later.

IKEK-DES The inbound key-encrypting key for the external key is a DES KEK. This is the default.

key_identifier_length

Direction: Input
Type: Integer

The length of the key_identifier parameter in bytes. The maximum value is
725.

key_identifier

Direction: Input
Type: String

The key for which the export control is to be updated. The parameter contains
an internal token or the 64-byte label of the key in key storage. If a label is
specified, the key token will be updated in key storage and not returned by
this verb.

key_encrypting_key_identifier_length

Direction: Input
Type: Integer

The byte length of the key_encrypting_key_identifier parameter. This value must
be 0.

key_encrypting_key_identifier

Direction: Input
Type: String

This parameter is ignored.

opt_parameter1_length

Direction: Input
Type: Integer

The byte length of the opt_parameter1 parameter. This value must be 0.

opt_parameter1

Direction: Input
Type: String

This parameter is ignored.

opt_parameter2_length

Direction: Input
Type: Integer

The byte length of the opt_parameter2 parameter. This value must be 0.

Restrict Key Attribute (CSNBRKA)

Chapter 8. AES, DES, and HMAC cryptographic keys 339

opt_parameter2

Direction: Input
Type: String

This parameter is ignored.

Restrictions
The restrictions for CSNBRKA.

This verb was introduced with CCA 4.1.0.

Required commands
The required commands for CSNBRKA.

The Restrict Key Attribute verb requires the following commands to be enabled in
the active role:

Rule-array keyword Offset Command

AES or HMAC X'00E9' Restrict Key Attribute - Export Control

DES X'0154' Restrict Key Attribute - Permit setting the TR-31
export bit

The following access-control points are added beginning with Release 4.3:
v To disable the wrapping of a key with a weaker master key, the Prohibit weak

wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

v To receive a warning when wrapping a key with a weaker master key, enable
the Warn when weak wrap - Master keys command (offset X'0332') in the active
role. The Prohibit weak wrapping - Master keys command overrides this
command.

Usage notes
The usage notes for CSNBPEXX.

This verb is available starting with CCA 4.1.0.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBRKAJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBRKAJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length,
byte[] key_identifier,
hikmNativeNumber key_encrypting_key_identifier_length,
byte[] key_encrypting_key_identifier,

Restrict Key Attribute (CSNBRKA)

340 Common Cryptographic Architecture Application Programmer's Guide

hikmNativeNumber opt_parameter1_length,
byte[] opt_parameter1,
hikmNativeNumber opt_parameter2_length,
byte[] opt_parameter2);

Random Number Generate (CSNBRNG)
This verb uses the cryptographic feature to generate a cryptographic-quality
random number.

Format
The format of CSNBRNG.

CSNBRNG(
return_code,
reason_code,
exit_data_length,
exit_data,
form,
random_number)

Parameters
The parameters for CSNBRNG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

form

Direction: Input
Type: String

The 8-byte keyword that defines the characteristics of the random number
should be left-aligned and padded on the right with blanks. The keywords are
listed in Table 97.

Table 97. Keywords for Random Number Generate form parameter

Keyword Description

EVEN Generate a 64-bit random number with even parity in each byte.

ODD Generate a 64-bit random number with odd parity in each byte.

RANDOM Generate a 64-bit random number.

Parity is calculated on the seven high-order bits in each byte and is presented
in the low-order bit in the byte.

random_number

Direction: Output
Type: String

The generated number returned by the verb in an 8-byte variable.

Restrictions
The restrictions for CSNBRNG.

None.

Restrict Key Attribute (CSNBRKA)

Chapter 8. AES, DES, and HMAC cryptographic keys 341

Required commands
The required commands for CSNBRNG.

This verb requires the Key Generate - OP command (offset X'008E') to be enabled
in the active role.

Usage notes
The usage notes for CSNBRNG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBRNGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBRNGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] form,
byte[] random_number);

Random Number Generate Long (CSNBRNGL)
This verb uses the cryptographic feature to generate a cryptographic-quality
random number from 1 - 8192 bytes in length.

Choose the parity of each generated random byte as even, odd, or random. This
verb returns the random number in a string variable.

Because this verb uses cryptographic processes, the quality of the output is better
than that which higher-level language compilers typically supply.

Format
The format of CSNBRNGL.

CSNBRNGL(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
seed_length,
seed,
random_number_length,
random_number)

Parameters
The parameters for CSNBRNGL.

Random Number Generate (CSNBRNG)

342 Common Cryptographic Architecture Application Programmer's Guide

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are eight bytes in length, and must be left-aligned and padded on the right
with space characters. The rule_array keywords are described in Table 98.

Table 98. Keywords for Random Number Generate Long control information

Keyword Description

Parity adjust (One required)

EVEN Specifies that each generated random byte is adjusted for even parity.

ODD Specifies that each generated random byte is adjusted for odd parity.

RANDOM Specifies that each generated random byte is not adjusted for parity.

seed_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes in the seed
variable. This value must be 0.

seed

Direction: Input
Type: String

This parameter is ignored.

random_number_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes in the
random_number variable. On input, the minimum value is 1 and the maximum
value is 8192.

Use this variable to specify the number of random bytes that the verb is to
return. On output, this variable contains the number of bytes returned by the
verb in the random_number variable.

random_number

Direction: Output
Type: String

A pointer to a string variable containing the random number generated.

Random Number Generate Long (CSNBRNGL)

Chapter 8. AES, DES, and HMAC cryptographic keys 343

Restrictions
The restrictions for CSNBRNGL.

None.

Required commands
The required commands for CSNBRNGL.

None.

Usage notes
The usage notes for CSNBRNGL.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBRNGLJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBRNGLJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber seed_length,
byte[] seed,
hikmNativeNumber random_number_length,
byte[] random_number);

Symmetric Key Export (CSNDSYX)
Use the Symmetric Key Export verb to transfer an application-supplied AES DATA
(version X'04'), DES DATA, or variable-length symmetric key token key from
encryption under the AES or DES master key to encryption under an
application-supplied RSA public key or AES EXPORTER key.

The application-supplied key must be an AES, DES or HMAC internal key token
or the label of an AES or DES key token in the AES or DES key storage file.

The verb can also export an HMAC key that is contained in an internal
variable-length symmetric key-token. The exported key is returned in an external
variable-length symmetric key-token.

Use the Symmetric Key Import verb to import a key exported using the AES or
DES algorithm, and the Symmetric Key Import2 verb to import a key exported
using the HMAC algorithm.

Different methods are supported for formatting the output key. Not all of these
methods are available for each supported source key-token. The AESKW
key-formatting method uses an AES EXPORTER key-encrypting key to wrap the
output key before returning it in an external variable-length symmetric key-token.

Random Number Generate Long (CSNBRNGL)

344 Common Cryptographic Architecture Application Programmer's Guide

The other key formatting methods each use a different scheme to format the key
before it is enciphered using an asymmetric RSA public-key. The formatted and
enciphered key is returned as an opaque data buffer, and is not in a key token.

Format
The format of CSNDSYX.

CSNDSYX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
transporter_key_identifier_length,
transporter_key_identifier,
enciphered_key_length,
enciphered_key)

Parameters
The parameters for CSNDSYX.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. Each keyword is
left-aligned in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage. The rule_array keywords are described in
Table 99.

Table 99. Keywords for Symmetric Key Export control information

Keyword Description

Algorithm (One, optional)

AES Export an AES key. If source_key_identifier is a variable-length symmetric key token or label, only the
PKOAEP2 and AESKW key formatting methods are supported.

DES Export a DES key. This is the default.

HMAC Export an HMAC key. Only the PKOAEP2 and AESKW key formatting methods are supported.

Recovery method (One, required)

AESKW Specifies that the key is to be formatted using AESKW and placed in an external variable length
CCA token. The transport_key_identifier must be an AES EXPORTER. This rule is not valid with the
DES algorithm keyword or with AES DATA (version X'04') keys.

Symmetric Key Export (CSNDSYX)

Chapter 8. AES, DES, and HMAC cryptographic keys 345

Table 99. Keywords for Symmetric Key Export control information (continued)

Keyword Description

AESKWCV Specifies to return the key formatted using the ANS X9.102 AESKW method creating a special
variable-length symmetric key-token whose key type is DESUSECV. The AESKW payload that
contains the DES key is encrypted by the AES EXPORTER key-encrypting key provided as the
transport key, and returned in an external variable-length symmetric key-token with a token
algorithm of DES. The DES control vector (with its key form bits masked to binary zeros to mask
the key length) along with other significant key-token information is included in the associated data
section of the variable-length symmetric key-token. Valid only with the DES algorithm, and only for
a DES key in a fixed-length symmetric key-token.

PKCSOAEP Specifies using the method found in RSA DSI PKCS #1V2 OAEP. See “PKCS #1 hash formats” on
page 1044. The default hash method is SHA-1. Use the SHA-256 keyword for the SHA-256 hash
method. Use the SHA-384 keyword for the SHA-384 hash method. Use the SHA-512 keyword for
the SHA-512 hash method.

PKCS-1.2 Specifies using the method found in RSA DSI PKCS #1 block type 02 to recover the symmetric key.
In the RSA PKCS #1 v2.0 standard, RSA terminology describes this as the RSAES-PKCS1-v1_5
format. See “PKCS #1 hash formats” on page 1044.

PKOAEP2 Specifies that the key is formatted as defined in the RSA PKCS #1 v2.1 standard for the
RSAES-OAEP encryption mechanism. Valid only with algorithm HMAC. This keyword was
introduced with CCA 4.1.0. See “PKCS #1 hash formats” on page 1044.

ZERO-PAD The clear key is right-aligned in the field provided, and the field is padded to the left with zeros up
to the size of the RSA encryption block (which is the modulus length).

Hash method (One, optional for PKCSOAEP, required for PKOAEP2. Not valid with any other key formatting
method)

SHA-1 Specifies to use the SHA-1 hash method to calculate the OAEP message hash. Valid only with
key-formatting methods PKCSOAEP or PKOAEP2. This is the default for PKCSOAEP.

SHA-256 Specifies to use the SHA-256 hash method to calculate the OAEP message hash. Valid only with
key-formatting methods PKCSOAEP or PKOAEP2.

SHA-384 Specifies to use the SHA-384 hash method to calculate the OAEP message hash. Valid only with
key-formatting method PKOAEP2.

SHA-512 Specifies to use the SHA-512 hash method to calculate the OAEP message hash. Valid only with
key-formatting method PKOAEP2.

source_key_identifier_length

Direction: Input
Type: Integer

The length of the source_key_identifier parameter. The minimum size is 64 bytes.
The maximum size is 725 bytes.

source_key_identifier

Direction: Input
Type: String

The label or internal token of a secure AES DATA (version X'04'), DES DATA,
or variable-length symmetric key token to encrypt under the supplied RSA
public key or AES EXPORTER key. The key in the key identifier must match
the algorithm in the rule_array. DES is the default algorithm.

transporter_key_identifier_length

Direction: Input
Type: Integer

Symmetric Key Export (CSNDSYX)

346 Common Cryptographic Architecture Application Programmer's Guide

The length of the transporter_key_identifier parameter. The maximum size is
3500 bytes for an RSA key token or 725 for an AES EXPORTER key token. The
length must be 64 if transporter_key_identifier is a label.

transporter_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an RSA public key token, AES
EXPORTER token, or label of the key to protect the exported symmetric key.

When the AESKW key formatting method is specified, this parameter must be
an AES EXPORTER key token or label with the EXPORT bit on in the
key-usage field. Otherwise, this parameter must be an RSA public key token or
label.

enciphered_key_length

Direction: Input/Output
Type: Integer

The length of the enciphered_key parameter. This variable is updated with the
actual length of the enciphered_key generated. The maximum size you can
specify in this parameter is 900 bytes.

enciphered_key

Direction: Output
Type: String

A pointer to a string variable containing the key after it has been formatted
and enciphered by the transport key. The enciphered key is returned either as
an opaque data buffer or in an external variable-length symmetric key-token.
For key-formatting method PKOAEP2, the key token has no key verification
pattern.

Restrictions
The restrictions for CSNDSYX.
v The RSA public-key modulus size (key length) is limited by the function control

vector (FCV) to accommodate potential government export and import
regulations.

v Retained keys are not supported.
v The maximum public exponent is 17 bits for any key that has a modulus greater

than 2048 bits.

Required commands
The required commands for CSNDSYX.

This verb requires the following commands to be enabled in the active role based
on the key-formatting method and the algorithm:

Key-formatting
method Algorithm Offset Command

AESKW AES X'0327' Symmetric Key Export - AESKW

AESKWCV
(Release 4.4 or
later)

DES X'02B3' Symmetric Key Export - AESKWCV

Symmetric Key Export (CSNDSYX)

Chapter 8. AES, DES, and HMAC cryptographic keys 347

Key-formatting
method Algorithm Offset Command

PKOAEP2 AES X'00FC' Symmetric Key Export - AES, PKOAEP2

PKOAEP2 HMAC X'00F5' Symmetric Key Export - HMAC, PKOAEP2

PKCSOAEP or
PKCS-1.2

AES X'0130' Symmetric Key Export - AES, PKCSOAEP,
PKCS-1.2

PKCSOAEP or
PKCS-1.2

DES X'0105' Symmetric Key Export - DES, PKCS-1.2

ZERO-PAD AES X'0131' Symmetric Key Export - AES, ZERO-PAD

ZERO-PAD DES X'023E' Symmetric Key Export - DES, ZERO-PAD

To disallow the wrapping of a key with a weaker key-encrypting key, enable the
Prohibit weak wrapping - Transport keys command (offset X'0328') in the active
role. This command affects multiple verbs. See Chapter 24, “Access control points
and verbs,” on page 1047.

To receive a warning when wrapping a key with a weaker key-encrypting key,
enable the Warn when weak wrap - Transport keys command (offset X'032C') in the
active role. The Prohibit weak wrapping - Transport keys command (offset
X'0328') overrides this command.

Usage notes
The usage notes for CSNDSYX.

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this verb will fail if the RSA key modulus bit length exceeds
this limit.

The strength of the exporter key expected by Symmetric Key Export depends on
the attributes of the key being exported. The resulting return code and reason code
when using an exporter KEK that is weaker depends on the Disallow Weak Key
Wrap command (offset X'0328') and the Warn when Wrapping Weak Keys command
(offset X'032C'):
v If the Disallow Weak Key Wrap command (offset X'0328') is disabled (the default),

the key strength requirement is not enforced. Using a weaker key results in
return code 0 with a nonzero reason code if the Warn when Wrapping Weak Keys
command (offset X'032C') is enabled. Otherwise, a reason code of zero is
returned.

v If the Disallow Weak Key Wrap (offset X'0328') access control point is enabled
(using TKE), the key strength requirement will be enforced, and attempting to
use a weaker key results in return code 8.

For AES DATA and AES CIPHER keys, the AES EXPORTER key must be at least as
long as the key being exported to be considered sufficient strength.

Note that wrapping an AES 192-bit key or an AES 256-bit key with any RSA key
will always be considered a weak wrap.

For HMAC keys, the AES EXPORTER must be sufficient strength as described in
Table 100 on page 349.

Symmetric Key Export (CSNDSYX)

348 Common Cryptographic Architecture Application Programmer's Guide

Table 100. AES EXPORTER strength required for exporting an HMAC key under an AES
EXPORTER

Key-usage field 2 in the HMAC key
contains

Minimum strength of AES EXPORTER to
adequately protect the HMAC key

SHA-256, SHA-384, SHA-512 256 bits

SHA-224 192 bits

SHA-1 128 bits

If an RSA public key is specified as the transporter_key_identifier, the RSA key used
must have a modulus size greater than or equal to the total PKOAEP2 message bit
length (key size plus total overhead), as described in Table 101.

Table 101. Minimum RSA modulus strength required to contain a PKOAEP2 block when
exporting an AES key

AES key size

Total message sizes (and therefore minimum RSA key size) when the
hash method is:

SHA-1 SHA-256 SHA-384 SHA-512

128 bits 736 bits 928 bits 1184 bits 1440 bits

192 bits 800 bits 992 bits 1248 bits 1504 bits

256 bits 800 bits 1056 bits 1312 bits 1568 bits

For AES keys, the AES EXPORTER must be sufficient strength as described in
Table 102.

Table 102. Minimum RSA modulus length to adequately protect an AES key

AES key to be exported
Minimum strength of RSA wrapping key
to adequately protect the AES key

AES 128 3072 bits

AES 192 7860 bits

AES 256 15360 bits

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDSYXJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDSYXJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber source_key_identifier_length,
byte[] source_key_identifier,
hikmNativeNumber transporter_key_identifier_length,
byte[] transporter_key_identifier,
hikmNativeNumber enciphered_key_length,
byte[] enciphered_key);

Symmetric Key Export (CSNDSYX)

Chapter 8. AES, DES, and HMAC cryptographic keys 349

Symmetric Key Export with Data (CSNDSXD)
Use the Symmetric Key Export with Data verb to export a symmetric key, along
with some application supplied data, encrypted using an RSA key.

The clear key data is copied into the provided data field at the offset specified with
the data_offset. Then it is encrypted using the PKCS-1.5 block type 2 formatting
algorithm.

Format
The format of CSNDSXD.

CSNDSXD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
data_length,
data_offset,
data,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
RSA_enciphered_key_length,
RSA_enciphered_key)

Parameters
The parameters for CSNDSXD.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 2.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are eight bytes in length and must be left-aligned and padded on the right
with space characters. The rule_array keywords are described in Table 103.

Table 103. Keywords for Symmetric Key Export with Data control information

Keyword Description

Algorithm (One required)

AES The key specified in source_key_identifier is an AES key.

Symmetric Key Export with Data (CSNDSXD)

350 Common Cryptographic Architecture Application Programmer's Guide

Table 103. Keywords for Symmetric Key Export with Data control information (continued)

Keyword Description

DES The key specified in source_key_identifier is a DES key.

Key Formatting method (One required)

PKCS–EXT Copy the clear key data (length determined by the key length in the source key token) into the
provided data field at the offset specified in the data_offset parameter. Then encrypt the key
using the PKCS-1.5 block type 2 formatting algorithm.

source_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes in the
source_key_identifier variable. This value is 64 when a label is supplied.
When the key identifier is a key token, the value is the length of the token. For
DES keys, the value must be 64. For AES keys, the maximum value is 725.

source_key_identifier

Direction: Input
Type: String

An internal key token, or the label of an operational symmetric key-token
record in AES or DES key storage containing an operational AES or DES key
token that is to be exported. If the key is a DES key, bit 17 of the control vector
must be equal to '1'b (XPORT-OK). The key must have a control vector of
DATAC or DKYGENKY with subtype DKYL0, unless the Allow Symmetric Key
Export with Data Special access control point is enabled.

If the AES key is in a fixed length key token, no control vector checking is
needed. If the AES key is in a variable length token, the key type must be
CIPHER. If the key type is not CIPHER, an access control point Allow
Symmetric Key Export with Data Special must be enabled. If the key is an
AES key, the key management field in the key must allow export by RSA keys
and by unauthenticated asymmetric keys.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

data_length

Direction: Input
Type: Integer

The length of the data parameter in bytes. The maximum value is the length of
the modulus (in bytes) of the RSA_public_key_identifier minus 11. The
overall maximum value is 501.

data_offset

Direction: Input
Type: Integer

The offset in bytes from the start of the clear data (data) where the clear DES
or AES key is to be copied. The maximum value is data_length minus the key
length of the clear source key.

data

Symmetric Key Export with Data (CSNDSXD)

Chapter 8. AES, DES, and HMAC cryptographic keys 351

Direction: Input
Type: String

The clear data. The deciphered key from parameter source_key_identifier is
copied into this data at the specified offset, and then encrypted with the key
from parameter RSA_public_key_identifier.

RSA_public_key_identifier_length

Direction: Input
Type: Integer

The length of the RSA_public_key_identifier field in bytes. This value is 64
when a label is supplied. When the key identifier is a key token, the value is
the length of the token. The maximum value is 3500.

RSA_public_key_identifier

Direction: Input
Type: String

A PKA96 RSA internal or external key-token with the RSA public key of the
remote node that imports the exported key.

RSA_enciphered_key_length

Direction: Input
Type: Integer

The length of the RSA_enciphered_key field in bytes. On output, the variable is
updated with the actual length of the RSA_enciphered_key parameter. The
maximum length is 512.

RSA_enciphered_key

Direction: Output
Type: String

The exported RSA-enciphered key.

Restrictions
The restrictions for CSNDSXD.

None.

Required commands
The required commands for CSNDSXD.

The Symmetric Key Export with Data verb requires the Symmetric Key Export
with Data command (offset X'02B5') to be enabled in the active role.

In addition, the verb requires the following commands to be enabled in the active
role based on the key-formatting method and the token algorithm:

Table 104. Required commands for the Symmetric Key Export with Data verb.

Key-formatting
method Algorithm Offset Command

PKCS-EXT AES X'0130' Symmetric Key Export - AES, PKCSOAEP,
PKCS-1.2

Symmetric Key Export with Data (CSNDSXD)

352 Common Cryptographic Architecture Application Programmer's Guide

Table 104. Required commands for the Symmetric Key Export with Data verb (continued).

Key-formatting
method Algorithm Offset Command

PKCS-EXT DES X'0105' Symmetric Key Export - DES, PKCS-1.2

The Symmetric Key Export with Data - Special command (offset X'02B6') affects
which key types are allowed for the source key token. When offset X'02B6' is
enabled in the active role, any key type can be used. When it is not enabled in the
active role, the following rules apply:
v Token algorithm AES:

If the source AES key is in a fixed-length symmetric key-token, the key is always
allowed. If the source AES key is in a variable-length symmetric key-token, the
key type must be CIPHER.

v Token algorithm DES:
The source DES key must be in a fixed-length symmetric key-token and have
one of the following:
– A control vector with bit 61 = B'1' (NOT-CCA)
– A key type of DATAC
– A key type of DKYGENKY with subtype DKYL0

Usage notes
The usage notes for CSNDSXD.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDSXDJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDSXDJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber source_key_identifier_length,
byte[] source_key_identifier,
hikmNativeNumber data_length,
hikmNativeNumber data_offset,
byte[] data,
hikmNativeNumber RSA_public_key_identifier_length,
byte[] RSA_public_key_identifier,
hikmNativeNumber RSA_enciphered_key_length,
byte[] RSA_enciphered_key);

Symmetric Key Generate (CSNDSYG)
Use the Symmetric Key Generate verb to generate an AES or DES DATA key and
return the key in two forms: enciphered under the master key and encrypted
under an RSA public key.

Symmetric Key Export with Data (CSNDSXD)

Chapter 8. AES, DES, and HMAC cryptographic keys 353

You can import the RSA public key encrypted form by using the Symmetric Key
Import or Symmetric Key Import2 verbs at the receiving node.

Also use the Symmetric Key Generate verb to generate any DES importer or
exporter key-encrypting key encrypted under a RSA public key according to the
PKA92 formatting structure. See “PKA92 key format and encryption process” on
page 1042 for more details about PKA92 formatting.

Format
The format of CSNDSYG.

CSNDSYG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_encrypting_key_identifier,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
local_enciphered_key_identifier_length,
local_enciphered_key_identifier,
RSA_enciphered_key_length,
RSA_enciphered_key)

Parameters
The parameters for CSNDSYG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1 - 7.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The recovery method is
the method to use to recover the symmetric key. Each keyword is left-aligned
in an 8-byte field and padded on the right with blanks. All keywords must be
in contiguous storage. The rule_array keywords are described in Table 105.

Table 105. Keywords for Symmetric Key Generate control information

Keyword Description

Algorithm (One, optional)

AES Specifies to generate an AES key.

DES Specifies to generate a DES key. This is the default.

Key-formatting method (One required)

Symmetric Key Generate (CSNDSYG)

354 Common Cryptographic Architecture Application Programmer's Guide

Table 105. Keywords for Symmetric Key Generate control information (continued)

Keyword Description

PKA92 Specifies the key-encrypting key is to be encrypted under a PKA96 RSA public key according to the
PKA92 formatting structure.

PKCSOAEP Specifies to use the method found in RSA DSI PKCS #1V2 OAEP. Supported by the DES and AES
algorithms. The default hash method is SHA-1. Use the SHA-256 keyword for the SHA-256 hash
method.

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block type 02. In the RSA PKCS #1 v2.0 standard,
RSA terminology describes this as the RSAES-PKCS1-v1_5 format.

ZERO-PAD The clear key is right-aligned in the field provided, and the field is padded to the left with zeros up
to the size of the RSA encryption block (which is the modulus length).

Key length (One, optional use with PKA92)

SINGLE-R Generates a key-encrypting key that has equal left and right halves allowing it to perform as a
single-length key. Valid only for the recovery method of PKA92.

Key length (One, optional use with PKCSOAEP, PKCS-1.2, or ZERO-PAD)

SINGLE,
KEYLN8

Generates a single-length DES key. This is the default for DES keys.

DOUBLE Generates a double-length DES key. Valid only for DES keys.

KEYLN16 Generates a double-length DES DATA key. This is the default for AES keys.

KEYLN24 Generates a triple-length DES DATA key. Valid only for AES keys

KEYLN32 Generates a 32-byte AES key. Valid only for AES keys

Encipherment method for the local enciphered copy of the key (One, optional for use with PKCSOAEP, PKCS-1.2,
and ZERO-PAD)

EX The DES enciphered key is enciphered by an EXPORTER key that is provided through the
key_encrypting_key_identifier parameter.

IM The DES enciphered key is enciphered by an IMPORTER key that is provided through the
key_encrypting_key_identifier parameter.

OP The DES enciphered key is enciphered by the master key. The key_encrypting_key_identifier parameter
is ignored. This is the default.

Key-wrapping method (One, optional)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the default wrapping
method. The default wrapping method configuration setting may be changed using the TKE. This
keyword is ignored for AES keys.

WRAP-ENH Use enhanced key wrapping method, which is compliant with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB wrapping for DES key tokens and CBC
wrapping for AES key tokens.

Translation control (Optional) This is valid only with key-wrapping method WRAP-ENH or with USECONFG
when the default wrapping method is WRAP-ENH. This option cannot be used on a key with a control vector
valued to binary zeros.

ENH-ONLY Specifies to restrict the key from being wrapped with the legacy wrapping method after it has been
wrapped with the enhanced wrapping method. Sets bit 56 (ENH-ONLY) of the control vector to B'1'.
This keyword was introduced with CCA 4.1.0.

Hash method (Optional). Valid only with keyword PKCSOAEP.

SHA-1 Specifies to use the SHA-1 hash method to calculate the OAEP message hash. This is the default.

SHA-256 Specifies to use the SHA-256 hash method to calculate the OAEP message hash.

key_encrypting_key_identifier

Symmetric Key Generate (CSNDSYG)

Chapter 8. AES, DES, and HMAC cryptographic keys 355

Direction: Input/Output
Type: String

The label or internal token of a key-encrypting key. If the rule_array specifies
IM, this DES key must be an IMPORTER. If the rule_array specifies EX, this
DES key must be an EXPORTER.

RSA_public_key_identifier_length

Direction: Input
Type: Integer

The length of the RSA_public_key_identifier parameter. If the
RSA_public_key_identifier parameter is a label, this parameter specifies the
length of the label. The maximum size is 3500 bytes.

RSA_public_key_identifier

Direction: Input
Type: String

The token, or label, of the RSA public key to be used for protecting the
generated symmetric key.

local_enciphered_key_identifier_length

Direction: Input/Output
Type: Integer

The length of the local_enciphered_key_identifier. This field is updated with the
actual length of the local_enciphered_key_identifier that is generated. The
maximum length is 3500 bytes. However, this value should be 64 as in current
CCA practice a DES key-token or a key label is always a 64-byte structure.

local_enciphered_key_identifier

Direction: Input/Output
Type: String

A pointer to a string variable containing either a key name or a key token. The
control vector for the local key is taken from the identified key token. On
output, the generated key is inserted into the identified key token.

On input, you must specify a token type consistent with your choice of
local-key encryption. If you specify IM or EX, you must specify an external
key-token. Otherwise, specify an internal key-token or a null key-token.

When PKCSOAEP, PKCS-1.2, or ZERO-PAD is specified, a null key-token can
be specified. In this case, an AES DATA or DES DATA key is returned. For an
internal key (OP), a default AES DATA or DATA control-vector is returned in
the key token. For an external key (IM or EX), the control vector is set to null.

RSA_enciphered_key_length

Direction: Input/Output
Type: Integer

The length of the RSA_enciphered_key parameter. This verb updates this with
the actual length of the RSA_enciphered_key it generates. The maximum size is
3500 bytes.

RSA_enciphered_key

Symmetric Key Generate (CSNDSYG)

356 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input/Output
Type: String

A pointer to a string variable containing the generated RSA-enciphered key
returned by the verb. If you specify PKCSOAEP, PKCS-1.2, or ZERO-PAD, on
input specify a null key token. If you specify PKA92, on input specify an
internal (operational) CCA DES key-token.

Restrictions
The restrictions for CSNDSYG.

None.

Required commands
The required commands for CSNDSYG.

This verb requires the following commands to be enabled in the active role based
on the key-formatting method and the algorithm:

Key-formatting
method Algorithm Offset Command

PKCSOAEP or
PKCS-1.2

AES X'012C' Symmetric Key Generate - AES_ PKCSOAEP_
PKCS-1.2

PKCSOAEP or
PKCS-1.2

DES X'023F' Symmetric Key Generate - DES_ PKCS-1.2

ZERO-PAD AES X'012D' Symmetric Key Generate - AES_ ZERO-PAD

ZERO-PAD DES X'023C' Symmetric Key Generate - DES_ ZERO-PAD

PKA92 DES X'010D' Symmetric Key Generate - DES_ PKA92

The use of the WRAP-ECB or WRAP-ENH key-wrapping method keywords
requires the Symmetric Key Generate - Allow wrapping override keywords
command (offset X'013E') to be enabled.

The following access-control points are added beginning with Release 4.3:
v To disable the wrapping of a key with a weaker master key, the Prohibit weak

wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

v To receive a warning when wrapping a key with a weaker master key, enable
the Warn when weak wrap - Master keys command (offset X'0332') in the active
role. The Prohibit weak wrapping - Master keys command overrides this
command.

Usage notes
The usage notes for CSNDSYG.

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this verb will fail if the RSA key modulus bit length exceeds
this limit.

Specification of PKA92 with an input NOCV key-encrypting key token is not
supported.

Symmetric Key Generate (CSNDSYG)

Chapter 8. AES, DES, and HMAC cryptographic keys 357

Use the PKA92 key-formatting method to generate a key-encrypting key. The verb
enciphers one key copy using the key encipherment technique employed in the
IBM Transaction Security System (TSS) 4753, 4755, and AS/400 cryptographic
product PKA92 implementations (see “PKA92 key format and encryption process”
on page 1042). The control vector for the RSA-enciphered copy of the key is taken
from an internal (operational) DES key token that must be present on input in the
RSA_enciphered_key variable.

Only key-encrypting keys that conform to the rules for an OPEX case under the
Key Generate verb are permitted. The control vector for the local key is taken from
a DES key token that must be present on input in the local_enciphered_key_identifier
variable. The control vector for one key copy must be from the EXPORTER class,
while the control vector for the other key copy must be from the IMPORTER class.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDSYGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDSYGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_encrypting_key_identifier,
hikmNativeNumber RSA_public_key_identifier_length,
byte[] RSA_public_key_identifier,
hikmNativeNumber local_enciphered_key_identifier_length,
byte[] local_enciphered_key_identifier,
hikmNativeNumber RSA_enciphered_key_length,
byte[] RSA_enciphered_key);

Symmetric Key Import (CSNDSYI)
Use the Symmetric Key Import verb to import a symmetric AES DATA or DES
DATA key enciphered under an RSA public key. The verb returns the key in
operational form, enciphered under the master key.

This verb also supports import of a PKA92-formatted DES key-encrypting key
under a PKA96 RSA public key.

Symmetric Key Generate (CSNDSYG)

358 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNDSYI.

CSNDSYI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
RSA_enciphered_key_length,
RSA_enciphered_key,
RSA_private_key_identifier_length,
RSA_private_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
The parameters for CSNDSYI.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1 - 5.

rule_array

Direction: Input
Type: String array

The keyword that provides control information to the verb. The recovery
method is the method to use to recover the symmetric key. The keyword is
left-aligned in an 8-byte field and padded on the right with blanks. The
rule_array keywords are described in Table 106.

Table 106. Keywords for Symmetric Key Import control information

Keyword Description

Algorithm (One, optional)

AES Export an AES key.

DES Export a DES key. This is the default.

Recovery method (One required)

PKA92 Specifies the key-encrypting key is encrypted under a PKA96 RSA public key according to
the PKA92 formatting structure.

PKCSOAEP Specifies to use the method found in RSA DSI PKCS #1V2 OAEP. Supported by the DES
and AES algorithms. The default hash method is SHA-1. Use the SHA-256 keyword for the
SHA-256 hash method.

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block type 02. In the RSA PKCS #1 v2.0
standard, RSA terminology describes this as the RSAES-PKCS1-v1_5 format.

ZERO-PAD The clear key is right-aligned in the field provided, and the field is padded to the left with
zeros up to the size of the RSA encryption block (which is the modulus length).

Symmetric Key Import (CSNDSYI)

Chapter 8. AES, DES, and HMAC cryptographic keys 359

Table 106. Keywords for Symmetric Key Import control information (continued)

Keyword Description

Key-wrapping method (One, optional)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the default
wrapping method. The default wrapping method configuration setting may be changed
using the TKE. This keyword is ignored for AES keys.

WRAP-ENH Specifies to wrap the key using the legacy wrapping method. This keyword is ignored for
AES keys. This keyword was introduced with CCA 4.1.0.

WRAP-ECB Specifies to wrap the key using the enhanced wrapping method. Valid only for DES keys.
This keyword was introduced with CCA 4.1.0.

Translation control (Optional) This is valid only with key-wrapping method WRAP-ENH or with USECONFG
when the default wrapping method is WRAP-ENH. This option cannot be used on a key with a control vector
valued to binary zeros.

ENH-ONLY Specifies to restrict the key from being wrapped with the legacy wrapping method after it
has been wrapped with the enhanced wrapping method. Sets bit 56 (ENH-ONLY) of the
control vector to B'1'. This keyword was introduced with CCA 4.1.0.

Hash method (Optional). Valid only with keyword PKCSOAEP.

SHA-1 Specifies to use the SHA-1 hash method to calculate the OAEP message hash. This is the
default.

SHA-256 Specifies to use the SHA-256 hash method to calculate the OAEP message hash.

RSA_enciphered_key_length

Direction: Input
Type: Integer

The length of the RSA_enciphered_key parameter. The maximum size is 3500
bytes.

RSA_enciphered_key

Direction: Input
Type: String

The key to import, protected under an RSA public key. The encrypted key is in
the low-order bits (right-aligned) of a string whose length is the minimum
number of bytes that can contain the encrypted key. This string is left-aligned
within the RSA_enciphered_key parameter.

RSA_private_key_identifier_length

Direction: Input
Type: Integer

The length of the RSA_private_key_identifier parameter. When the
RSA_private_key_identifier parameter is a key label, this field specifies the length
of the label. The maximum size is 3500 bytes.

RSA_private_key_identifier

Direction: Input
Type: String

An internal RSA private key token or label whose corresponding public key
protects the symmetric key.

target_key_identifier_length

Symmetric Key Import (CSNDSYI)

360 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input/Output
Type: Integer

The length of the target_key_identifier parameter. This field is updated with the
actual length of the target_key_identifier that is generated. The maximum length
is 3500 bytes.

target_key_identifier

Direction: Input/Output
Type: String

This field contains the internal token of the imported symmetric key.

Except for PKA92 processing, this verb produces a DATA key token with a key
of the same length as that contained in the imported token.

Restrictions
The restrictions for CSNDSYI.

None.

Required commands
The required commands for CSNDSYI.

This verb requires the following commands to be enabled in the active role based
on the key-formatting method and the algorithm:

Key-formatting method Algorithm Offset Command

PKA92 and DATA, MAC,
MACVER, KEYGENKY,
EXPORTER, or OKEYXLAT
key

DES X'0235' Symmetric Key Import - DES, PKA92 KEK

PKCSOAEP or PKCS-1.2 AES
DES

X'012E'
X'0106'

Symmetric Key Import - AES, PKCSOAEP, PKCS-1.2
Symmetric Key Import - DES, PKCS-1.2

ZERO-PAD AES
DES

X'012F'
X'023D'

Symmetric Key Import - AES, ZERO-PAD
Symmetric Key Import - DES, ZERO-PAD

WRAP-ECB or
WRAP-ENH, when the
default key-wrapping
method setting does not
match the keyword

DES X'0144' Symmetric Key Import - Allow wrapping override keywords

The following access control points control the use of weak transport keys:
v To disallow the import of a key wrapped with a weaker transport key, the

Symmetric Key Import2 - disallow weak import command (offset X'032B') must
be enabled in the active role.

v To disable the wrapping of a key with a weaker transport key, the Prohibit
weak wrapping - Transport keys command (offset X'0328') must be enabled in
the active role.

v To receive an informational message when wrapping a key with a weaker
key-encrypting key, enable the Warn when weak wrap - Transport keys
command (offset X'032C') in the active role. The Prohibit weak wrapping -
Transport keys command overrides this command.

Symmetric Key Import (CSNDSYI)

Chapter 8. AES, DES, and HMAC cryptographic keys 361

|

The following access control points control the use of weak master keys:
v To disable the wrapping of a key with a weaker master key, the Prohibit weak

wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

v To receive a warning when wrapping a key with a weaker master key, enable
the Warn when weak wrap - Master keys command (offset X'0332') in the active
role. The Prohibit weak wrapping - Master keys command overrides this
command.

Usage notes
The usage notes for CSNDSYI.

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this verb will fail if the RSA key modulus bit length exceeds
this limit.

Use of PKA92 with an input NOCV key-encrypting key token is not supported.

During initialization of a CEX*C, an Environment Identifier (EID) of zero will be
set in the coprocessor. This will be interpreted by the Symmetric Key Import verb
to mean that environment identification checking is to be bypassed. Thus it is
possible on a Linux on Z system for a key-encrypting key RSA-enciphered at a
node (EID) to be imported at the same node.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDSYIJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDSYIJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber RSA_enciphered_key_length,
byte[] RSA_enciphered_key,
hikmNativeNumber RSA_private_key_identifier_length,
byte[] RSA_private_key_identifier,
hikmNativeNumber target_key_identifier_length,
byte[] target_key_identifier);

Symmetric Key Import2 (CSNDSYI2)

Use the Symmetric Key Import2 verb to import a symmetric key that is contained
in an external variable-length symmetric key-token, and that has been exported by
the Symmetric Key Export verb or the Key Generate2 verb, into an internal
variable-length symmetric key-token, or into an internal fixed-length DES
key-token.

The enciphered input key to be imported can be one of the following, depending
on what release is used:

Symmetric Key Import (CSNDSYI)

362 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|

v In all releases, the input key cant be an HMAC key that has been previously
formatted using key-formatting method PKOAEP2.

v AES keys are supported along with support for the AES token algorithm. With
this support, the input key can also be an HMAC key that has been previously
formatted using key-formatting method AESKW, provided that the operational
AES key-encrypting key used to encipher the key is provided. Likewise, an AES
key can either be in an external AES variable-length symmetric key-token
enciphered under an AES key-encrypting key (AESKW), or an RSA public-key
(PKOAEP2).

v DES keys are supported, along with support for the DES token algorithm. With
this support, the input key must have a key type of DESUSECV. A DESUSECV
key contains the control vector and other information necessary to recreate the
original internal fixed-length DES key-token.
When importing a DES key, the verb must decide whether to use the legacy ECB
mode or the enhanced CBC mode when wrapping the key in the target
key-token. New optional key-wrapping method keywords are added to select
which key-wrapping method to use.
Also when importing a DES key, a new optional translation control keyword
allows the target key to be restricted to being wrapped only with the enhanced
CBC method once it has been wrapped with the enhanced method.

Before importing a DES key (Release 4.4 or later), the verb must determine
whether to wrap the target key in legacy ECB mode or in enhanced CBC mode.
These factors influence the key-wrapping method used for the imported target
key-token:
1. The first is the default internal key-token key-wrapping preference of the

receiving system where the target key token will be created. The receiving
system can be set to a preference to wrap internal key tokens in either ECB or
Enhanced modes.

2. The second is the key-wrapping method used to wrap the original key which
was exported from the originating system.

3. The third is the key-wrapping method used by the verb which is specified by
an optional key-wrapping method keyword or by default.

Table 107 and Table 108 on page 364 show how the key-wrapping method will be
determined for the target key, based on the previously explained factors.

Table 107. Symmetric Key Import2 key-wrapping method of target key when system default
is ECB (Legacy)

Wrap method
of original
key that was
exported

Key-
wrapping
method
keyword Key-wrapping method used for the imported target key

ECB (Legacy) USECONFG ECB (Legacy).

WRAP-ECB Under control of command Symmetric Key Import2 - Allow
wrapping override keywords (offset X'02B9'):

v If X'02B9' is enabled, ECB (Legacy).

v If X'02B9' is not enabled, not authorized error is returned.

WRAP-ENH Under control of offset X'02B9':

v If X'02B9' is enabled, Enhanced. In addition, if
ENH-ONLY keyword, CV bit 56 is set to B'1'
(ENH-ONLY).

v If X'02B9' is not enabled, not authorized error is returned.

Symmetric Key Import2 (CSNDSYI2)

Chapter 8. AES, DES, and HMAC cryptographic keys 363

Table 107. Symmetric Key Import2 key-wrapping method of target key when system default
is ECB (Legacy) (continued)

Enhanced
with CV bit 56
= B'0' (not
ENH-ONLY)

USECONFG ECB (Legacy).

WRAP-ECB Under control of command offset X'02B9':

v If X'02B9' is enabled, ECB (Legacy).

v If X'02B9' is not enabled, not authorized error is returned.

WRAP-ENH Under control of offset X'02B9':

v If X'02B9' is enabled, Enhanced. In addition, if
ENH-ONLY keyword, CV bit 56 is set to B'1'
(ENH-ONLY).

v If X'02B9' is not enabled, not authorized error is returned.

Enhanced
with CV bit 56
= B'1'
(ENH-ONLY)

USECONFG Control information in the key token conflicts with that in
the rule array error is returned.

WRAP-ECB Under control of offset X'02B9':

v If X'02B9' is enabled, control information in the key token
conflicts with that in the rule array error is returned.

v If X'02B9' is not enabled, not authorized error is returned.

WRAP-ENH Under control of offset X'02B9':

v If X'02B9' is enabled, Enhanced and CV bit 56 is set to
B'1' (ENH-ONLY).

v If X'02B9' is not enabled, error not authorized is returned.

Note: Conversion of an original key-token wrapped in Enhanced mode to an imported
target key-token wrapped in ECB mode reduces security for that key. In this case, a
command to override the system key-wrapping default is required.

Table 108. Symmetric Key Import2 key-wrapping method of target key when system default
is CBC (Enhanced)

Wrap method
of original
key that was
exported

Key-
wrapping
method
keyword Key-wrapping method used for the imported target key

ECB (Legacy) USECONFG Enhanced. In addition, if ENH-ONLY keyword, CV bit 56 is
set to B'1' (ENH-ONLY).

WRAP-ECB Under control of offset X'02B9':

v If X'02B9' is enabled, ECB (Legacy).

v If X'02B9' is not enabled, not authorized error is returned.

WRAP-ENH Enhanced. In addition, if ENH-ONLY keyword, CV bit 56 is
set to B'1' (ENH-ONLY).

Enhanced
with CV bit 56
= B'0' (not
ENH-ONLY)

USECONFG Enhanced. If ENH-ONLY keyword, CV bit 56 is set to B''1'
(ENH-ONLY).

WRAP-ECB Under control of offset X'02B9':

v If X'02B9' is enabled, ECB (Legacy).

v If X'02B9' is not enabled, not authorized error is returned.

WRAP-ENH Enhanced. In addition, if ENH-ONLY keyword, CV bit 56 is
set to B'1' (ENH-ONLY).

Symmetric Key Import2 (CSNDSYI2)

364 Common Cryptographic Architecture Application Programmer's Guide

Table 108. Symmetric Key Import2 key-wrapping method of target key when system default
is CBC (Enhanced) (continued)

Enhanced
with CV bit 56
= B'1'
(ENH-ONLY)

USECONFG Enhanced and CV bit 56 is set to B'1' (ENH-ONLY).

WRAP-ECB Under control of offset X'02B9':

v If X'02B9' is enabled, control information in the key token
conflicts with that in the rule array error is returned.

v If X'02B9' is not enabled, not authorized error is returned.

WRAP-ENH Under control of offset X'02B9':

v If X'02B9' is enabled, enhanced and CV bit 56 is set to B'1'
(ENH-ONLY).

v If X'02B9' is not enabled, not authorized error is returned.

Note: Conversion of an original key-token wrapped in ECB (Legacy) mode to an imported
target key-token wrapped in Enhanced (CBC) mode improves security for that key.

Format
The format of CSNDSYI2.

CSNDSYI2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
enciphered_key_length,
enciphered_key,
transport_key_identifier_length,
transport_key_identifier,
key_name_length,
key_name,
target_key_identifier_length,
target_key_identifier)

Parameters
The parameters for CSNDSYI2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 2.

rule_array

Direction: Input
Type: String array

The keywords that provide control information to the verb. The following table
provides a list. The recovery method is the method to use to recover the
symmetric key. The keywords must be 8 bytes of contiguous storage with the
keyword left-aligned in its 8-byte location and padded on the right with

Symmetric Key Import2 (CSNDSYI2)

Chapter 8. AES, DES, and HMAC cryptographic keys 365

blanks. The rule_array keywords are described in Table 109.

Table 109. Keywords for Symmetric Key Import2 control information

Keyword Description

Algorithm (One, required)

AES The key being imported is an AES key.

DES The key being imported is a DES key.

HMAC The key being imported is an HMAC key. Only the PKOAEP2 recovery method is supported.

Recovery method (One, required)

AESKW Specifies the enciphered key has been wrapped with the AESKW formatting method.

AESKWCV Specifies that the key is to be formatted using AESKW and placed in a symmetric variable length
CCA token of type DESUSECV. The transport_key_identifier must be an AES EXPORTER key.
The DES control vector and other significant token information is in the associated data section of
the variable length key token. Only valid with the DES token algorithm.

PKOAEP2 Specifies to format the key according to the method found in RSA DSI PKCS #1 v2.1
RSAES-OAEP documentation.

Key wrapping method (Optional, valid only for DES algorithm. The access control point Symmetric Key Import2 –
Allow wrapping override keywords must be enabled to specify these keywords)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the default
wrapping method. The default wrapping method configuration setting may be changed using the
TKE. This keyword is ignored for AES keys.

WRAP-ENH Specifies that the new enhanced wrapping method is to be used to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (Optional, valid only for enhanced wrapping)

ENH-ONLY Specify this keyword to indicate that the key once wrapped with the enhanced method cannot be
wrapped with the original method. This restricts translation to the original method.

Note: There is no need for a hash method keyword, because the hash method
is encoded in the external key-token carrying the encoded and encrypted
payload.

enciphered_key_length

Direction: Input
Type: Integer

The length of the enciphered_key parameter. The maximum size is 900 bytes.

enciphered_key

Direction: Input
Type: String

The key to import, protected under either an RSA public key or an AES KEK.
If the recovery method is PKOAEP2, the encrypted key is in the low-order bits
(right-aligned) of a string whose length is the minimum number of bytes that
can contain the encrypted key. If the recovery method is AESKW, the
encrypted key is an AES key or HMAC key in the external variable length key
token.

transport_key_identifier_length

Direction: Input
Type: Integer

Symmetric Key Import2 (CSNDSYI2)

366 Common Cryptographic Architecture Application Programmer's Guide

The length of the transport_key_identifier parameter. When the
transport_key_identifier parameter is a key label, this field must be 64. The
maximum size is 3500 bytes for an RSA private key, or 725 bytes for an AES
IMPORTER KEK.

transport_key_identifier

Direction: Input
Type: String

An internal RSA private key token, internal AES IMPORTER KEK, or the
64-byte label of a key token whose corresponding key protects the symmetric
key.

When the AESKW key formatting method is specified, this parameter must be
an AES IMPORTER key with the IMPORT bit on in the key-usage field.
Otherwise, this parameter must be an RSA private key.

key_name_length

Direction: Input
Type: Integer

The length of the key_name parameter for target_key_identifier. Valid values are 0
and 64.

key_name

Direction: Input
Type: String

A 64-byte key store label to be stored in the associated data structure of
target_key_identifier.

target_key_identifier_length

Direction: Input/Output
Type: Integer

On input, the length in bytes of the buffer for the target_key_identifier
parameter. The buffer must be large enough to receive the target key token.
The maximum value is 725 bytes.

On output, the parameter will hold the actual length of the target key token.

target_key_identifier

Direction: Output
Type: String

This parameter contains the internal token of the imported symmetric key.

Restrictions
The restrictions for CSNDSYI2.

The exponent of the RSA public key must be odd.

Required commands
The required commands for CSNDSYI2.

The Symmetric Key Import2 verb requires the following commands to be enabled
in the active role:

Symmetric Key Import2 (CSNDSYI2)

Chapter 8. AES, DES, and HMAC cryptographic keys 367

Key-formatting method keyword Token algorithm keyword Offset Command

AESKW (Rel. 4.2 or later) AES or HMAC X'0329' Symmetric Key Import2 - AESKW

AESKWCV (Release 4.4 or later) DES X'02B4' Symmetric Key Import2 - AESKWCV

WRAP-ECB or WRAP-ENH,
when the default key-wrapping
method setting does not match
the keyword

DES X'02B9' Symmetric Key Import2 - Allow
wrapping override keywords

PKOAEP2 AES (Rel. 4.2 or later) X'00FD' Symmetric Key Import2 -
AES,PKOAEP2

PKOAEP2 HMAC X'00F4' Symmetric Key Import2 -
HMAC,PKOAEP2

To disallow the import of a key wrapped with a weaker transport key, the
Symmetric Key Import2 - disallow weak import command (offset X'032B') must be
enabled in the active role. This command affects multiple verbs. See Chapter 24,
“Access control points and verbs,” on page 1047.

To receive a warning against the wrapping of a stronger key with a weaker key,
the Warn when weak wrap - Transport keys command (offset X'032C') must be
enabled in the active role. The Symmetric Key Import2 - disallow weak import
command overrides this command.

To disable the wrapping of a key with a weaker master key, the Prohibit weak
wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

To receive a warning when wrapping a key with a weaker master key, enable the
Warn when weak wrap - Master keys command (offset X'0332') in the active role.
The Prohibit weak wrapping - Master keys command overrides this command.

Usage notes
The usage notes for CSNDSYI2.

This is the message layout used to encode the key material exported with the
PKOAEP2 formatting method.

Table 110. PKCS#1 OAEP encoded message layout (PKOAEP2)

Field Size Value

Hash field 32 bytes SHA-256 hash of associated data
section in the source key identifier

Key bit length 2 bytes Variable

Key material length in bytes of the key material
(rounded up to the nearest byte)

Variable

Hash field
The associated data for the HMAC variable length token is hashed using
SHA-256.

Key bit length
A 2-byte key bit length field.

Key material
The key material is padded to the nearest byte with '0' bits.

Symmetric Key Import2 (CSNDSYI2)

368 Common Cryptographic Architecture Application Programmer's Guide

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this verb will fail if the RSA key modulus bit length exceeds
this limit.

Specification of PKA92 with an input NOCV key-encrypting key token is not
supported.

During initialization of a CEX*C, an Environment Identifier (EID) of zero is set in
the coprocessor. This is interpreted by the Symmetric Key Import2 verb to mean
that environment identification checking is to be bypassed. Thus it is possible on a
Linux on Z platform for a key-encrypting key RSA-enciphered at a node (EID) to
be imported at the same node.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDSYI2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDSYI2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber enciphered_key_length,
byte[] enciphered_key,
hikmNativeNumber transport_key_identifier_length,
byte[] transport_key_identifier,
hikmNativeNumber key_name_length,
byte[] key_name,
hikmNativeNumber target_key_identifier_length,
byte[] target_key_identifier);

Unique Key Derive (CSNBUKD)
The Unique Key Derive verb performs the key derivation process as defined in
ANSI X9.24 Part 1.

The process derives keys from two values: the base derivation key and the
derivation data:
v The base derivation key is the key from which the others are derived. This must

be a KEYGENKY with the UKPT bit (bit 18) set to 1 in the Control Vector.
v The derivation data is used to make the derived key specific to a particular

device and to a specific transaction from that device. The derivation data, called
the Current Key Serial Number (CKSN), is the 80-bit concatenation of the
device's 59-bit Initial Key Serial Number value and the 21-bit value of the
current encryption counter which the device increments for each new
transaction.

The Initial Pin Encryption Key (IPEK) is derived from the base derivation key and
the initial derivation data. Specify the K3IPEK rule array keyword to return the
IPEK.

Rule array keywords determine the types and number of keys derived on a
particular call. See the Rule Array parameter description for more information.

Symmetric Key Import2 (CSNDSYI2)

Chapter 8. AES, DES, and HMAC cryptographic keys 369

Output keys are wrapped using the mode configured as the default wrapping
mode, either enhanced wrapping mode (WRAP-ENH) or original ECB wrapping
mode (WRAP-ECB).

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBUKD.

CSNBUKD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
base_derivation_key_identifier_length,
base_derivation_key_identifier,
derivation_data_length,
derivation_data,
generated_key_identifier1_length,
generated_key_identifier1,
generated_key_identifier2_length,
generated_key_identifier2,
generated_key_identifier3_length,
generated_key_identifier3,
transport_key_identifier_length,
transport_key_identifier,
reserved1_length,
reserved1,
reserved2_length,
reserved2,
reserved3_length,
reserved3,
reserved4_length,
reserved4,
reserved5_length,
reserved5)

Parameters
The parameter definitions for CSNBUKD.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. Values are in the range 1 - 5.

rule_array

Direction: Input
Type: String array

An array of 8-byte keywords providing the processing control information to
the verb. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with

Unique Key Derive (CSNBUKD)

370 Common Cryptographic Architecture Application Programmer's Guide

|

blanks. The rule_array keywords are described in Table 111.

Table 111. Keywords for Unique Key Derive control information

Keyword Description

Algorithm (One, optional. The default is DES.)

DES Specifies that the keys to be generated are DES (Triple DES) keys. All input skeleton tokens
must be DES tokens and all generated output tokens are DES tokens.

Token output type (One, required for K3IPEK.)

TDES-TOK Specifies that the output IPEK should be wrapped by the TDES transport key and returned
in an external TDES token.

TR31-TOK Specifies that the output IPEK should be wrapped by the TDES transport key and returned
in a TR-31 key block.

Key wrapping method (One, optional. The default is USECONFG.) The access control point Unique Key Derive –
Override Default Wrapping Method must be enabled to specify these keywords.

USECONFG Specifies to wrap the key using the configuration setting for the default wrapping method.
The default wrapping method configuration setting may be changed using the TKE. This
keyword is ignored for AES keys.

WRAP-ECB Specifies to wrap the key using the original wrapping method.

WRAP-ENH Specifies to wrap the key using the enhanced wrapping method.

Output key selection keywords (One required, up to 3 can be specified.) Neither the PIN-DATA nor the K3IPEK
keyword can be specified with any other Output Key Selection keywords. Any combination of the other keywords
(K1DATA, K2MAC, and K3PIN) can be specified, enabling a program to produce up to 3 different output keys with
one call.

K1DATA The returned key type for this keyword is a DATA ENCRYPTION key. This is the output
key selection keyword for the generated_key_identifier1_length and
generated_key_identifier1 parameters.

The output value generated_key_identifier1 is created and is a data encryption key. The
skeleton token provided in that parameter on input must be one of the permitted data
encryption key types for this callable service. For valid values see Table 112 on page 375.

K2MAC The returned key type for this keyword is a MAC key. This is the output key selection
keyword for the generated_key_identifier2_length and generated_key_identifier2
parameters.

The output value generated_key_identifier2 is created and is a MAC key. The skeleton
token provided in that parameter on input must be one of the permitted MAC key types
for this callable service. For valid values, see Table 112 on page 375.

K3PIN The returned key type for this keyword is a PIN key. This is an output key selection
keyword for the generated_key_identifier3_length and generated_key_identifier3
parameters.

The output value generated_key_identifier3 is created and is a PIN key. The skeleton
token provided in that parameter on input must be one of the permitted PIN key types for
this callable service. For valid values see Table 112 on page 375.

K3IPEK The returned key for this keyword is the IPEK. This is an output key selection keyword for
the generated_key_identifier3_length and generated_key_identifier3 parameters.

The output value generated_key_identifier3 will be created and will be the initial PIN
encryption key wrapped by the TDES transport key and returned in an external symmetric
token or TR-31 key block as indicated by the token output type keyword. The skeleton
token provided in that parameter on input must be one of the permitted PIN key types for
this callable service. For valid values see Table 112 on page 375.

This keyword may not be combined with any other output key selection keyword.

Unique Key Derive (CSNBUKD)

Chapter 8. AES, DES, and HMAC cryptographic keys 371

Table 111. Keywords for Unique Key Derive control information (continued)

Keyword Description

PIN-DATA The returned key type for this keyword is a PIN key, which is returned in a DATA key
token. This is an output key selection keyword for the generated_key_identifier3_length
and generated_key_identifier3 parameters.

The output value generated_key_identifier3 is created and will be a DATA key. The
skeleton token provided in that parameter on input must be one of the permitted "PIN key
with rule keyword PIN-DATA" key types for this callable service. For valid values, see
Table 112 on page 375.

To use this option:

v Control Vector bit 61 (Not-CCA) is set to a B'1'.

v Access control point Unique Key Derive – Allow PIN-DATA processing must be enabled.

base_derivation_key_identifier_length

Direction: Input
Type: Integer

Length of the base_derivation_key_identifier parameter in bytes. This value
must be 64.

base_derivation_key_identifier

Direction: Input/Output
Type: String

The base derivation key is the key from which the operational keys are derived
using the DUKPT algorithms defined in ANSI X9.24 Part 1. The base
derivation key must be an internal key token or the label of an internal key
token containing a double-length KEYGENKY key with the UKPT bit (bit 18)
set to B'1' in the control vector.

derivation_data_length

Direction: Input
Type: Integer

Length of the derivation_data parameter in bytes. This value must be 10.

derivation_data

Direction: Input
Type: String

The derivation data is an 80-bit (10-byte) string that contains the Current Key
Serial Number (CKSN) of the device concatenated with the 21-bit value of the
current Encryption Counter which the device increments for each new
transaction.

generated_key_identifier1_length

Direction: Input/Output
Type: Integer

Length of the generated_key_identifier1 parameter in bytes. Values are 0 and
64.

generated_key_identifier1

Unique Key Derive (CSNBUKD)

372 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input/Output
Type: String

On input, this parameter must be a DES Data encryption key token or a
skeleton token of a DES Data encryption key, with one of the Data encryption
control vectors as shown in Table 112 on page 375.

On output, generated_key_identifier1 contains the data encryption token
with the derived data encryption key.

generated_key_identifier2_length

Direction: Input/Output
Type: Integer

Length of the generated_key_identifier2 parameter in bytes. Values are 0 and
64.

generated_key_identifier2

Direction: Input/Output
Type: String

On input, this must be a DES MAC key token or a skeleton token of a DES
MAC key, with one of the MAC control vectors as shown in Table 112 on page
375.

On output, generated_key_identifier2 contains the MAC token with the
derived MAC key.

generated_key_identifier3_length

Direction: Input/Output
Type: Integer

Length of the generated_key_identifier3 parameter in bytes. When the rule
array keyword is K3IPEK, the length must be at least 64 bytes. Otherwise,
values are 0 and 64.

generated_key_identifier3

Direction: Input/Output
Type: String

The input and output values for this parameter depends on the keyword
specified in the rule_array parameter. The rule_array keyword for the
generation_key_identifier3 parameter can be either PIN-DATA or K3PIN.
v When rule array keyword is PIN-DATA, input must be a data key token or

skeleton token of a data key with one of the PIN key with rule keyword
PIN-DATA-control-vectors as shown in Table 112 on page 375. On output,
this parameter contains the data token with the derived PIN key.

v When rule array keyword is K3PIN, input must be a DES PIN key token or
a skeleton token of a DES PIN key, with one of the PIN control vectors as
shown in Table 112 on page 375. On output, this parameter contains the PIN
token with the derived PIN key.

v When rule array keyword is K3IPEK, input must be a DES PIN key token or
a skeleton token of a DES PIN key left-justified in the field, with one of the
PIN control vectors as shown in Table 112 on page 375. On output, this
parameter contained the TDES wrapped IPEK in an external symmetric key
token or TR-31 key block.

Unique Key Derive (CSNBUKD)

Chapter 8. AES, DES, and HMAC cryptographic keys 373

transport_key_identifier_length

Direction: Input
Type: Integer

Length of the transport_key_identifier parameter in bytes. If the transport
key identifier is not used, the length must be 0. Otherwise, the length must be
64.

transport_key_identifier

Direction: Input/Output
Type: String

If the K3IPEK keyword is specified, the transport_key_identifier contains the
label or key token for the key encrypting key to be used to wrap the IPEK. The
transport key must be a DES EXPORTER KEK. Otherwise this field is ignored.

reserved1_length

Direction: Input
Type: Integer

This parameter must be zero.

reserved1

Direction: Ignored
Type: String

This parameter is ignored.

reserved2_length

Direction: Input
Type: Integer

This parameter must be zero.

reserved2

Direction: Ignored
Type: String

This parameter is ignored.

reserved3_length

Direction: Input
Type: Integer

This parameter must be zero.

reserved3

Direction: Ignored
Type: String

This parameter is ignored.

reserved4_length

Direction: Input
Type: Integer

Unique Key Derive (CSNBUKD)

374 Common Cryptographic Architecture Application Programmer's Guide

This parameter must be zero.

reserved4

Direction: Ignored
Type: String

This parameter is ignored.

reserved5_length

Direction: Input
Type: Integer

This parameter must be zero.

reserved5

Direction: Ignored
Type: String

This parameter is ignored.

Restrictions
The restrictions for CSNBUKD.

Table 112 shows the valid skeleton tokens depending on the key type to be
derived.

Table 112. Valid Control Vectors for Derived Keys.

Key to be derived Supported key types in the skeleton token

Data encryption
key

CIPHER 00 03 71 00 03 41 00 00 00 03 71 00 03 21 00 00

ENCIPHER 00 03 60 00 03 41 00 00 00 03 60 00 03 21 00 00

DECIPHER 00 03 50 00 03 41 00 00 00 03 50 00 03 21 00 00

Message
authentication
code(MAC)

MAC 00 05 4D 00 03 41 00 00 00 05 4D 00 03 21 00 00

MACVER 00 05 44 00 03 41 00 00 00 05 44 00 03 21 00 00

PIN key IPINENC 00 21 5F 00 03 41 00 00 00 21 5F 00 03 21 00 00

OPINENC 00 24 77 00 03 41 00 00 00 24 77 00 03 21 00 00

PIN key with rule
keyword
PIN-DATA

DATA PIN 00 00 7D 00 03 41 00 00 00 00 7D 00 03 21 00 00

Note that the following bits of the control vector are not checked and may have a
value of either 0 or 1:
v Bit 17 - Export control
v Bit 56 – Enhanced wrapping control
v Bit 57 – TR-31 export control
v Bits 4 and 5 – UDX

Additional control vector bit that is not checked for PIN key with rule keyword
PIN-DATA:
v Bit 61 - Not-CCA

Unique Key Derive (CSNBUKD)

Chapter 8. AES, DES, and HMAC cryptographic keys 375

Required commands
The required commands for CSNBUKD.

The Unique Key Derive verb requires the Unique Key Derive command (offset
X'01C8') to be enabled in the active role.

In addition, these commands are required to be enabled in the active role,
depending on the rule-array keyword or keywords:

Table 113. Required commands for the Symmetric Key Export with Data verb

Rule-array keyword Offset Command

K3IPEK X'0335' Unique Key Derive - K3IPEK

PIN-DATA X'01C9' Unique Key Derive - Allow PIN-DATA processing

WRAP-ECB or WRAP-ENH and
default key-wrapping
method setting does not
match keyword

X'01CA' Unique Key Derive - Override default wrapping

The following access control points control the use of weak transport keys:
v To disallow the import of a key wrapped with a weaker transport key, the

Symmetric Key Import2 - disallow weak import command (offset X'032B') must
be enabled in the active role.

v To receive a warning against the wrapping of a key with a weaker key, the Warn
when weak wrap - Transport keys command (offset X'032C') must be enabled in
the active role. The Symmetric Key Import2 - disallow weak import command
overrides this command.

The following access control points control the use of weak master keys:
v To disable the wrapping of a key with a weaker master key, the Prohibit weak

wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

v To receive a warning when wrapping a key with a weaker master key, enable
the Warn when weak wrap - Master Keys command (offset X'0332') in the active
role. The Prohibit weak wrapping - Master keys command overrides this
command.

Usage notes
The usage notes for CSNBUKD.

Table 114 indicates the variants used for each output key type to be derived.

Table 114. Derivation variants

Key type
DUKPT derivation
variant DUKPT key usage description

IPINENC or OPINENC
PIN key (using PIN-DATA
rule array keyword)

00000000000000FF
00000000000000FF

PIN Encryption

MAC 000000000000FF00
000000000000FF00

MAC, request or both ways

MACVER 00000000FF000000
00000000FF000000

MAC, response only

Unique Key Derive (CSNBUKD)

376 Common Cryptographic Architecture Application Programmer's Guide

Table 114. Derivation variants (continued)

Key type
DUKPT derivation
variant DUKPT key usage description

CIPHER ENCIPHER 0000000000FF0000
0000000000FF0000

Data Encryption, request or both ways

DECIPHER 000000FF00000000
000000FF00000000

Data Encryption, response only

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBUKDJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBUKDJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber base_derivation_key_identifier_length,
byte[] base_derivation_key_identifier,
hikmNativeNumber derivation_data_length,
byte[] derivation_data,
hikmNativeNumber generated_key_identifier1_length,
byte[] generated_key_identifier1,
hikmNativeNumber generated_key_identifer2_length,
byte[] generated_key_identifier2,
hikmNativeNumber generated_key_identifier3_length,
byte[] generated_key_identifier3,
hikmNativeNumber transport_key_identifier_length,
byte[] transport_key_identifier,
hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2,
hikmNativeNumber reserved3_length,
byte[] reserved3,
hikmNativeNumber reserved4_length,
byte[] reserved4,
hikmNativeNumber reserved5_length,
byte[] reserved5);

Unique Key Derive (CSNBUKD)

Chapter 8. AES, DES, and HMAC cryptographic keys 377

Unique Key Derive (CSNBUKD)

378 Common Cryptographic Architecture Application Programmer's Guide

Chapter 9. Protecting data

Use CCA to protect sensitive data stored on your system, sent between systems, or
stored off your system on magnetic tape.

To protect data, encipher it under a key. When you want to read the data, decipher
it from ciphertext to plaintext form.

CCA provides Encipher and Decipher verbs to perform these functions. If you use
a key to encipher data, you must use the same key to decipher the data. The
Encipher and Decipher verbs use encrypted keys as input. You can also use clear
keys, indirectly, by first using the Clear Key Import verb and then using the
Encipher and Decipher verbs.

This topic describes the following verbs used for protecting data using DES or
AES:
v “Decipher (CSNBDEC)” on page 381
v “Encipher (CSNBENC)” on page 385
v “Symmetric Algorithm Decipher (CSNBSAD)” on page 390
v “Symmetric Algorithm Encipher (CSNBSAE)” on page 397
v “Cipher Text Translate2 (CSNBCTT2)” on page 404

Modes of operation
Different algorithms are used to encipher or decipher DES data or keys and AES
data or keys.

To encipher or decipher DES data or keys, CCA uses the U.S. National Institute of
Standards and Technology (NIST) Data Encryption Standard (DES) algorithm, with
single-length, double-length, or triple-length keys.

To encipher or decipher AES data or keys, CCA uses the U.S. National Institute of
Standards and Technology (NIST) Advanced Encryption Standard (AES) algorithm,
with 16-byte, 24-byte or 32-byte keys.

The Encipher and Decipher verbs operate in DES CBC (Cipher Block Chaining)
mode.

Cipher Block Chaining (CBC) mode
The CBC mode uses an initial chaining vector (ICV) in its processing.

The CBC mode processes blocks of data only in exact multiples of the blocksize.
The ICV is exclusive ORed with the first block of plaintext prior to the encryption
step. The block of ciphertext just produced is exclusive-ORed with the next block
of plaintext, and so on. You must use the same ICV to decipher the data. This
disguises any pattern that may exist in the plaintext. CBC mode is the default for
encrypting and decrypting data using the Encipher and Decipher verbs.
“Ciphering methods” on page 1026 describes the cipher processing rules in detail.

© Copyright IBM Corp. 2007, 2018 379

Electronic Code Book (ECB) mode
In ECB mode, each block of plaintext is separately enciphered and each block of
the ciphertext is separately deciphered.

In other words, the encipherment or decipherment of a block is totally
independent of other blocks.

Processing rules
You can use different types of processing rules for block chaining.

“Ciphering methods” on page 1026 describes the cipher processing rules in detail.

CCA handles chaining for each block of data, from the first block until the last
complete block of data in each Encipher or Symmetric Algorithm Encipher call.
There are different types of processing rules you can choose for block chaining:

ANSI X9.23
Data is not necessarily in exact multiples of the block size. This processing
rule pads the plaintext so the ciphertext produced is in exact multiples of
the block size.

Cipher block chaining (CBC)
Data must be an exact multiple of the block size, and output will have the
same length.

Cryptographic Unit Support Program (CUSP)
CBC mode (cipher block chaining) that is compatible with IBM’s CUSP and
PCF products. The data need not be in exact multiples of the block size.
The ciphertext is the same length as the plaintext.

Electronic Code Book (ECB)
The data length must be a multiple of the block size. See “Electronic Code
Book (ECB) mode.”

Information Protection System (IPS)
CBC mode that is compatible with IBM’s IPS product. The data need not
be in exact multiples of the block size. The ciphertext is the same length as
the plaintext.

PKCS-PAD
The data is padded on the right with between one and 16 bytes of pad
characters, making ciphertext a multiple of the block size.

The resulting chaining value (except for ECB mode), after an Encipher or
Symmetric Algorithm Encipher call, is known as an output chaining vector (OCV).
When there are multiple cipher requests, the application can pass the OCV from
the previous Encipher or Symmetric Algorithm Encipher call, as the input chaining
vector (ICV) in the next Encipher or Symmetric Algorithm Encipher call. This
produces chaining between successive calls, which is known as record chaining.
CCA provides the ICV selection keyword CONTINUE in the rule_array parameter
used to select record chaining with the CBC processing rule.

Triple DES encryption
Triple DES encryption uses a triple-length DATA key comprised of three 8-byte
DES keys to encipher eight bytes of data.

To encipher the data it uses the following method:

380 Common Cryptographic Architecture Application Programmer's Guide

v Encipher the data using the first key
v Decipher the result using the second key
v Encipher the second result using the third key

The procedure is reversed to decipher data that has been triple-DES enciphered:
v Decipher the data using the third key
v Encipher the result using the second key
v Decipher the second result using the first key

A variation of the triple-DES algorithm supports the use of a double-length DATA
key comprised of two 8-byte DATA keys. In this method, the first 8-byte key is
reused in the last encipherment step.

Due to export regulations, triple-DES encryption might not be available on your
processor.

Decipher (CSNBDEC)
Use the Decipher verb to decipher data using the DES cipher block chaining mode.

CCA supports the following processing rules to decipher data. You choose the type
of processing rule that the Decipher verb should use for block chaining.

ANSI X9.23
For cipher block chaining. The ciphertext must be an exact multiple of
eight bytes, but the plaintext will be between 1 and 8 bytes shorter than
the ciphertext. The text_length will also be reduced to show the original
length of the plaintext.

Cipher Block Chaining (CBC)
The ciphertext must be an exact multiple of eight bytes and the plaintext
will have the same length.

Cryptographic Unit Support Program (CUSP)
CBC mode (cipher block chaining) that is compatible with IBM’s CUSP and
PCF products. The data need not be in exact multiples of eight bytes. The
ciphertext is the same length as the plaintext.

Information Protection System (IPS)
CBC mode (cipher block chaining) that is compatible with IBM’s IPS
product. The data need not be in exact multiples of eight bytes. The
ciphertext is the same length as the plaintext.

The cipher block chaining (CBC) mode uses an initial chaining value (ICV) in its
processing. The first eight bytes of ciphertext is deciphered and then the ICV is
XORed with the resulting eight bytes of data to form the first 8-byte block of
plaintext. Thereafter, the 8-byte block of ciphertext is deciphered and XORed with
the previous 8-byte block of ciphertext until all the ciphertext is deciphered.

The selection between single-DES decryption mode and triple-DES decryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES decryption is performed. If a
double-length or triple-length key is supplied, triple-DES decryption is performed.

A different ICV could be passed on each call to the Decipher verb. However, the
same ICV that was used in the corresponding Encipher verb must be passed.

Chapter 9. Protecting data 381

Short blocks are text lengths of between one and seven bytes. A short block can be
the only block. Trailing short blocks are blocks of between one and seven bytes
that follow an exact multiple of eight bytes. For example, if the text length is 21,
there are two 8-byte blocks and a trailing short block of five bytes. Because the
DES processes text only in exact multiples of eight bytes, some special processing
is required to decipher such short blocks.

These methods of treating short blocks and trailing short blocks do not increase the
length of the ciphertext compared to the length of the plaintext. If the plaintext
was padded during encipherment, the length of the ciphertext will always be an
exact multiple of eight bytes.

CCA supports the ANSI X9.23 padding method.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Host CPU acceleration: CPACF
Only keys with a key type of DATA can be used successfully with the CPACF
exploitation layer through this verb.

Specifically, a DATA key has a CV (Control Vector) of all X'00' bytes for all active
bytes of the CV (eight bytes for 8-byte DES keys, 16 bytes for 16-byte DES keys,
and 16 bytes for 24-byte DES keys).

For details about CPACF, see “CPACF support” on page 14.

Format
The format of CSNBDEC.

CSNBDEC(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
cipher_text,
initialization_vector,
rule_array_count,
rule_array,
chaining_vector,
clear_text)

Parameters
The parameters for CSNBDEC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_identifier

Direction: Input/Output
Type: String

A 64-byte string that is the internal key token containing the data-encrypting
key or the label of a DES key storage record containing a data-encrypting key
to be used for deciphering the data. If the key token or key label contains a

Decipher (CSNBDEC)

382 Common Cryptographic Architecture Application Programmer's Guide

|

single-length key, single-DES decryption is performed. If the key token or key
label contains a double-length or triple-length key, triple-DES decryption is
performed.

Double length CIPHER and DECIPHER keys are also supported.

text_length

Direction: Input/Output
Type: Integer

On entry, you supply the length of the ciphertext. The maximum length of text
is 214,783,647 bytes. A zero value for the text_length parameter is not valid. If
the returned deciphered text (clear_text parameter) is a different length because
of the removal of padding bytes, the value is updated to the length of the
plaintext.

The application program passes the length of the ciphertext to the verb. The
verb returns the length of the plaintext to your application program.

cipher_text

Direction: Input
Type: String

The text to be deciphered.

initialization_vector

Direction: Input
Type: String

The 8-byte supplied string for the cipher block chaining. The first block of the
ciphertext is deciphered and XORed with the initial chaining vector (ICV) to
get the first block of cleartext. The input block is the next ICV. To decipher the
data, you must use the same ICV used when you enciphered the data.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

rule_array

Direction: Input
Type: String array

An array of 8-byte keywords providing the processing control information. The
array is positional. The first keyword in the array is the processing rule. You
choose the processing rule you want the verb to use for deciphering the data.
The second keyword is the ICV selection keyword. The third keyword (or the
second if the ICV selection keyword is allowed to default) is the encryption
algorithm to use. The rule_array keywords are described in Table 115.

Table 115. Keywords for Decipher control information

Keyword Description

Processing Rule (One, required)

Decipher (CSNBDEC)

Chapter 9. Protecting data 383

Table 115. Keywords for Decipher control information (continued)

Keyword Description

CBC Performs ANSI X3.102 cipher block chaining. The data must be a multiple of eight bytes. An OCV is
produced and placed in the chaining_vector parameter. If the ICV selection keyword CONTINUE is
specified, the CBC OCV from the previous call is used as the ICV for this call.

CUSP Performs Cryptographic Unit Support Program (CUSP) cipher block chaining.

IPS Performs Information Protection System (IPS) cipher block chaining.

X9.23 Deciphers with cipher block chaining and text length reduced to the original value. This is compatible
with the requirements in ANSI standard X9.23. The ciphertext length must be an exact multiple of
eight bytes. Padding is removed from the plaintext.

ICV Selection (One, optional)

CONTINUE This specifies taking the initialization vector from the output chaining vector (OCV) contained in the
work area to which the chaining_vector parameter points. CONTINUE is valid only for the CBC
processing rule.

INITIAL This specifies taking the initialization vector from the initialization_vector parameter. INITIAL is the
default value.

Encryption algorithm (Optional)

DES This specifies using the data encryption standard and ignoring the token marking.

“Ciphering methods” on page 1026 describes the cipher processing rules in
detail.

chaining_vector

Direction: Input/Output
Type: String

An 18-byte field CCA uses as a system work area. Your application program
must not change the data in this string. The chaining vector holds the output
chaining vector (OCV) from the caller. The OCV is the first eight bytes in the
18-byte string.

The direction is Output if the ICV selection keyword of the rule_array
parameter is INITIAL. The direction is Input/Output if the ICV selection
keyword of the rule_array parameter is CONTINUE.

clear_text

Direction: Output
Type: String

The field where the verb returns the deciphered text.

Restrictions
The restrictions for CSNBDEC.

This verb fails if the key token contains double or triple-length keys and triple-DES
is not enabled.

Required commands
The required commands for CSNBDEC.

This verb requires the Decipher - DES command (offset X'000F') to be enabled in
the active role.

Decipher (CSNBDEC)

384 Common Cryptographic Architecture Application Programmer's Guide

Usage notes
The usage notes for CSNBDEC.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDECJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDECJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_identifier,
hikmNativeNumber text_length,
byte[] cipher_text,
byte[] initialization_vector,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] chaining_vector,
byte[] clear_text);

Encipher (CSNBENC)
Use the Encipher verb to encipher data using the DES cipher block chaining mode.

CCA supports the following processing rules to encipher data. You choose the type
of processing rule that the Encipher verb should use for the block chaining.

Cipher block chaining (CBC)
In exact multiples of eight bytes.

Cryptographic Unit Support Program (CUSP)
CBC mode (cipher block chaining) that is compatible with IBM’s CUSP and
PCF products. The data need not be in exact multiples of eight bytes. The
ciphertext is the same length as the plaintext.

Information Protection System (IPS)
CBC mode (cipher block chaining) that is compatible with IBM’s IPS
product. The data need not be in exact multiples of eight bytes. The
ciphertext is the same length as the plaintext.

ANSI X9.23
For block chaining not necessarily in exact multiples of eight bytes. This
process rule pads the plaintext so that ciphertext produced is an exact
multiple of eight bytes.

For more information about the processing rules, see Table 116 on page 388 and
“Ciphering methods” on page 1026.

The cipher block chaining (CBC) mode of operation uses an initial chaining vector
(ICV) in its processing. The ICV is XORed with the first eight bytes of plaintext
before the encryption step and thereafter, the 8-byte block of ciphertext just
produced is XORed with the next 8-byte block of plaintext and so on. This
disguises any pattern that might exist in the plaintext.

Decipher (CSNBDEC)

Chapter 9. Protecting data 385

The selection between single-DES encryption mode and triple-DES encryption
mode is controlled by the length of the key supplied in the key_identifier
parameter. If a single-length key is supplied, single-DES encryption is performed.
If a double-length or triple-length key is supplied, triple-DES encryption is
performed.

To nullify the CBC effect on the first 8-byte block, supply eight bytes of zero.
However, the ICV might require zeros.

Cipher block chaining also produces a resulting chaining value called the output
chaining vector (OCV). The application can pass the OCV as the ICV in the next
encipher call. This results in record chaining.

Note that the OCV that results is the same, whether an Encipher or a Decipher
verb was invoked, assuming the same text, ICV, and key were used.

Short blocks are text lengths of between one and seven bytes. A short block can be
the only block. Trailing short blocks are blocks of between one and seven bytes
that follow an exact multiple of eight bytes. For example, if the text length is 21,
there are two 8-byte blocks, and a trailing short block of five bytes.

An alternative method is to pad the plaintext and produce a ciphertext that is
longer than the plaintext. The plaintext can be padded with up to eight bytes using
one of several padding methods. This padding produces a ciphertext that is an
exact multiple of eight bytes in length.

If the cleartext is already a multiple of eight, the ciphertext can be created using
any processing rule.

Because of padding, the returned ciphertext length is longer than the provided
plaintext. Therefore, the text_length parameter is modified. The returned
ciphertext field should be eight bytes longer than the length of the plaintext to
accommodate the maximum amount of padding.

Attention: If you lose the data-encrypting key under which the data (plaintext)
is enciphered, the data enciphered under that key (ciphertext) cannot be recovered.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Host CPU acceleration: CPACF
Only keys with a key type of DATA can be used successfully with the CPACF
exploitation layer through this verb.

Specifically, a DATA key has a CV (Control Vector) of all X'00' bytes for all active
bytes of the CV (eight bytes for 8-byte DES keys, 16 bytes for 16-byte DES keys,
and 16 bytes for 24-byte DES keys).

For details about CPACF, see “CPACF support” on page 14.

Encipher (CSNBENC)

386 Common Cryptographic Architecture Application Programmer's Guide

|

Format
The format of CSNBENC.

CSNBENC(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
clear_text,
initialization_vector,
rule_array_count,
rule_array,
pad_character,
chaining_vector,
cipher_text)

Parameters
The parameters for CSNBENC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_identifier

Direction: Input/Output
Type: String

A 64-byte string that is the internal key token containing the data-encrypting
key or the label of a DES key storage record containing the data-encrypting
key, to be used for encrypting the data. If the key token or key label contains a
single-length key, single-DES encryption is performed. If the key token or key
label contains a double-length or triple-length key, triple-DES encryption is
performed.

Single and double-length CIPHER and ENCIPHER keys are also supported.

text_length

Direction: Input/Output
Type: Integer

On entry, the length of the plaintext (clear_text parameter) you supply. The
maximum length of text is 214,783,647 bytes. A zero value for the text_length
parameter is not valid. If the returned enciphered text (cipher_text parameter) is
a different length because of the addition of padding bytes, the value is
updated to the length of the ciphertext.

The application program passes the length of the plaintext to the verb. This
verb returns the length of the ciphertext to the application program.

clear_text

Direction: Input
Type: String

The text that is to be enciphered.

initialization_vector

Direction: Input

Encipher (CSNBENC)

Chapter 9. Protecting data 387

Type: String

The 8-byte supplied string for the cipher block chaining. The first eight bytes
(or less) block of the data is XORed with the ICV and then enciphered. The
input block is enciphered and the next ICV is created. You must use the same
ICV to decipher the data.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

rule_array

Direction: Input
Type: String array

An array of 8-byte keywords providing the processing control information. The
array is positional. The first keyword in the array is the processing rule. You
choose the processing rule you want the verb to use for enciphering the data.
The second keyword is the ICV selection keyword. The third keyword (or the
second if the ICV selection keyword is allowed to default to INITIAL) is the
encryption algorithm to use. The rule_array keywords are described in
Table 116.

Table 116. Keywords for Encipher control information

Keyword Description

Processing Rule (1, required)

CBC Performs ANSI X3.102 cipher block chaining. The data must be a multiple of 8 bytes. An OCV is
produced and placed in the chaining_vector parameter. If the ICV selection keyword CONTINUE is
specified, the CBC OCV from the previous call is used as the ICV for this call.

CUSP Performs Cryptographic Unit Support Program (CUSP) cipher block chaining.

IPS Performs Information Protection System (IPS) cipher block chaining.

X9.23 Performs cipher block chaining with 1 - 8 bytes of padding. This is compatible with the requirements
in ANSI X9.23. If the data is not in exact multiples of eight bytes, X9.23 pads the plaintext so the
ciphertext produced is an exact multiple of 8 bytes. The plaintext is padded to the next multiple eight
bytes, even if 8 bytes are added. An OCV is produced.

ICV Selection (1, optional)

CONTINUE Specifies to take the initialization vector from the output chaining vector (OCV) contained in the work
area to which the chaining_vector parameter points. CONTINUE is valid only for the CBC processing
rule.

INITIAL Specifies to take the initialization vector from the initialization_vector parameter. INITIAL is the
default value.

Encryption Algorithm (Optional)

DES Specifies to use the data encryption standard and to ignore the token marking.

“Ciphering methods” on page 1026 describes the cipher processing rules in
detail.

pad_character

Direction: Input
Type: Integer

Encipher (CSNBENC)

388 Common Cryptographic Architecture Application Programmer's Guide

An integer between 0 and 255 that is used as a padding character for the X9.23
process rule (rule_array parameter).

chaining_vector

Direction: Input/Output
Type: String

An 18-byte field CCA uses as a system work area. Your application program
must not change the data in this string. The chaining vector holds the output
chaining vector (OCV) from the caller. The OCV is the first eight bytes in the
18-byte string.

The direction is Output if the ICV selection keyword of the rule_array
parameter is INITIAL.

The direction is Input/Output if the ICV selection keyword of the rule_array
parameter is CONTINUE.

cipher_text

Direction: Output
Type: String

The enciphered text the verb returns. The length of the ciphertext is returned
in the text_length parameter. The cipher_text could be eight bytes longer than
the length of the clear_text field because of the padding that is required for
some processing rules.

Restrictions
The restrictions for CSNBENC.

This verb will fail if the key token contains double-length or triple-length keys and
triple-DES is not enabled.

Required commands
The required commands for CSNBENC.

This verb requires the Encipher - DES command (offset X'000E') to be enabled in
the active role.

Usage notes
The usage notes for CSNBENC.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBENCJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBENCJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_identifier,

Encipher (CSNBENC)

Chapter 9. Protecting data 389

hikmNativeNumber text_length,
byte[] clear_text,
byte[] initialization_vector,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber pad_character,
byte[] chaining_vector,
byte[] cipher_text);

Symmetric Algorithm Decipher (CSNBSAD)
Use the Symmetric Algorithm Decipher verb to decipher data with an Advanced
Encryption Standard (AES) algorithm.

Data can be deciphered in either Cipher Block Chaining (CBC) mode with or
without padding, or in Electronic Code Book (ECB) mode. Beginning with Release
5.2, data can be deciphered in Galois/Counter Mode (GCM). Also see “Symmetric
Algorithm Encipher (CSNBSAE)” on page 397.

CCA supports the following processing rules to decipher data. You choose the type
of processing rule that the verb should use for block chaining.

Cipher Block Chaining (CBC)
The plaintext must be an exact multiple of eight bytes, and the ciphertext
will have the same length.

Electronic Code Book (ECB)
The plaintext length must be a multiple of the block size.

Galois/Counter Mode (GCM)
The plaintext can be deciphered in Galois/Counter Mode (GCM). For more
information on GCM, read NIST SP 800-38D Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC,
November 2007. Available at http://csrc.nist.gov/publications/nistpubs/
800-38D/SP-800-38D.pdf.

Public Key Cryptography Standards Pad (PKCS-PAD)
The plaintext was padded on the right with 1 - 16 bytes of pad characters,
making the padded text a multiple of the block size.

The AES key used to decipher the data can either be 16, 24, or 32 bytes (128, 192,
or 256 bits) in length. The key can be supplied to the verb in any of three forms:
1. A cleartext key consisting of only the key bytes, not contained in a key token.
2. A cleartext key contained in an internal fixed or variable length AES key-token.
3. An encrypted key contained in an internal fixed or variable length AES

key-token, where the key is wrapped (encrypted) with the AES master key.

To use this verb, specify:
v The rule_array parameter:

1. The algorithm identifier keyword AES, which is the only symmetric
algorithm currently supported.

2. An optional processing rule using keyword CBC (the default), ECB, GCM,
or PKCS-PAD, which selects the decryption mode.

3. An optional key rule using the keyword KEY-CLR (the default) or
KEYIDENT, which selects whether the key_identifier parameter points to a

Encipher (CSNBENC)

390 Common Cryptographic Architecture Application Programmer's Guide

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

16-byte, 24-byte, or 32-byte clear key, or a key contained in a 64-byte AES
key-token, either in application storage or a key label of such a key in key
storage.

4. For processing rule CBC or ECB, specify an optional ICV (initial chaining
value) selection using the keyword INITIAL (the default). Or use keyword
CONTINUE, which indicates whether it is the first or a subsequent request,
and which parameter points to the initialization vector.
For processing rule GCM, specify an optional ICV keyword ONLY (default).

v For a key rule of KEY-CLR, a key identifier containing a 16-byte, 24-byte, or
32-byte clear key. For a key rule of KEYIDENT, a fixed-length or variable-length
internal AES key-token or the key label of such a key in AES key-storage. The
key token can contain either a clear or enciphered key.
A variable-length AES key-token must have a key type of CIPHER that can be
used for decryption (key-usage field 1 high-order byte = B'x1xx xxxx') and
cannot be used for data translation (KUF1 high-order byte = B'xx0x xxxx'). Also,
for processing rule CBC or PKCS-PAD, key usage must allow the key to be
used for Cipher Block Chaining (KUF2 high-order byte = X'00' or X'FF').
For processing rule ECB, key usage must allow the key to be used for Electronic
Code Book (KUF2 high-order byte = X'01' or X'FF').
For processing rule GCM, the key usage must allow the key to be used for
Galois/Counter mode (KUF2 high-order byte = X'04' or X'FF').

v A block size of 16 for the cryptographic algorithm.
v For cipher block chaining, specify either one of these:

1. For an ICV selection of INITIAL, a 16-byte initialization vector of your
choosing and a 32-byte chain data buffer.

2. For an ICV selection of CONTINUE, no initialization vector and the 32-byte
chain data buffer from the output of the previous chained call. The electronic
code book algorithm does not use an initialization vector or a chain data
buffer.

3. For an ICV selection of ONLY, an initialization vector greater than 0 and a
maximum of 232 - 1, and a 104-byte chain data buffer.

v The ciphertext to be deciphered.
v A cleartext buffer large enough to receive the deciphered output.

This verb does the following when it deciphers the data:
1. Verifies the AES key-token for keyword KEYIDENT.
2. Verifies that the ciphertext length is a multiple of the block size.
3. Deciphers the input AES key if the key is encrypted (MKVP was present in

token).
4. Deciphers the ciphertext with the AES clear key according to the encryption

mode specified.
5. Removes from 1 - 16 pad characters from the right of the clear data for

keyword PKCS-PAD.
6. Returns the cleartext data and its length.
7. Returns the chain data and its length if keyword ECB is not specified.

CPACF exploitation for CSNBSAD requires fixed-length AES key-tokens with a key
type of DATA or variable-length AES key-tokens of type CIPHER with DECRYPT
key-usage enabled. A fixed-length AES DATA key has a control vector (CV) of all
X'00' bytes for all active bytes of the CV. For details about CPACF, see “CPACF
support” on page 14.

Symmetric Algorithm Decipher (CSNBSAD)

Chapter 9. Protecting data 391

Format
The format of CSNBSAD.

CSNBSAD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data)

Parameters
The parameters for CSNBSAD.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, 3, or 4.

rule_array

Direction: Input
Type: String array

An array of 8-byte keywords providing the processing control information. The
keywords must be left-aligned and padded on the right with space characters.
The rule_array keywords are described in Table 117.

Table 117. Keywords for Symmetric Algorithm Decipher control information

Keyword Description

Decryption algorithm (One required)

AES Specifies use of the Advanced Encryption Standard (AES) as the deciphering algorithm. The block
size for AES is 16 bytes, and the key length is 16, 24, or 32 bytes. AES is the only algorithm currently
supported by this verb.

Processing rule (One, optional)

CBC Performs ANSI X3.102 cipher block chaining. The data must be a multiple of eight bytes. An OCV is
produced and placed in the chaining_vector parameter. If the ICV selection keyword CONTINUE is
specified, the CBC OCV from the previous call is used as the ICV for this call.

Symmetric Algorithm Decipher (CSNBSAD)

392 Common Cryptographic Architecture Application Programmer's Guide

Table 117. Keywords for Symmetric Algorithm Decipher control information (continued)

Keyword Description

ECB Specifies deciphering in Electronic Code Book mode. The ciphertext length must be a multiple of the
block size.

GCM Specifies decryption in Galois/Counter Mode. The ciphertext length must be a multiple of the
algorithm block size and less than or equal to 232 - 1.

PKCS-PAD Specifies that the cleartext was padded on the right with 1 - 16 bytes of pad characters, making the
padded text a multiple of the block size, before the data was enciphered. Each pad character is valued
to the number of pad characters added. The cleartext length must be greater than 0.

The output cleartext is stripped of any pad characters and the cleartext length is 1 - 16 bytes less than
the ciphertext length.

Key rule (One, optional)

KEY-CLR Specifies that the key_identifier parameter points to a cleartext AES key. Only the key value is allowed;
the key is not contained in a key token. This is the default value.

KEYIDENT Specifies that the key_identifier parameter points to an internal AES key-token or the label of an
internal key-token in AES key-storage.

Initial chaining value (ICV) selection (One, optional)

CONTINUE This specifies taking the initialization vector from the output chaining vector (OCV) contained in the
work area to which the chaining_vector parameter points. This keyword is not valid with the ECB or
GCM processing rule keyword.

INITIAL This specifies taking the initialization vector from the initialization_vector parameter. Not valid with
the GCM processing rule keyword. Otherwise this is the default.

ONLY Specifies that this is the only request. The initialization vector is used as input to decipher the block
of data, and must be the same value used to encipher the ciphertext. Only valid with GCM
processing rule keyword. This is the default for GCM.

“Ciphering methods” on page 1026 describes the cipher processing rules in
detail.

key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_identifier variable. This value must be 16, 24, 32, or ≥ 64.

key_identifier

Direction: Input
Type: String

A pointer to a string variable containing either a cleartext AES key or the
internal key-token or a label for an internal key-token record in AES
key-storage. This is the key used to decipher the data pointed to by the
ciphertext parameter.

For rule_array keyword KEY-CLR, a 16-byte, 24-byte, or 32-byte clear AES key
is required. For rule_array keyword KEYIDENT, a fixed-length or a
variable-length internal AES key-token or key label for such a key in AES
key-storage is required.

Symmetric Algorithm Decipher (CSNBSAD)

Chapter 9. Protecting data 393

A variable-length AES key-token must have a key type of CIPHER and must
allow the key to be used for decryption (key-usage field 1 high-order byte =
B'x1xx xxxx'). In addition, the key token must have the following key usage
based on processing rule keyword:
CBC must allow the key to be used for Cipher Block Chaining (KUF2

high-order byte = X'00' or X'FF').
ECB must allow the key to be used for Electronic Code Book (KUF2

high-order byte = X'01' or X'FF').
GCM must allow the key to be used for Galois/Counter mode (KUF2

high-order byte = X'04' or X'FF').

key_parms_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_parms parameter. For processing rule GCM, this value can be 4 or 8 (which
is strongly discouraged), or 12 - 16. Otherwise, this value must be 0.

key_parms

Direction: Input
Type: String

A pointer to a string variable for key-related parameters. For processing rule
GCM, this variable contains the verified authentication tag for the data
identified by the ciphertext parameter and any additional authenticated data
identified by the optional_data parameter. No other usage is currently
defined.

block_size

Direction: Input
Type: Integer

A pointer to an integer variable containing the block size used by the
cryptographic algorithm. This value must be 16.

initialization_vector_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
initialization_vector variable. For cipher block chaining (CBC or
PKCS-PAD) with an INITIAL ICV selection, this value must be 16. For
processing rule GCM, NIST recommends a length of 12, but any length from 1
to a maximum of 232 - 1 can be used. Otherwise, set this value to 0.

initialization_vector

Direction: Input
Type: String

A pointer to a string variable containing the initialization vector for the
INITIAL call to CBC mode decryption, or if the ICV selection is ONLY. It is
not used if the processing rule is ECB or the ICV selection is CONTINUE. The
same initialization vector must have been used to encipher the data.

chain_data_length

Direction: Input/Output

Symmetric Algorithm Decipher (CSNBSAD)

394 Common Cryptographic Architecture Application Programmer's Guide

Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
chain_data variable. On input, set this variable to a value of at least 32 for
CBC mode decryption, 0 for ECB mode encryption, or 104 for GCM mode
decryption.

On output, the variable is updated with the length of the data returned in the
chain_data variable. The chain_data_length parameter must not be changed
by the calling application until chained operations are complete.

chain_data

Direction: Input/Output
Type: String

A pointer to a string variable used as a work area for CBC encipher requests.
This work area is not used for ECB mode decryption or 104 for GCM mode
decryption.

When the verb performs a CBC decipher operation and the ICV selection is
INITIAL, the chain_data variable is an output-only buffer that receives data
used as input for deciphering the next part of the input data, if any.

When the ICV selection is CONTINUE, the chain_data variable is both an
input and output buffer.

When the ICV selection is ONLY, the chain_data variable is an output-only
buffer that receives data in the event that the amount of ciphertext is greater
than the host code can send to the coprocessor in a single call.

The application must not change any intermediate data in this string.

ciphertext_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
ciphertext variable. The ciphertext_length value must be a multiple of the
algorithm block size. For processing rule GCM, the value can be a minimum of
0 up to a maximum of 232 - 1, otherwise the value must not be 0. If PKCS-PAD
is specified, set the output cleartext_length variable from 1 - 16 bytes less
than the ciphertext_length value.

Note: Do not make the ciphertext_length and cleartext_length parameters
point to the same variable.

ciphertext

Direction: Input
Type: String

A pointer to a string variable containing the data to be deciphered, including
any pad bytes.

cleartext_length

Direction: Input/Output
Type: Integer

On input, this parameter is a pointer to an integer variable containing the
number of bytes of data in the cleartext variable. On output, this variable is
updated to contain the actual length of text output in the cleartext variable. If

Symmetric Algorithm Decipher (CSNBSAD)

Chapter 9. Protecting data 395

PKCS-PAD is specified, the cleartext value is updated with 1 - 16 bytes of data
less than the ciphertext_length value.

cleartext

Direction: Input/Output
Type: String

A pointer to a string variable used to contain the data to be deciphered,
excluding any pad bytes.

optional_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
optional_data variable. For processing rule GCM, set this value to a minimum
of 0 up to a maximum of 232 - 1, otherwise set this value to 0.

optional_data

Direction: Input
Type: String

A pointer to a string variable containing optional data for the decryption. For
processing rule GCM, this parameter identifies any additional authenticated
data (AAD). No other usage is currently defined.

Restrictions
The restrictions for CSNBSAD.

None.

Required commands
The required commands for CSNBSAD.

The Symmetric Algorithm Decipher verb requires the command Symmetric
Algorithm Decipher - secure AES keys (offset X'012B') to be enabled in the active
role. The verb also requires the command shown in the following table to be
enabled in the active role based on rule-array keyword:

Rule-array keyword Offset Command

GCM X'01CE' Symmetric Algorithm Decipher - AES GCM

Usage notes
The usage notes for CSNBSAD.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBSADJ.

See “Building Java applications using the CCA JNI” on page 28.

Symmetric Algorithm Decipher (CSNBSAD)

396 Common Cryptographic Architecture Application Programmer's Guide

Format
public native void CSNBSADJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length,
byte[] key_identifier,
hikmNativeNumber key_parms_length,
byte[] key_parms,
hikmNativeNumber block_size,
hikmNativeNumber initialization_vector_length,
byte[] initialization_vector,
hikmNativeNumber chain_data_length,
byte[] chain_data,
hikmNativeNumber cipher_text_length,
byte[] cipher_text,
hikmNativeNumber clear_text_length,
byte[] clear_text,
hikmNativeNumber optional_data_length,
byte[] optional_data);

Symmetric Algorithm Encipher (CSNBSAE)
Use the Symmetric Algorithm Encipher verb to encipher data using the AES
algorithm.

CCA supports the following processing rules to encipher data. You choose the type
of processing rule that the verb should use for block chaining.

Cipher Block Chaining (CBC)
The plaintext must be an exact multiple of eight bytes, and the ciphertext
will have the same length.

Electronic Code Book (ECB)
The plaintext length must be a multiple of the block size.

Galois/Counter Mode (GCM)
The plaintext can be enciphered in Galois/Counter Mode (GCM). See also
“Symmetric Algorithm Decipher (CSNBSAD)” on page 390. For more
information on GCM, read NIST SP 800-38D Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC,
November 2007. Available at http://csrc.nist.gov/publications/nistpubs/
800-38D/SP-800-38D.pdf.

Public Key Cryptography Standards Pad (PKCS-PAD)
The plaintext was padded on the right with 1 - 16 bytes of pad characters,
making the padded text a multiple of the block size.

The AES key used to encipher the data can either be 16, 24, or 32 bytes (128, 192,
or 256 bits) in length. The key can be supplied to the verb in any of three forms:
1. A cleartext key consisting of only the key bytes, not contained in a key token.
2. A cleartext key contained in an internal fixed or variable length AES key-token.
3. An encrypted key contained in an internal fixed or variable length AES

key-token, where the key is wrapped (encrypted) with the AES master key.

To use this verb, specify:
v The rule_array:

Symmetric Algorithm Decipher (CSNBSAD)

Chapter 9. Protecting data 397

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

1. The algorithm identifier keyword AES, which is the only symmetric
algorithm currently supported.

2. An optional processing rule using keyword CBC (the default), ECB, GCM,
or PKCS-PAD, which selects the encryption mode.

3. An optional key rule using the keyword KEY-CLR (the default) or
KEYIDENT, which selects whether the key_identifier parameter points to a
16-byte, 24-byte, or 32-byte clear key, or a key contained in a 64-byte AES
key-token in application storage or a key label of such a key in AES
key-storage

4. For processing rule CBC or ECB, an optional ICV (initial chaining value)
selection using the keyword INITIAL (the default) or CONTINUE, which
indicates whether it is the first or a subsequent request, and which parameter
points to the initialization vector. For processing rule GCM, specify an
optional ICV keyword ONLY (default).

v For a key rule of KEY-CLR, a key identifier containing a 16-byte, 24-byte, or
32-byte clear key. For a key rule of KEYIDENT, a fixed-length or variable-length
internal AES key-token or the key label of such a key in AES key-storage. The
key token can contain either a clear or enciphered key.
A variable-length AES key-token must have a key that can be used for
encryption (key-usage field 1 high-order byte is B'x1xx xxxx') and cannot be
used for data translation (KUF1 high-order byte = B'xx0x xxxx'). Also, for
processing rule CBC or PKCS-PAD, key usage must allow the key to be used
for Cipher Block Chaining (KUF2 high-order byte is X'00' or X'FF'). For
processing rule ECB, key usage must allow the key to be used for Electronic
Code Book (KUF2 high-order byte is X'01' or X'FF').
For processing rule GCM, the key usage must allow the key to be used for
Galois/Counter mode (KUF2 high-order byte = X'04' or X'FF').

v A block size of 16 for the cryptographic algorithm.
v For cipher block chaining, either one of these:

1. For an ICV selection of INITIAL, a 16-byte initialization vector of your
choosing and a 32-byte chain data buffer.

2. For an ICV selection of CONTINUE, no initialization vector and the 32-byte
chain data buffer from the output of the previous chained call. The electronic
code book algorithm does not use an initialization vector or a chain data
buffer.

3. For an ICV selection of ONLY, an initialization vector greater than 0 and a
maximum of 232 - 1, and a 104-byte chain data buffer.

v The cleartext to be enciphered.
v A ciphertext buffer large enough to receive the enciphered output.

This verb does the following when it enciphers the data:
1. Verifies the AES key-token for keyword KEYIDENT.
2. Deciphers the input AES key if the key is encrypted (MKVP was present in

token).
3. Pads the cleartext data with 1 - 16 bytes on the right for keyword PKCS-PAD,

otherwise verifies that the cleartext length is a multiple of the block size.
4. Enciphers the cleartext, including any pad characters, with the AES clear key

according to the encryption mode specified.
5. Returns the ciphertext data and its length.
6. Returns the chain data and its length if keyword ECB is not specified.

Symmetric Algorithm Encipher (CSNBSAE)

398 Common Cryptographic Architecture Application Programmer's Guide

7. Constructs an authentication tag in the key_parms variable if the GCM
processing rule is specified in the rule array.

CPACF exploitation for CSNBSAE requires fixed-length AES key-tokens with a key
type of DATA or variable-length AES key-tokens of type CIPHER with ENCRYPT
key-usage enabled. A fixed-length AES DATA key has a control vector (CV) of all
X'00' bytes for all active bytes of the CV. For details about CPACF, see “CPACF
support” on page 14.

Format
The format of CSNBSAE.

CSNBSAE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data)

Parameters
The parameters for CSNBSAE.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, 3, or 4.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are eight bytes in length, and must be left-aligned and padded on the right
with space characters. The rule_array keywords are described in Table 118 on
page 400.

Symmetric Algorithm Encipher (CSNBSAE)

Chapter 9. Protecting data 399

Table 118. Keywords for Symmetric Algorithm Encipher control information

Keyword Description

Encryption algorithm (Required)

AES Specifies use of the Advanced Encryption Standard (AES) as the encryption algorithm. The block size
for AES is 16 bytes, and the key length is 16, 24, or 32 bytes. AES is the only algorithm currently
supported by this verb.

Processing rule (One, optional)

CBC Performs ANSI X3.102 cipher block chaining. The data must be a multiple of eight bytes. An OCV is
produced and placed in the chaining_vector parameter. If the ICV selection keyword CONTINUE is
specified, the CBC OCV from the previous call is used as the ICV for this call.

ECB Specifies enciphering in Electronic Code Book mode. The cleartext length must be a multiple of the
block size.

GCM Specifies encryption in Galois/Counter Mode. The cleartext length must be less than or equal to 232 -
1.

PKCS-PAD Specifies padding of the cleartext on the right with 1 - 16 bytes of pad characters, making the padded
text a multiple of the block size. Each pad character is valued to the number of pad characters added.
The ciphertext length must be large enough to include the added pad characters. The ciphertext
length must be large enough to include the added pad characters. The padded cleartext is enciphered
in Cipher Block Chaining mode.

Key rule (One, optional)

KEY-CLR Specifies that the key_identifier parameter points to a cleartext AES key. Only the key value is allowed;
the key is not contained in a key token. This is the default value.

KEYIDENT Specifies that the key_identifier parameter points to an internal AES key-token or the label of an
internal key-token in AES key-storage.

ICV selection (One, optional)

CONTINUE Specifies that the request is part of a sequence of chained requests and is not the first (initial) request
in the sequence. The chain data is used as input to encipher the next block of data. The chain data
buffer is updated with output that is used as input to subsequent chained requests.

This keyword is not valid with the ECB or GCM processing rule keyword.

INITIAL Specifies that this is either the first request of a sequence of chained requests, or the only request. The
initialization vector is used as input to encipher the first block of data. The chain data buffer is
updated with output that is used as input to subsequent chained requests. Not valid with the GCM
processing rule keyword, otherwise this is the default.

ONLY Specifies that this is the only request. The initialization vector is used as input to encipher the block
of data. Only valid with the GCM processing rule keyword. This is the default for GCM.

“Ciphering methods” on page 1026 describes the cipher processing rules in
detail.

key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_identifier variable. This value must be 16, 24, 32, or ≥ 64.

key_identifier

Direction: Input
Type: String

A pointer to a string variable containing either a cleartext AES key or the

Symmetric Algorithm Encipher (CSNBSAE)

400 Common Cryptographic Architecture Application Programmer's Guide

internal key-token or a label for an internal key-token record in AES
key-storage. This is the key used to encipher the data pointed to by the
cleartext parameter. For rule_array keyword KEY-CLR, a 16-byte, 24-byte, or
32-byte clear AES key is required. For rule_array keyword KEYIDENT, a
64-byte fixed or variable-length internal AES key-token or key label for such a
key in AES key-storage is required.

A variable-length AES key-token must have a key type of CIPHER and must
allow the key to be used for encryption (key-usage field 1 high-order byte =
B'1xxx xxxx'). In addition, the key token must have the following key usage
based on processing rule keyword:

CBC must allow the key to be used for Cipher Block Chaining (key usage
field (KUF) 2 high-order byte = X'00' or X'FF').

ECB must allow the key to be used for Electronic Code Book (KUF2
high-order byte = X'01' or X'FF').

GCM must allow the key to be used for Galois/Counter mode (KUF2
high-order byte = X'04' or X'FF').

key_parms_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_parms parameter. For processing rule GCM, this value can be 4 or 8 (which
is strongly discouraged by NIST), or 12 - 16. Otherwise, this value must be 0.

key_parms

Direction: Input
Type: String

A pointer to a string variable for key-related parameters. For processing rule
GCM, this variable receives the generated authentication tag for the data
identified by the cleartext parameter and any additional authenticated data
identified by the optional_data parameter. No other usage is currently
defined.

block_size

Direction: Input
Type: Integer

A pointer to an integer variable containing the block size used by the
cryptographic algorithm. This value must be 16.

initialization_vector_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
initialization_vector variable. For cipher block chaining (CBC or PKCS-PAD)
with an INITIAL ICV selection, this value must be 16. For processing rule ECB
or ICV selection CONTINUE, this value should be 0. For processing rule
GCM, NIST recommends a length of 12, but any length from 1 to a maximum
of 232 - 1 can be used.

initialization_vector

Direction: Input

Symmetric Algorithm Encipher (CSNBSAE)

Chapter 9. Protecting data 401

Type: String

A pointer to a string variable containing the initialization vector for the
INITIAL call to CBC mode encryption, or if the ICV selection is ONLY. It is
not used if the processing rule is ECB or the ICV selection is CONTINUE. The
same initialization vector must be used when deciphering the data.

chain_data_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
chain_data variable. On input, depending on the processing rule keyword, set
this variable to a value of at least 32 for CBC, 0 for ECB, or 104 for GCM
mode encryption.

On output, the variable is updated with the length of the data returned in the
chain_data variable. The chain_data_length parameter must not be changed by
the calling application until chained operations are complete.

chain_data

Direction: Input/Output
Type: String

A pointer to a string variable used as a work area for CBC encipher requests.
This work area is not used for ECB mode encryption, while GCM mode
encryption uses 104 bytes for its work area.

When the verb performs a CBC encipher operation and the ICV selection is
INITIAL, the chain_data variable is an output-only buffer that receives data
used as input for enciphering the next part of the input data, if any. When the
ICV selection is CONTINUE, the chain_data variable is both an input and
output buffer. When the ICV selection is ONLY, the chain_data variable is an
output-only buffer that receives data in the event that the amount of cleartext
is greater than the host code can send to the coprocessor in a single call. The
application must not change any intermediate data in this string.

cleartext_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
cleartext variable. The cleartext_length value must be a multiple of the
algorithm block size unless processing rule PKCS-PAD is specified. For
processing rule GCM, the value can be a minimum of 0 up to a maximum of
232 - 1, otherwise the value must not be 0.

If PKCS-PAD is specified, set the output cleartext_length variable from 1 - 16
bytes more than the cleartext_length value to a multiple of the algorithm
block size.

Note: Do not make the ciphertext_length and cleartext_length parameters
point to the same variable.

cleartext

Direction: Input
Type: String

Symmetric Algorithm Encipher (CSNBSAE)

402 Common Cryptographic Architecture Application Programmer's Guide

A pointer to a string variable used to contain the data to be enciphered,
excluding any pad bytes.

ciphertext_length

Direction: Input/Output
Type: Integer

On input, the ciphertext_length parameter is a pointer to an integer variable
containing the number of bytes of data in the ciphertext variable. On output,
the ciphertext_length variable is updated to contain the actual length of text
output in the ciphertext variable. If PKCS-PAD is specified, the ciphertext_length
value must be greater than or equal to the next higher multiple of 16 as the
cleartext_length value (from 1 - 16 bytes longer). Otherwise, the ciphertext_length
value must be greater than or equal to the cleartext_length variable.

ciphertext

Direction: Input/Output
Type: String

A pointer to a string variable used as an output buffer where the verb returns
the enciphered data. If PKCS-PAD is specified, on output the ciphertext buffer
contains 1 - 16 bytes of data more than the cleartext input buffer contains.

optional_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
optional_data variable. For processing rule GCM, set this value to a minimum
of 0 up to a maximum of 232 - 1, otherwise set this value to 0.

optional_data

Direction: Input
Type: String

A pointer to a string variable containing optional data for the encryption. For
processing rule GCM, this parameter identifies any additional authenticated
data (AAD). No other usage is currently defined.

Restrictions
The restrictions for CSNBSAE.

None.

Required commands
The required commands for CSNBSAE.

The Symmetric Algorithm Encipher verb requires the Symmetric Algorithm
Encipher - secure AES keys command (offset X'012A') to be enabled in the active
role. The verb also requires the command shown in the following table below to be
enabled in the active role based on rule-array keyword:

Rule-array keyword Offset Command

GCM X'01CD' Symmetric Algorithm Encipher - AES GCM

Symmetric Algorithm Encipher (CSNBSAE)

Chapter 9. Protecting data 403

Usage notes
The usage notes for CSNBSAE.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBSAEJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBSAEJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length,
byte[] key_identifier,
hikmNativeNumber key_parms_length,
byte[] key_parms,
hikmNativeNumber block_size,
hikmNativeNumber initialization_vector_length,
byte[] initialization_vector,
hikmNativeNumber chain_data_length,
byte[] chain_data,
hikmNativeNumber clear_text_length,
byte[] clear_text,
hikmNativeNumber cipher_text_length,
byte[] cipher_text,
hikmNativeNumber optional_data_length,
byte[] optional_data);

Cipher Text Translate2 (CSNBCTT2)
This callable service deciphers encrypted data (ciphertext) under one ciphertext
translation key and re-enciphers it under another ciphertext translation key
without having the data appear in the clear outside the cryptographic coprocessor.
Such a function is useful in a multiple node network, where sensitive data is
passed through multiple nodes prior to it reaching its final destination.

Use the Cipher Text Translate2 verb to decipher text under an input key and then
to encipher the text under an output key. Both AES and DES algorithms are
supported. Translation between AES and DES is allowed with restrictions
controlled by access control points.

The encryption modes supported are:
v DES – CBC, CUSP and IPS
v AES – CBC and ECB

The padding methods supported are:
v DES – X9.23
v AES – PKCSPAD

Symmetric Algorithm Encipher (CSNBSAE)

404 Common Cryptographic Architecture Application Programmer's Guide

Scenario for using the CSNBCTT2 verb

This scenario uses the Encipher (CSNBENC), Cipher Text Translate2 (CSNBCTT2),
and Decipher (CSNBDEC) callable services with four network nodes: A, B, C, and
D. You want to send data from your network node A to a destination node D. You
cannot communicate directly with node D, because nodes B and C are situated
between A and D. You do not want nodes B and C to decipher your data.

At node A, you use the CSNBENC service. Node D uses the CSNBDEC service.
Node B and C will use the CSNBCTT2 service.

Consider the keys that are needed to support this process:
1. At your node, generate one key in two forms: OPEX CIPHER CIPHERXI.
2. Send the exportable CIPHERXI key to node B.
3. Node B and C need to share a key, so generate a different key in two forms:

EXEX CIPHERX0 CIPHERXI.
4. Send the exportable CIPHERX0 key to node B.
5. Send the exportable CIPHERXI key to node C.
6. Node C and node D need to share a CIPHERX0 key and a CIPHER key. Node

D can generate one key in two forms: OPEX CIPHERX0 CIPHERXI.
7. Node D sends the exportable CIPHERX0 key to node C.

The communication process is shown as:
Node: A B C D

Service: CSNBENC CSNBCTT2 CSNBCTT2 CSNBDEC

Keys: CIPHER CIPHERXI CIPHERX0 CIPHERXI CIPHERXI CIPHER

Key pairs: |____ = ____| |____ = ____| |____ = ____|

Therefore, you need three keys, each in two different forms. You can generate two
of the keys at node A, and node D can generate the third key. Note that the key
used in the decipher callable service at node D is not the same key used in the
encipher callable service at node A.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Cipher Text Translate 2 (CSNBCTT2)

Chapter 9. Protecting data 405

|

Format
The format of CSNBCTT2.

CSNBCTT2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_in_length,
key_identifier_in,
init_vector_in_length,
init_vector_in,
cipher_text_in_length,
cipher_text_in,
chaining_vector_length,
chaining_vector,
key_identifier_out_length,
key_identifier_out,
init_vector_out_length,
init_vector_out,
cipher_text_out_length,
cipher_text_out,
reserved1_length,
reserved1,
reserved2_length,
reserved2)

Parameters
The parameter definitions for CSNBCTT2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 4 or 5.

rule_array

Direction: Input
Type: String array

The keyword that provides control information to the verb. The processing
method is the algorithm used to create the generated key. The keyword is
left-aligned and padded on the right with blanks. The rule_array keywords are
described in Table 119.

Table 119. Keywords for Cipher Text Translate2 control information

Keyword Description

Inbound Processing Rule (One required)

I-CBC Specifies encryption using CBC mode for the inbound ciphertext. The text length must be a
multiple of the block size. The DES block size is 8 bytes. The AES block size is 16 bytes.

Cipher Text Translate 2 (CSNBCTT2)

406 Common Cryptographic Architecture Application Programmer's Guide

Table 119. Keywords for Cipher Text Translate2 control information (continued)

Keyword Description

I-CUSP Specifies that CBC with CUSP processing for the inbound ciphertext. The ciphertext may be any
length. The ciphertext is the same length as the plaintext. This keyword is only valid with DES.

I-ECB Specifies encryption using ECB mode for the inbound ciphertext. The text must be a multiple of
the block size. This keyword is only valid for AES encryption.

I-IPS Specifies that CBC with IPS processing has been used for the inbound ciphertext. The ciphertext
may be any length. The ciphertext is the same length as the plaintext. This keyword is only valid
with DES.

IPKCSPAD Specifies that CBC with PKCS padding was used for the inbound ciphertext. The text was padded
on the right with 1 - 16 bytes of pad characters, making the padded text a multiple of the AES
block size, before the data was enciphered. Each pad character is valued to the number of pad
characters added. This keyword is only valid for AES encryption.

I-X923 Specifies that CBC with X9.24 padding was used for the inbound ciphertext. This is compatible
with the requirements in ANSI Standard X9.23. This keyword is only valid for DES encryption.

Outbound processing rule (One required)

O-CBC Specifies that encryption in CBC mode is used for the outbound ciphertext. The text length must
be a multiple of the block size. The DES block size is 8 bytes. The AES block size is 16 bytes.

O-CUSP Specifies that CBC with CUSP processing is used for the outbound text. The outbound ciphertext
has the same length as the plaintext. This keyword is only valid with DES.

O-ECB Specifies that encryption using ECB mode is used for the outbound ciphertext. The text must be a
multiple of the block size. This keyword is only valid for AES encryption.

O-IPS Specifies that CBC with IPS processing is used for the outbound text. The outbound ciphertext has
the same length as the plaintext. This keyword is only valid with DES.

OPKCSPAD Specifies that CBC with PKCS padding is used for the outbound text. The outbound text is
padded on the right with 1 - 16 bytes of pad characters, making the padded text a multiple of the
AES block size, before the data was enciphered. Each pad character is valued to the number of
pad characters added. This keyword is only valid for AES encryption.

O-X923 Specifies that CBC with X9.24 padding is used for the outbound text. This is compatible with the
requirements in ANSI Standard X9.23. This keyword option is only valid for DES encryption.

Segmenting control (One optional)

CONTINUE Specifies the initialization vectors are taken from the chaining vector. The chaining vector is
updated and must not be modified between calls. This keyword is ignored for I-ECB and O-ECB
processing rules. The CONTINUE keyword is not valid with the I-X923 or O-X923 keywords.

INITIAL Specifies that the initialization vectors are taken from the init_vector_in and init_vector_out
parameters. This is the default. This keyword is ignored for I-ECB and O-ECB processing rules.

Inbound key identifier (One required)

IKEY-DES Specifies that the inbound key identifier is a DES key.

IKEY-AES Specifies that the inbound key identifier is an AES key.

Outbound key identifier (One required)

OKEY-DES Specifies that the outbound key identifier is a DES key.

OKEY-AES Specifies that the outbound key identifier is an AES key.

key_identifier_in_length

Direction: Input
Type: Integer

Length of the key_identifier_in in bytes. The value is 64 when a label is

Cipher Text Translate 2 (CSNBCTT2)

Chapter 9. Protecting data 407

supplied. When the key identifier is a key token, the value is the length of the
token. The maximum value is 725.

key_identifier_in

Direction: Input/Output
Type: String

An internal key token or the label of an AES or DES key storage record
containing the cipher translation key for the inbound ciphertext.

Acceptable DES key types are DATA, CIPHER, CIPHERXI, CIPHERXL, and
DECIPHER. The keys must have bit 19 for DECIPHER set on in the control
vector. The key may be a single-, double-, or triple-length key. If the Cipher
Text translate2 - Allow only cipher text translate types access control
point is enabled, only CIPHERXI and CIPHERXL are allowed.

Acceptable AES key types include the 64-byte AES DATA key and the variable
length token CIPHER key with the DECRYPT bit on in the key usage field. The
C-XLATE bit can optionally be on. If the Cipher Text translate2 - Allow
only cipher text translate types access control point is enabled, the
C-XLATE bit must be turned on in the key usage field.

init_vector_in_length

Direction: Input
Type: Integer

Length of the init_vector_in field in bytes. For AES keys, the length is 16. For
DES keys, the length is 8. When the initialization vector is not required
(segmenting rule CONTINUE, processing rule I-ECB), the value must be 0.

init_vector_in

Direction: Input
Type: String

The initialization vector that is used to decipher the input data. This parameter
is the initialization vector used at the previous cryptographic node. This
parameter is required for segmenting rule INITIAL.

cipher_text_in_length

Direction: Input
Type: Integer

The length of the ciphertext to be processed. See the table of ciphertext length
restrictions in “Usage notes” on page 411.

cipher_text_in

Direction: Input
Type: String

The text that is to be translated. The text is enciphered under the cipher key
specified in the key_identifier_in parameter.

chaining_vector_length

Direction: Input
Type: Integer

The length of the chaining_vector parameter in bytes. The chaining_vector
field must be 128 bytes long.

Cipher Text Translate 2 (CSNBCTT2)

408 Common Cryptographic Architecture Application Programmer's Guide

chaining_vector

Direction: Input/Output
Type: String

The chaining_vector parameter is a work area used by the service to carry
segmented data between procedure calls. This area must not be modified
between calls to the service.

key_identifier_out_length

Direction: Input
Type: Integer

The length of the key_identifier_out parameter in bytes. This value is 64
when a label is supplied. When the key identifier is a key token, the value is
the length of the token. The maximum value is 725.

key_identifier_out

Direction: Input/Output
Type: String

An internal key token or the label of an AES or DES key storage record
containing the cipher translation key for the outbound ciphertext.

Acceptable DES key types are DATA, CIPHER, CIPHERXL, CIPHERXO, and
ENCIPHER. The key may be a double- or triple-length key. If the Cipher Text
translate2 – Allow only cipher text translate types access control point is
enabled, only CIPHERXO and CIPHERXL are allowed. Acceptable DES key
types are DATA, CIPHER, CIPHERXL, CIPHERXO, and ENCIPHER. The keys
must have bit 18 for ENCIPHER set on in the control vector. The key may be a
double- or triple-length key. If the Cipher Text translate2 - Allow only
cipher text translate types access control point is enabled, only CIPHERXO
and CIPHERXL are allowed.

Acceptable AES key types include the 64-byte AES DATA key and the variable
length token CIPHER key with the ENCRYPT bit on in the key usage field.

The C-XLATE bit can optionally be on. If the Cipher Text translate2 – Allow
only cipher text translate types access control point is enabled, the
C-XLATE bit must be turned on in the key usage field.

init_vector_out_length

Direction: Input
Type: Integer

The length of the init_vector_out parameter in bytes. For AES keys, the
length is 16. For DES keys, the length is 8. When the initialization vector is not
required (segmenting rule CONTINUE, processing rule O-ECB), the value must
be 0.

init_vector_out

Direction: Input
Type: String

The initialization vector that is used to encipher the input data. This is the new
initialization vector used when the callable service enciphers the plaintext. This
parameter is required for segmenting rule INITIAL.

cipher_text_out_length

Cipher Text Translate 2 (CSNBCTT2)

Chapter 9. Protecting data 409

Direction: Input/Output
Type: Integer

The length of the cipher_text_out parameter in bytes. This parameter is
updated with the actual length of the data in the cipher_text_out parameter.
Note that padding may require this value to be larger than the
cipher_text_in_length parameter (see Table 120 on page 411).

cipher_text_out

Direction: Output
Type: String

The field where the callable service returns the translated text.

reserved1_length

Direction: Input
Type: Integer

The length of the reserved1 parameter in bytes. The value must be zero.

reserved1

Direction: Input
Type: String

This parameter is ignored.

reserved2_length

Direction: Input
Type: Integer

The length of the reserved2 parameter in bytes. The value must be zero.

reserved2

Direction: Input
Type: String

This parameter is ignored.

Restrictions
The restrictions for CSNBCTT2.

None.

Required commands
The CSNBCTT2 required commands.

This verb requires the following commands to be enabled in the active role:

Command Offset Description

Cipher Text Translate2 X'01C0' Enable the Ciphertext Translate2 service

Cipher Text Translate2 – Allow
translate from AES to TDES

X'01C1' Allow translation from an AES key to 2 or 3
key triple DES key.

Cipher Text Translate 2 (CSNBCTT2)

410 Common Cryptographic Architecture Application Programmer's Guide

Command Offset Description

Cipher Text Translate2 – Allow
translate to weaker AES

X'01C2' Allow translation from a stronger to weaker
AES key. (For example, IN key AES256 and
OUT key AES128.)

Cipher Text Translate2 – Allow
translate to weaker DES

X'01C3' Allow translation from a triple-length DES
key to a weaker double-length DES key.

Cipher Text Translate2 – Allow
only cipher text translate
types

X'01C4' When enabled, the verb only accepts these
key-translation-only key types, which
cannot be used in normal cipher or MAC
data operations:

v AES key tokens with key type CIPHER
and key usage set to allow data translate
(C-XLATE) only

v DES key tokens with a key type
CIPHERXI, CIPHERXO, or CIPHERXL

In other words, with offset X'01C4' enabled
in the active role, AES key type AESDATA
and DES key types CIPHER, DATA,
DATAC, and ENCIPHER, are not allowed.
This restricts the verb from using keys that
can be used in data operations other than
translation.

Usage notes
Usage notes for CSNBCTT2.

Restriction: The Cipher Text Translate2 callable service is only available on the
IBMzEC12 and later servers.

The initialization vectors must have already been established between the
communicating applications or must be passed with the data.

Table 120 outlines the restrictions for the cipher_text_in_length and
cipher_text_out_length parameters. The DES blocks referred to in this table are 8
bytes. The AES blocks referred to in this table are 16 bytes.

Table 120. Restrictions for cipher_text_in_length and cipher_text_out_length.

Input cipher
method

Output
cipher
method

Input ciphertext length
restriction(s) Output ciphertext length restriction(s)

DES CBC DES CBC
X9.23

Input ciphertext must be a
multiple of a DES block.

Output ciphertext length must be greater than or
equal to the sum of the length of the input ciphertext
and a DES block.

DES CBC AES CBC
PKCSPAD

Input ciphertext must be a
multiple of a DES block.

If the input ciphertext is not a multiple of an AES
block, then the output ciphertext length must be
greater than or equal to the sum of the input
ciphertext length and a DES block. If the input
ciphertext is a multiple of an AES block, then the
output ciphertext length must be greater than or
equal to the sum of the input ciphertext length and
an AES block.

DES CBC DES CUSP or
IPS

Input ciphertext must be a
multiple of a DES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

Cipher Text Translate 2 (CSNBCTT2)

Chapter 9. Protecting data 411

Table 120. Restrictions for cipher_text_in_length and cipher_text_out_length (continued).

Input cipher
method

Output
cipher
method

Input ciphertext length
restriction(s) Output ciphertext length restriction(s)

DES CBC DES CBC Input ciphertext must be a
multiple of a DES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

DES CBC AES CBC Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

DES CBC AES CBC Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

DES CBC
CUSP or IPS

DES CBC
CUSP or IPS

No restrictions Output ciphertext length must be greater than or
equal to the input ciphertext length.

DES CBC
CUSP or IPS

DES CBC Input ciphertext must be a
multiple of a DES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

DES CBC
CUSP or IPS

AES CBC or
ECB

Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

DES CBC
CUSP or IPS

DES CBC
X9.23

No restrictions Output ciphertext length must be greater than or
equal to the sum of the input ciphertext length and a
DES block.

DES CBC
CUSP or IPS

AES CBC
PKCSPAD

No restrictions Output ciphertext length must be greater than or
equal to the sum of the input ciphertext length and
an AES block.

DES CBC
X9.23

DES CBC
X9.23

Input ciphertext must be a
multiple of a DES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

DES CBC
X9.23

AES CBC
PKCSPAD

Input ciphertext must be a
multiple of a DES block.

Output ciphertext length must be greater than or
equal to the sum of the input ciphertext length and a
DES bock.

DES CBC
X9.23

DES CBC
CUSP or IPS

Input ciphertext must be a
multiple of a DES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

DES CBC
X9.23

DES CBC Input ciphertext must be a
multiple of a DES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.
Note: This operation is not possible if the padding is
determined by the adapter to be from 1-7 bytes.

DES CBC
X9.23

AES CBC Input ciphertext must be a
multiple of a DES block but
must not be a multiple of an
AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.
Note: This operation is not possible if the padding is
determined by the adapter to be from 1-7 bytes.

DES CBC
X9.23

AES ECB Input ciphertext must be a
multiple of a DES block but
must not be a multiple of an
AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.
Note: This operation is not possible if the padding is
determined by the adapter to be from 1-7 bytes.

AES CBC or
ECB

DES CBC
X9.23

Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the sum of the input ciphertext length and a
DES bock.

AES CBC or
ECB

AES CBC
PKCSPAD

Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the sum of the input ciphertext length and
an AES bock.

AES CBC or
ECB

DES CBC
CUSP or IPS

Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

AES CBC or
ECB

DES CBC Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

Cipher Text Translate 2 (CSNBCTT2)

412 Common Cryptographic Architecture Application Programmer's Guide

Table 120. Restrictions for cipher_text_in_length and cipher_text_out_length (continued).

Input cipher
method

Output
cipher
method

Input ciphertext length
restriction(s) Output ciphertext length restriction(s)

AES CBC or
ECB

AES CBC Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

AES CBC or
ECB

AES ECB Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

AES CBC
PKCSPAD

DES CBC
X9.23

Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

AES CBC
PKCSPAD

AES CBC
PKCSPAD

Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length.

AES CBC
PKCSPAD

DES CBC
CUSP or IPS

Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length minus 1.

AES CBC
PKCSPAD

DES CBC Input ciphertext must be a
multiple of an AES block.
Output ciphertext length must
be greater than or equal

Output ciphertext length must be greater than or
equal to the input ciphertext length minus the length
of a DES block.
Note: This operation is not possible if the padding is
determined by the adapter to be from 1-7 bytes or
9-15 bytes.

AES CBC
PKCSPAD

AES CBC Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length minus the length
of a AES block.
Note: This operation is not possible if the padding is
determined by the adapter to be from 1-15 bytes.

AES CBC
PKCSPAD

AES ECB Input ciphertext must be a
multiple of an AES block.

Output ciphertext length must be greater than or
equal to the input ciphertext length minus the length
of an AES block.
Note: This operation is not possible if the padding is
determined by the adapter to be from 1-15 bytes.

There are requirements for the keys for the key_identifier_in and
key_identifier_out parameters. The key_identifier_in key must be able to
decipher text. The key_identifier_out key must be able to encipher text.

Table 121 on page 414 table shows the valid key types which are allowed for the
key_identifier_in and key_identifier_out parameters. In the table, a variable
length key token cipher key is denoted by vCIPHER. vCIPHER is the default
which has the ENCRYPT and DECRYPT bits on in the usage field. vCIPHERe has
only the ENCRYPT bit on in the usage field. vCIPHERd has only the DECRYPT bit
on in the usage field. Adding x to either of the preceding names means the
TRANSLAT bit is on in the usage field for that key. For example, vCIPHERex
means a variable length token with the ENCRYPT and TRANSLAT bits turned on.

AESDATA is the 64-byte AES DATA key type.

Cipher Text Translate 2 (CSNBCTT2)

Chapter 9. Protecting data 413

Table 121. Cipher Text Translate2 key usage.

key_identifier_in (DEC bit except DATA
and AESDATA)

key_identifier_out (ENC bit except DATA
and AESDATA)

DATA
CIPHER
DECIPHER
CIPHERXI
CIPHERXL

DATA
CIPHER
ENCIPHER
CIPHERXO
CIPHERXL
AESDATA
vCIPHER
vCIPHERe
vCIPHERex
vCIPHERedx

AESDATA
vCIPHER
vCIPHERd
vCIPHERdx
vCIPHERdex

DATA (must be at least double-length
key with ACP)
CIPHER (requires ACP to be enabled)
ENCIPHER (requires ACP to be enabled)
CIPHERXO (requires ACP to be enabled)
CIPHERXL (requires ACP to be enabled)
AESDATA
vCIPHER
vCIPHERe
vCIPHERex
vCIPHERedx

Note:

1. Translation from stronger encryption to single-key DES is not allowed.
2. Translation from a triple-length DES key to a double-length DES key requires

the Cipher Text Translate2 - Allow translate to weaker DES access control
point (offset X'01C3') to be enabled.

3. When the Cipher Text Translate2 - Allow only cipher text translate types
access control point (offset X'01C4') is enabled, only CIPHERXI, CIPHERXL,
and CIPHERXO DES key types are allowed and AES key tokens with key type
CIPHER must be set to allow data translate (C-XLATE).

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCTT2.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCTT2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_in_len,
byte[] key_identifier_in,
hikmNativeNumber init_vector_in_length,
byte[] init_vector_in,
hikmNativeNumber cipher_text_in_length,
byte[] cipher_text_in,

Cipher Text Translate 2 (CSNBCTT2)

414 Common Cryptographic Architecture Application Programmer's Guide

hikmNativeNumber chaining_vector_length,
byte[] chaining_vector,
hikmNativeNumber key_identifier_out_length,
byte[] key_identifier_out,
hikmNativeNumber init_vector_out_length,
byte[] init_vector_out,
hikmNativeNumber cipher_text_out_length,
byte[] cipher_text_out,
hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2);

Cipher Text Translate 2 (CSNBCTT2)

Chapter 9. Protecting data 415

Cipher Text Translate 2 (CSNBCTT2)

416 Common Cryptographic Architecture Application Programmer's Guide

Chapter 10. Verifying data integrity and authenticating
messages

CCA provides methods to verify the integrity of transmitted messages and stored
data

The methods provided are:
v Message authentication code (MAC)
v Hash functions, including Modification Detection Code (MDC) processing and

one-way hash generation

Note: You can also use digital signatures (see Chapter 14, “Using digital
signatures,” on page 675) to authenticate messages.

The choice of verb depends on the security requirements of the environment in
which you are operating. If you need to ensure the authenticity of the sender as
well as the integrity of the data and both the sender and receiver can share a secret
key, consider Message Authentication Code processing. If you need to ensure the
integrity of transmitted data in an environment where it is not possible for the
sender and the receiver to share a secret cryptographic key, consider hashing
functions.

The verbs described in this topic include:
v “HMAC Generate (CSNBHMG)” on page 419
v “HMAC Verify (CSNBHMV)” on page 423
v “MAC Generate (CSNBMGN)” on page 426
v “MAC Generate2 (CSNBMGN2)” on page 430
v “MAC Verify (CSNBMVR)” on page 433
v “MAC Verify2 (CSNBMVR2)” on page 438
v “MDC Generate (CSNBMDG)” on page 441
v “One-Way Hash (CSNBOWH)” on page 445

How MACs are used
When a message is sent, an application program can generate an authentication
code for it using the MAC Generate verb.

CCA supports the ANSI X9.9-1 basic procedure and both the ANSI X9.19 basic
procedure and optional double key MAC procedure. The MAC Generate verb
computes the text of the Message Authentication Code using the algorithm and a
key. The ANSI X9.9-1 or ANSI X9.19 basic procedures accept either a single-length
MAC generation (MAC) key or a data-encrypting (DATA) key, and the message
text. The ANSI X9.19 optional double key MAC procedure accepts a double-length
MAC key and the message text. The originator of the message sends the MAC
with the message text.

When the receiver gets the message, an application program calls the MAC Verify
verb. The MAC Generate verb generates a MAC using the same algorithm as the
sender and either the single-length or double-length MAC verification key, the
single-length or double-length MAC generation key, or DATA key, and the message

© Copyright IBM Corp. 2007, 2018 417

text. The MAC Verify verb compares the MAC it generates with the one sent with
the message and issues a return code that indicates whether the MACs match. If
the return code indicates that the MACs match, the receiver can accept the
message as genuine and unaltered. If the return code indicates that the MACs do
not match, the receiver can assume the message is either fraudulent or has been
altered. The newly computed MAC is not revealed outside the cryptographic
coprocessor.

In a similar manner, MACs can be used to ensure the integrity of data stored on
the system or on removable media, such as tape.

Secure use of the MAC Generate and MAC Verify verbs requires the use of MAC
and MACVER keys in these verbs, respectively. To accomplish this, the originator
of the message generates a MAC/MACVER key pair, uses the MAC key in the
MAC Generate verb, and exports the MACVER key to the receiver. The originator
of the message enforces key separation on the link by encrypting the MACVER key
under a transport key that is not an NOCV key before exporting the key to the
receiver. With this type of key separation enforced, the receiver can receive only a
MACVER key and can use only this key in the MAC Verify verb. This ensures that
the receiver cannot alter the message and produce a valid MAC with the altered
message. These security features are not present if DATA keys are used in the
MAC Generate verb or if DATA or MAC keys are used in the MAC Verify verb.

By using MACs you get the following benefits:
v For data transmitted over a network, you can validate the authenticity of the

message as well as ensure the data has not been altered during transmission. For
example, an active eavesdropper can tap into a transmission line and interject
fraudulent messages or alter sensitive data being transmitted. If the data is
accompanied by a MAC, the recipient can use a verb to detect whether the data
has been altered. Because both the sender and receiver share a secret key, the
receiver can use a verb that calculates a MAC on the received message and
compares it to the MAC transmitted with the message. If the comparison is
equal, the message could be accepted as unaltered. Furthermore, because the
shared key is secret, when a MAC is verified it can be assumed that the sender
was, in fact, the other person who knew the secret key.

v For data stored on tape or DASD, you can ensure that the data read back onto
the system was the same as the data written onto the tape or DASD. For
example, someone might be able to bypass access controls. Such an access might
escape the notice of auditors. However, if a MAC is stored with the data, and
verified when the data is read, you can detect alterations to the data.

How hashing functions and MDCs are used
Hashing functions include the MDC and one-way hash.

You need to hash text before submitting it to the Digital Signature Generate and
Digital Signature Verify verbs (see Chapter 14, “Using digital signatures,” on page
675). CCA supports the SHA-1, MD5, and RIPEMD-160 hashing functions.

When a message is sent, an application program can generate a hash or a
Modification Detection Code (MDC) for it using the One-Way Hash verb. This verb
computes the hash or MDC, a short, fixed-length value, using a one-way
cryptographic function and the message text. The originator of the message

418 Common Cryptographic Architecture Application Programmer's Guide

ensures the hash or MDC is transmitted with integrity to the intended receiver of
the message. For example, the value could be published in a reliable source of
public information.

When the receiver gets the message, an application program calls the One-Way
Hash verb to generate a new hash or MDC using the same function and message
text that were used by the sender. The application program can compare the new
value with the one generated by the originator of the message. If the two values
match, the receiver knows the message was not altered.

In a similar manner, hashes and MDCs can be used to ensure the integrity of data
stored on the system or on removable media, such as tape.

By using hashes and MDCs, you get the following benefits:
v For data transmitted over a network between locations that do not share a

secret key, you can ensure the data has not been altered during transmission. It
is easy to compute a hash or MDC for specific data, yet hard to find data that
will result in a given hash or MDC. In effect, the problem of ensuring the
integrity of a large file is reduced to ensuring the integrity of a short,
fixed-length value.

v For data stored on tape or DASD, you can ensure that the data read back onto
the system was the same as the data written onto the tape or DASD. After a
hash has been established for a file, the One-Way Hash verb can be run at any
later time on the file. The resulting value can be compared with the stored value
to detect deliberate or inadvertent modification.

For more information, see “Modification Detection Code calculation” on page 1024.

HMAC Generate (CSNBHMG)
Use the HMAC Generate verb to generate a keyed hash Message Authentication
Code (HMAC) for the message string provided as input.

An HMAC key that can be used for generate is required to calculate the HMAC.

Format
The format of CSNBHMG.

CSNBHMG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,
chaining_vector,
mac_length,
mac)

Parameters
The parameters for CSNBHMG.

Chapter 10. Data integrity and message authentication 419

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 2 or 3.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The following table
lists the keywords. Each keyword is left-aligned in 8-byte fields and padded on
the right with blanks. All keywords must be in contiguous storage. The
rule_array keywords are described in Table 122.

Table 122. Keywords for HMAC Generate control information

Keyword Description

Token algorithm (One required)

HMAC Specifies the HMAC algorithm to be used to generate the MAC.

Hash method (One required).

SHA-1 Specifies the FIPS-198 HMAC procedure using the SHA-1 hash method, a symmetric key and text to
produce a 20-byte (160-bit) MAC.

SHA-224 Specifies the FIPS-198 HMAC procedure using the SHA-224 hash method, a symmetric key and text to
produce a 28-byte (224-bit) MAC.

SHA-256 Specifies the FIPS-198 HMAC procedure using the SHA-256 hash method, a symmetric key and text to
produce a 32-byte (256-bit) MAC.

SHA-384 Specifies the FIPS-198 HMAC procedure using the SHA-384 hash method, a symmetric key and text to
produce a 48-byte (384-bit) MAC.

SHA-512 Specifies the FIPS-198 HMAC procedure using the SHA-512 hash method, a symmetric key and text to
produce a 64-byte (512-bit) MAC.

Segmenting control (One optional)

FIRST First call, this is the first segment of data from the application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application program. This is the default value.

key_identifier_length

Direction: Input
Type: Integer

The length of the key_identifier parameter. The maximum value is 725.

key_identifier

Direction: Input
Type: String

The 64-byte label or internal token of an encrypted HMAC key.

HMAC Generate (CSNBHMG)

420 Common Cryptographic Architecture Application Programmer's Guide

Table 123. Hash methods and HMAC key sizes

Specified hash method Minimum HMAC key size (in bits)

SHA-1 80

SHA-224 112

SHA-256 128

SHA-384 192

SHA-512 256

text_length

Direction: Input
Type: Integer

The length of the text you supply in the text parameter. The maximum length
of text is 214783647 bytes. For FIRST and MIDDLE calls, the text_length must
be a multiple of 64 for SHA-1, SHA-224 and SHA-256 hash methods, and a
multiple of 128 for SHA-384 and SHA-512 hash methods.

text

Direction: Input
Type: String

The application-supplied text for which the MAC is generated.

chaining_vector_length

Direction: Input/Output
Type: Integer

The length of the chaining_vector in bytes. This value must be 128.

chaining_vector

Direction: Input/Output
Type: String

An 128-byte string used as a system work area. Your application program must
not change the data in this string. The chaining vector permits data to be
chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac_length

Direction: Input/Output
Type: Integer

The length of the mac parameter in bytes. This parameter is updated to the
actual length of the mac parameter on output. The minimum value is 4, and
the maximum value is 64.

mac

Direction: Output
Type: String

The field in which the verb returns the MAC value if the segmenting rule is
ONLY or LAST.

HMAC Generate (CSNBHMG)

Chapter 10. Data integrity and message authentication 421

||

||

||

||

||

||

||
|

Restrictions
The restrictions for CSNBHMG.

This verb was introduced with CCA 4.1.0.

Required commands
The required commands for CSNBHMG.

This verb requires the commands shown in the following table to be enabled in the
active role:

Rule-array keyword Offset Command

SHA-1 X'00E4' HMAC Generate - SHA-1

SHA-224 X'00E5' HMAC Generate - SHA-224

SHA-256 X'00E6' HMAC Generate - SHA-256

SHA-384 X'00E7' HMAC Generate - SHA-384

SHA-512 X'00E8' HMAC Generate - SHA-512

Usage notes
The usage notes for CSNBHMG.

None.

Related information
More information about CSNBHMG is provided in other topics.

The HMAC Verify verb is described in “HMAC Verify (CSNBHMV)” on page 423.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBHMGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBHMGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length
byte[] key_identifier,
hikmNativeNumber text_length,
byte[] text,
hikmNativeNumber chaining_vector_length,
byte[] chaining_vector,
hikmNativeNumber mac_length,
byte[] mac);

HMAC Generate (CSNBHMG)

422 Common Cryptographic Architecture Application Programmer's Guide

HMAC Verify (CSNBHMV)
Use the HMAC Verify verb to verify a keyed hash Message Authentication Code
(HMAC) for the message string provided as input.

A MAC key contained in an internal variable-length symmetric key-token is
required to verify the HMAC. The key must have the same value as the key used
to generate the HMAC.

Format
The format of CSNBHMV.

CSNBHMV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,
chaining_vector,
mac_length,
mac)

Parameters
The parameters for CSNBHMV.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 2 or 3.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The following table
lists the keywords. Each keyword is left-aligned in 8-byte fields and padded on
the right with blanks. All keywords must be in contiguous storage. The
rule_array keywords are described in Table 124.

Table 124. Keywords for HMAC Verify control information

Keyword Description

Token algorithm (One required)

HMAC Specifies that the HMAC algorithm is to be used to verify the MAC.

Hash method (One required)

HMAC Verify (CSNBHMV)

Chapter 10. Data integrity and message authentication 423

Table 124. Keywords for HMAC Verify control information (continued)

Keyword Description

SHA-1 Specifies the FIPS-198 HMAC procedure using the SHA-1 hash method, a symmetric key and text to
produce a 20-byte (160-bit) MAC.

SHA-224 Specifies the FIPS-198 HMAC procedure using the SHA-224 hash method, a symmetric key and text to
produce a 28-byte (224-bit) MAC.

SHA-256 Specifies the FIPS-198 HMAC procedure using the SHA-256 hash method, a symmetric key and text to
produce a 32-byte (256-bit) MAC.

SHA-384 Specifies the FIPS-198 HMAC procedure using the SHA-384 hash method, a symmetric key and text to
produce a 48-byte (384-bit) MAC.

SHA-512 Specifies the FIPS-198 HMAC procedure using the SHA-512 hash method, a symmetric key and text to
produce a 64-byte (512-bit) MAC.

Segmenting control (Optional)

FIRST First call, this is the first segment of data from the application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application program. This is the default value.

key_identifier_length

Direction: Input
Type: Integer

The length of the key_identifier parameter. The maximum value is 725.

key_identifier

Direction: Input/Output
Type: String

The 64-byte label or internal token of an encrypted HMAC or HMACVER key.

text_length

Direction: Input
Type: Integer

The length of the text you supply in the text parameter. The maximum length
of text is 214783647 bytes. For FIRST and MIDDLE calls, the text_length must
be a multiple of 64 for SHA-1, SHA-224, and SHA-256 hash methods, and a
multiple of 128 for SHA-384 and SHA-512 hash methods.

text

Direction: Input
Type: String

The application-supplied text for which the HMAC is to be verified.

chaining_vector_length

Direction: Input/Output
Type: Integer

The length of the chaining_vector in bytes. This value must be 128.

chaining_vector

HMAC Verify (CSNBHMV)

424 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input/Output
Type: String

An 128-byte string used as a system work area. Your application program must
not change the data in this string. The chaining vector permits data to be
chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac_length

Direction: Input
Type: Integer

The length of the mac parameter in bytes. The maximum value is 64.

mac

Direction: Input
Type: String

The field that contains the MAC value you want to verify.

Restrictions
The restrictions for CSNBHMV.

This verb was introduced with CCA 4.1.0.

Required commands
The required commands for CSNBHMV.

This verb requires the commands shown in the following table to be enabled in the
active role:

Rule-array keyword Offset Command

SHA-1 X'00F7' HMAC Verify - SHA-1

SHA-224 X'00F8' HMAC Verify - SHA-224

SHA-256 X'00F9' HMAC Verify - SHA-256

SHA-384 X'00FA' HMAC Verify - SHA-384

SHA-512 X'00FB' HMAC Verify - SHA-512

Usage notes
The usage notes for CSNBHMV.

None.

Related information
Additional information about CSNBHMV,

The HMAC Generate verb is described in “HMAC Generate (CSNBHMG)” on
page 419.

HMAC Verify (CSNBHMV)

Chapter 10. Data integrity and message authentication 425

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBHMVJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBHMVJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length
byte[] key_identifier,
hikmNativeNumber text_length,
byte[] text,
hikmNativeNumber chaining_vector_length,
byte[] chaining_vector,
hikmNativeNumber mac_length,
byte[] mac);

MAC Generate (CSNBMGN)
When a message is sent, an application program can generate an authentication
code for it using the MAC Generate verb.

This verb generates a 4-byte, 6-byte, or 8-byte Message Authentication Code
(MAC) for an application-supplied text string.

This verb computes the Message Authentication Code using one of the following
methods:
v Using the ANSI X9.9-1 single key algorithm, a single-length MAC generation

key or data-encrypting key, and the message text.
v Using the ANSI X9.19 optional double key algorithm, a double-length MAC

generation key and the message text.
v Using the Europay, MasterCard and Visa (EMV) padding rules.

The MAC can be the leftmost 32 or 48 bits of the last block of the ciphertext or the
entire last block (64 bits) of the ciphertext. The originator of the message sends the
Message Authentication Code with the message text.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Host CPU acceleration: CPACF
Only keys with a key type of DATA can be used successfully with the CPACF
exploitation layer through this verb.

Specifically, a DATA key has a CV (Control Vector) of all X'00' bytes for all active
bytes of the CV (eight bytes for 8-byte DES keys, 16 bytes for 16-byte DES keys,
and 16 bytes for 24-byte DES keys).

For details about CPACF, see “CPACF support” on page 14.

HMAC Verify (CSNBHMV)

426 Common Cryptographic Architecture Application Programmer's Guide

|

Format
The format of CSNBMGN.

CSNBMGN(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac)

Parameters
The parameters for CSNBMGN.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_identifier

Direction: Input/Output
Type: String

The 64-byte key label or internal key token that identifies a single-length or
double-length MAC generate key or a single-length DATA or DATAM key.
The type of key depends on the MAC process rule in the rule_array parameter.

text_length

Direction: Input
Type: Integer

The length of the text you supply in the text parameter. If the text_length is not
a multiple of eight bytes and if the ONLY or LAST keyword of the rule_array
parameter is called, the text is padded in accordance with the processing rule
specified.

text

Direction: Input
Type: String

The application-supplied text for which the MAC is generated.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, 2, or 3.

rule_array

Direction: Input
Type: String array

Zero to three keywords that provide control information to the verb. The

MAC Generate (CSNBMGN)

Chapter 10. Data integrity and message authentication 427

keywords are described in Table 125. The keywords must be in 24 bytes of
contiguous storage with each of the keywords left-aligned in its own 8-byte
location and padded on the right with blanks. For example,
’X9.9-1 MIDDLE MACLEN4 ’

The order of the rule_array keywords is not fixed.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords. The
rule_array keywords are described in Table 125.

Table 125. Keywords for MAC Generate control information

Keyword Description

MAC process rules (One, optional)

EMVMAC EMV padding rule with a single-length MAC key. The key_identifier parameter must identify a
single-length MAC or a single-length DATA key. The text is always padded with 1 - 8 bytes so the
resulting text length is a multiple of eight bytes. The first pad character is X'80'. The remaining pad
characters are X'00'.

EMVMACD EMV padding rule with a double-length MAC key. The key_identifier parameter must identify a
double-length MAC key. The padding rules are the same as for keyword EMVMAC.

TDES-MAC ANSI X9.9-1 procedure using ISO 16609 CBC mode triple-DES (TDES) encryption of the data. Uses a
double-length key.

X9.19OPT ANSI X9.19 optional double key MAC procedure. The key_identifier parameter must identify a
double-length MAC key. The padding rules are the same as for keyword X9.9-1.

X9.9-1 ANSI X9.9-1 and X9.19 basic procedure. The key_identifier parameter must identify a single-length
MAC or a single-length DATA key. X9.9-1 causes the MAC to be computed from all of the data. The
text is padded only if the text length is not a multiple of eight bytes. If padding is required, the pad
character X'00' is used. This is the default value.

Segmenting control (One, optional)

FIRST First call; this is the first segment of data from the application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application program. This is the default value.

MAC length and presentation (One, optional)

HEX-8 Generates a 4-byte MAC value and presents it as 8 hexadecimal characters.

HEX-9 Generates a 4-byte MAC value and presents it as two groups of 4 hexadecimal characters with a
space between the groups.

MACLEN4 Generates a 4-byte MAC value. This is the default value.

MACLEN6 Generates a 6-byte MAC value.

MACLEN8 Generates an 8-byte MAC value.

chaining_vector

Direction: Input/Output
Type: String

An 18-byte string that CCA uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac

MAC Generate (CSNBMGN)

428 Common Cryptographic Architecture Application Programmer's Guide

Direction: Output
Type: String

The 8-byte or 9-byte field in which the verb returns the MAC value if the
segmenting rule is ONLY or LAST. Allocate an 8-byte field for MAC values of
four bytes, six bytes, eight bytes, or HEX-8. Allocate a 9-byte MAC field if you
specify HEX-9 in the rule_array parameter.

Restrictions
The restrictions for CSNBMGN.

It might seem intuitive that a DATAM key should also be usable for the MAC
Generate verb, and a DATAMV key for the MAC Verify verb, with the CPACF
exploitation layer. However, this would violate the security restrictions imposed by
the user when the user creates a key of type DATAM or DATAMV. A DES key
that has been translated for use with the CPACF (see “CPACF support” on page
14) can be used with CPACF DES encrypt and decrypt operations, an operation
that is by definition not allowed for a DATAM or DATAMV key type. Also note
that by definition both through z/OS CCA-ICSF and in this S390 Linux CCA
access layer, a DATA key of 16 bytes or 24 bytes in length is restricted from use
with the X9.19OPT and EMVMACD rule_array keyword specified MAC
algorithms. The only available MAC algorithm for a 16-byte or 24-byte DATA key
is the TDES-MAC algorithm.

Also note that the CPACF exploitation layer is activated only for MAC Generate or
MAC Verify calls that specify the ONLY rule_array keyword for segmenting control
(this is the default segmenting control if no segmenting control rule_array keyword
is specified). The reason for this is that the intermediate MAC context for normal
CEX*C calls to MAC Generate and MAC Verify is protected by the adapter Master
Key. Because the same security cannot be provided for intermediate results from
the host-based CPACF exploitation layer (they are returned in the clear by the
CPACF) the FIRST, MIDDLE, and LAST segmenting control keywords will direct
operations to the CEX*C.

Required commands
The required commands for CSNBMGN.

This verb requires the MAC Generate command (offset X'0010') to be enabled in the
active role.

Usage notes
The usage notes for CSNBMGN.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBMGNJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBMGNJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,

MAC Generate (CSNBMGN)

Chapter 10. Data integrity and message authentication 429

byte[] exit_data,
byte[] key_identifier,
hikmNativeNumber text_length,
byte[] text,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] chaining_vector,
byte[] mac);

MAC Generate2 (CSNBMGN2)
Use the MAC Generate2 service to generate a keyed hash message authentication
code (HMAC) or a ciphered message authentication code (CMAC) for the message
string provided as input. A MAC key with key usage that can be used for generate
is required to calculate the MAC.

The MAC generate key must be in a variable-length HMAC key token for HMAC
and an AES MAC token for CMAC.

Format
The format of CSNBMGN2.

CSNBMGN2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
message_text_length,
message_text,
chaining_vector_length,
chaining_vector,
mac_length,
mac)

Parameters
The parameters for CSNBMGN2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, 2, or 3.

rule_array

Direction: Input
Type: String array

The rule_array contains keywords that provide control information to the
callable service. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with

MAC Generate (CSNBMGN)

430 Common Cryptographic Architecture Application Programmer's Guide

blanks. The rule_array keywords are described in Table 126.

Table 126. Keywords for MAC Generate2 control information

Keyword Description

Token algorithm (One, required)

AES Specifies the use of the AES CMAC algorithm to generate a MAC.

HMAC Specifies the use of the HMAC algorithm to generate a MAC.

Hash method (One, required for HMAC only)

SHA-1 Specifies the use of the SHA-1 hash method.

SHA-224 Specifies the use of the SHA-224 hash method.

SHA-256 Specifies the use of the SHA-256 hash method.

SHA-384 Specifies the use of the SHA-384 hash method.

SHA-512 Specifies the use of the SHA-512 hash method.

Segmenting Control (One, optional)

ONLY Only call. Segmenting is not employed by the application program. This is the
default value.

FIRST First call. This is the first segment of data from the application program.

MIDDLE Middle call. This is an intermediate data segment.

LAST Last call. This is the last data segment.

key_identifier_length

Direction: Input/Output
Type: String

The length in bytes of the key_identifier parameter. If the key_identifier
parameter contains a label, the value must be 64. Otherwise, the value must be
at least the actual token length, up to 725.

key_identifier

Direction: Input/Output
Type: String

The identifier of the key to generate the MAC. The key identifier is an
operational token or the key label of an operational token in key storage.

For the HMAC algorithm, the key algorithm must be HMAC and the key
usage fields must indicate GENONLY or GENERATE and the hash method
selected. For the AES algorithm, the key algorithm must be AES, the key type
must be MAC, and the key usage fields must indicate GENONLY or
GENERATE and must indicate CMAC.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

message_text_length

Direction: Input
Type: Integer

The length of the text you supply in the message_text parameter. The
maximum length of text is 214783647 bytes. For FIRST and MIDDLE calls, the
message_text_length must be:
v a multiple of 64 for the SHA-1, SHA-224, and SHA-256 hash methods

MAC Generate2 (CSNBMGN2)

Chapter 10. Data integrity and message authentication 431

v a multiple of 128 for the SHA-384 and SHA-512 hash methods
v a multiple of 16 for the AES CMAC method.

message_text

Direction: Input
Type: String

The application-supplied text for which the MAC is generated.

chaining_vector_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable specifying the length in bytes of the
chaining_vector parameter. The value must be 128.

chaining_vector

Direction: Input/Output
Type: String

A pointer to a string variable containing a work area that the security server
uses to carry segmented data between procedure calls. When the segmenting
control is FIRST or ONLY, this value is ignored, but must be declared.

mac_length

Direction: Input/Output
Type: Integer

The length of the mac parameter in bytes. This parameter is updated to the
actual length of the MAC parameter on output. For HMAC, the minimum value
is 4 and the maximum value is 64. For AES, the value must be 16.

mac

Direction: Output
Type: String

The field in which the callable service returns the MAC value if the
segmenting rule is ONLY or LAST.

Restrictions
The restrictions for CSNBMGN2.

None.

Required commands
The required commands for CSNBMGN2.

The MAC Generate2 verb requires the commands listed in Table 127 to be enabled
in the active role based on the keyword specified for the process rule:

Table 127. CSNBMGN2 access control points.

Hash method /
Rule-array keyword Offset Command

AES CMAC X'0336' MAC Generate2 - AES CMAC

MAC Generate2 (CSNBMGN2)

432 Common Cryptographic Architecture Application Programmer's Guide

Table 127. CSNBMGN2 access control points (continued).

Hash method /
Rule-array keyword Offset Command

SHA-1 X'00E4'1) HMAC Generate - SHA-1

SHA-224 X'00E5'1) HMAC Generate - SHA-224

SHA-256 X'00E6'1) HMAC Generate - SHA-256

SHA-384 X'00E7'1) HMAC Generate - SHA-384

SHA-512 X'00E8'1) HMAC Generate - SHA-512
1) A role with this offset enabled can also use the HMAC Generate verb.

Usage notes
The usage notes for CSNBMGN2.

None.

Related information
Additional information about CSNBMGN2.

The MAC Verify2 verb is described in “MAC Verify2 (CSNBMVR2)” on page 438.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBMGN2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBMGN2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length,
byte[] key_identifier,
hikmNativeNumber message_text_length,
byte[] message_text,
hikmNativeNumber chaining_vector_length,
byte[] chaining_vector,
hikmNativeNumber mac_length,
byte[] mac);

MAC Verify (CSNBMVR)
When the receiver gets a message, an application program calls the MAC Verify
verb.

This verb verifies a 4-byte, 6-byte, or 8-byte Message Authentication Code (MAC)
for an application-supplied text string. This verb verifies a MAC by generating
another MAC and comparing it with the MAC received with the message. This
process takes place entirely within the secure module on the coprocessor. If the two
codes are the same, the message sent was the same one received. A return code

MAC Generate2 (CSNBMGN2)

Chapter 10. Data integrity and message authentication 433

indicates whether the MACs are the same. The generated MAC never appears in
storage and is not revealed outside the cryptographic feature.

The MAC Verify verb can use any of the following methods to generate the MAC
for authentication:
v The ANSI X9.9-1 single key algorithm, a single-length MAC verification or MAC

generation key (or a data-encrypting key), and the message text.
v The ANSI X9.19 optional double key algorithm, a double-length MAC

verification or MAC generation key and the message text.
v Using the Europay, MasterCard and Visa (EMV) padding rules.

The method used to verify the MAC should correspond with the method used to
generate the MAC.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Host CPU acceleration: CPACF
Only keys with a key type of DATA can be used successfully with the CPACF
exploitation layer through this verb.

Specifically, a DATA key has a CV (Control Vector) of all X'00' bytes for all active
bytes of the CV (eight bytes for 8-byte DES keys, 16 bytes for 16-byte DES keys,
and 16 bytes for 24-byte DES keys).

For details about CPACF, see “CPACF support” on page 14.

Format
The format of CSNBMVR.

CSNBMVR(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac)

Parameters
The parameters for CSNBMVR.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_identifier

Direction: Input/Output
Type: String

The 64-byte key label or internal key token that identifies a single-length or
double-length MAC verify key, a single-length or double-length MAC
generation key, or a single-length DATA key. The type of key depends on the

MAC Verify (CSNBMVR)

434 Common Cryptographic Architecture Application Programmer's Guide

|

MAC process rule in the rule_array parameter.

text_length

Direction: Input
Type: Integer

You supply the length of the cleartext in the text parameter. If the text_length
parameter is not a multiple of eight bytes and if the ONLY or LAST keyword
of the rule_array parameter is called, the text is padded in accordance with the
processing rule specified.

text

Direction: Input
Type: String

The application-supplied text for which the MAC is verified.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, 2, or 3.

rule_array

Direction: Input
Type: String array

Zero to three keywords that provide control information to the verb. The
keywords are described in Table 128. The keywords must be in 24 bytes of
contiguous storage with each of the keywords left-aligned in its own 8-byte
location and padded on the right with blanks. For example,
’X9.9-1 MIDDLE MACLEN4 ’

The order of the rule_array keywords is not fixed.

You can specify one of the MAC processing rules, and then choose one of the
segmenting control keywords and one of the MAC length keywords. The
rule_array keywords are described in Table 128.

Table 128. Keywords for MAC Verify control information

Keyword Description

MAC process rules (One, optional)

EMVMAC EMV padding rule with a single-length MAC key. The key_identifier parameter must identify a
single-length MAC, MACVER, or DATA key. The text is always padded with 1 - 8 bytes, so that the
resulting text length is a multiple of eight bytes. The first pad character is X'80'. The remaining pad
characters are X'00'.

EMVMACD EMV padding rule with a double-length MAC key. The key_identifier parameter must identify a
double-length MAC or MACVER key. The padding rules are the same as for EMVMAC.

TDES-MAC ANSI X9.9-1 procedure using ISO 16609 CBC mode triple-DES (TDES) encryption of the data. Uses a
double-length key.

X9.9-1 ANSI X9.9-1 and X9.19 basic procedure. The key_identifier parameter must identify a single-length
MAC, MACVER, or DATA key. X9.9-1 causes the MAC to be computed from all the data. The text is
padded only if the text length is not a multiple of eight bytes. If padding is required, the pad
character X'00' is used. This is the default value.

MAC Verify (CSNBMVR)

Chapter 10. Data integrity and message authentication 435

Table 128. Keywords for MAC Verify control information (continued)

Keyword Description

X9.19OPT ANSI X9.19 optional double-length MAC procedure. The key_identifier parameter must identify a
double-length MAC or MACVER key. The padding rules are the same as for X9.9-1.

Segmenting control (Optional)

FIRST First call. This is the first segment of data from the application program.

LAST Last call. This is the last data segment.

MIDDLE Middle call. This is an intermediate data segment.

ONLY Only call. The application program does not employ segmenting. This is the default value.

MAC length and presentation (Optional)

HEX-8 Verifies a 4-byte MAC value represented as 8 hexadecimal characters.

HEX-9 Verifies a 4-byte MAC value represented as two groups of 4 hexadecimal characters with a space
character between the groups.

MACLEN4 Verifies a 4-byte MAC value. This is the default value.

MACLEN6 Verifies a 6-byte MAC value.

MACLEN8 Verifies an 8-byte MAC value.

chaining_vector

Direction: Input/Output
Type: String

An 18-byte string CCA uses as a system work area. Your application program
must not change the data in this string. The chaining vector permits data to be
chained from one invocation call to another.

On the first call, initialize this parameter to binary zeros.

mac

Direction: Input
Type: String

The 8-byte or 9-byte field that contains the MAC value you want to verify. The
value in the field must be left-aligned and padded with zeros. If you specified
the HEX-9 keyword in the rule_array parameter, the input MAC is nine bytes in
length.

Restrictions
The restrictions for CSNBMVR.

It might seem intuitive that a DATAM key should also be usable for the MAC
Generate verb, and a DATAMV key for the MAC Verify verb, with the CPACF
exploitation layer. However, this would violate the security restrictions imposed by
the user when the user creates a key of type DATAM or DATAMV. A DES key
that has been translated for use with the CPACF (see “CPACF support” on page
14) can be used with CPACF DES encrypt and decrypt operations, an operation
that is by definition not allowed for a DATAM or DATAMV key type. Also note
that by definition both through z/OS CCA-ICSF and in this S390 Linux CCA
access layer, a DATA key of 16 bytes or 24 bytes in length is restricted from use
with the X9.19OPT and EMVMACD rule_array keyword specified MAC
algorithms. The only available MAC algorithm for a 16-byte or 24-byte DATA key
is the TDES-MAC algorithm.

MAC Verify (CSNBMVR)

436 Common Cryptographic Architecture Application Programmer's Guide

Also note that the CPACF exploitation layer is activated only for MAC Generate or
MAC Verify calls that specify the ONLY rule_array keyword for segmenting control
(this is the default segmenting control if no segmenting control rule_array keyword
is specified). The reason for this is that the intermediate MAC context for normal
CEX*C calls to MAC Generate and MAC Verify is protected by the adapter Master
Key. Because the same security cannot be provided for intermediate results from
the host-based CPACF exploitation layer (they are returned in the clear by the
CPACF) the FIRST, MIDDLE, and LAST segmenting control keywords will direct
operations to the CEX*C.

Required commands
The required commands for CSNBMVR.

This verb requires the MAC Verify command (offset X'0011') to be enabled in the
active role.

Usage notes
The usage notes for CSNBMVR.

To verify a MAC in one call, specify the ONLY keyword on the segmenting rule
keyword for the rule_array parameter. For two or more calls, specify the FIRST
keyword for the first input block, MIDDLE for intermediate blocks (if any), and
LAST for the last block.

For a given text string, the MAC resulting from the verification process is the same
regardless of how the text is segmented or how it was segmented when the
original MAC was generated.

Related information
Additional information for CSNBMVR.

The MAC Generate verb is described in “MAC Generate (CSNBMGN)” on page
426.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBMVRJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBMVRJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_identifier,
hikmNativeNumber text_length,
byte[] text,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] chaining_vector,
byte[] mac);

MAC Verify (CSNBMVR)

Chapter 10. Data integrity and message authentication 437

MAC Verify2 (CSNBMVR2)
Use the MAC Verify2 verb to verify a keyed hash message authentication code
(HMAC) or a ciphered message authentication code (CMAC) for the message text
provided as input. A MAC key with key usage that can be used for verify is
required to verify the MAC.

The MAC verify key must be in a variable-length HMAC key token for HMAC
and an AES MAC token for CMAC.

Format
The format of CSNBMVR2.

CSNBMVR2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
message_text_length,
message_text,
chaining_vector_length,
chaining_vector,
mac_length,
mac)

Parameters
The parameters for CSNBMVR2.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

rule_array

Direction: Input
Type: String array

The rule_array contains keywords that provide control information to the
MAC Verify2 callable service. The keywords are described in Table 129.

Table 129. Keywords for MAC Verify2 control information

Keyword Description

Token algorithm (One, required)

AES Specifies the use of the AES CMAC algorithm to generate a MAC.

HMAC Specifies the use of the HMAC algorithm to generate a MAC.

Hash method (One required for HMAC only)

MAC Verify2 (CSNBMVR2)

438 Common Cryptographic Architecture Application Programmer's Guide

Table 129. Keywords for MAC Verify2 control information (continued)

Keyword Description

SHA-1 Specifies the use of the SHA-1 hash method.

SHA-224 Specifies the use of the SHA-224 hash method.

SHA-256 Specifies the use of the SHA-256 hash method.

SHA-384 Specifies the use of the SHA-384 hash method.

SHA-512 Specifies the use of the SHA-512 hash method.

Segmenting Control (One optional)

FIRST First call. This is the first segment of data from the application program.

LAST Last call. This is the last data segment.

MIDDLE Middle call. This is an intermediate data segment.

ONLY Only call. Segmenting is not employed by the application program. This is the default value.

key_identifier_length

Direction: Input
Type: Integer

Length of the key_identifier parameter in bytes. If the key_identifier
parameter contains a label, the value must be 64. Otherwise, the value must be
at least the actual token length, up to 725.

key_identifier

Direction: Input/Output
Type: String

The identifier of the key to verify the MAC. The key identifier is an
operational token or the key label of an operational token in key storage.

For the HMAC algorithm, the key algorithm must be HMAC and the key
usage fields must indicate GENERATE or VERIFY and the hash method
selected. For the AES algorithm, the key algorithm must be AES, the key type
must be MAC, and the key usage fields must indicate GENERATE or VERIFY
and must indicate CMAC.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

message_text_length

Direction: Input
Type: Integer

The length of the cleartext you supply in the message_text parameter. The
maximum length of text is 214783647 bytes. For FIRST and MIDDLE calls, the
message_text_length must be:
v a multiple of 64 for the SHA-1, SHA-224, and SHA-256 hash methods,
v a multiple of 128 for the SHA-384 and SHA-512 hash methods,
v a multiple of 16 for the AES CMAC method.

message_text

Direction: Input
Type: String

MAC Verify2 (CSNBMVR2)

Chapter 10. Data integrity and message authentication 439

The application-supplied text for which the MAC is generated.

chaining_vector_length

Direction: Input
Type: Integer

Specifies the length in bytes of the chaining_vector parameter. The value must
be 128.

chaining_vector

Direction: Input/Output
Type: String

A pointer to a string variable containing a work area that the security server
uses to carry segmented data between procedure calls. When the segmenting
control is FIRST or ONLY, this value is ignored but must be declared.
Important: Application programs must not alter the contents of this variable
between related FIRST, MIDDLE, and LAST calls.

mac_length

Direction: Input
Type: Integer

Specifies the length in bytes of the mac parameter. The value must be equal to
the number of MAC bytes to be verified, up to a maximum of 64.

mac

Direction: Input
Type: String

The field that contains the MAC value you want to verify.

Restrictions
The restrictions for CSNBMVR2.

None.

Required commands
The required commands for CSNBMVR2.

The CSNBMVR2 verb requires the commands listed in Table 130 to be enabled in
the active role.

Table 130. Required commands for CSNBMVR2.

Hash method/Rule-array keword Offset Command

AES X'0337' MAC Verify2 - AES CMAC

SHA-1 X'00F7' 1) HMAC Verify - SHA-1

SHA-224 X'00F8'1) HMAC Verify - SHA-224

SHA-256 X'00F9'1) HMAC Verify - SHA-256

SHA-384 X'00FA'1) HMAC Verify - SHA-384

SHA-512 X'00FB'1) HMAC Verify - SHA-512
1) A role with this offset enabled can also use theHMAC Verify verb.

MAC Verify2 (CSNBMVR2)

440 Common Cryptographic Architecture Application Programmer's Guide

Usage notes
The usage notes for CSNBMVR2.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBMVR2J.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBMVR2J(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length,
byte[] key_identifier,
hikmNativeNumber message_text_length,
byte[] message_text,
hikmNativeNumber chaining_vector_length,
byte[] chaining_vector,
hikmNativeNumber mac_length,
byte[] mac);

MDC Generate (CSNBMDG)
Use this verb to create a 128-bit hash value (Modification Detection Code) on a
data string whose integrity you intend to confirm.

After using this verb to generate an MDC, you can compare the MDC to a known
value or communicate the value to another entity so that they can compare the
MDC hash value to one that they calculate. This verb enables you to perform the
following tasks:
v Specify the two-encipherment or four-encipherment version of the algorithm.
v Segment your text into a series of verb calls.
v Use the default or a keyed-hash algorithm.

The user must enable the MDC Generate command (offset X'008A') with a Trusted
Key Entry (TKE) workstation before using this verb.

For a description of the MDC calculations, see “Modification Detection Code
calculation” on page 1024.

Specifying two or four encipherments: Four encipherments per algorithm round
improve security; two encipherments per algorithm round improve performance.
To specify the number of encipherments, use the MDC-2, MDC-4, PADMDC-2, or
PADMDC-4 keyword with the rule_array parameter. Two encipherments create
results that differ from four encipherments; ensure that the same number of
encipherments are used to verify the MDC.

Segmenting text: This verb lets you segment text into a series of verb calls. If you
can present all of the data to be hashed in a single invocation of the verb (32 MB)
of data, use the rule_array keyword ONLY. Alternatively, you can segment your

MAC Verify2 (CSNBMVR2)

Chapter 10. Data integrity and message authentication 441

text and present the segments with a series of verb calls. Use the rule_array
keywords and LAST for the first and last segments. If more than two segments are
used, specify the rule_array keyword MIDDLE for the additional segments.

Between verb calls, unprocessed text data and intermediate information from the
partial MDC calculation is stored in the chaining_vector variable and the MDC key
in the MDC variable. During segmented processing, the application program must
not change the data in either of these variables.

Keyed hash: This verb can be used with a default key, or as a keyed-hash
algorithm. A default key is used whenever the ONLY or FIRST segmenting and
key control keywords are used. To use the verb as a keyed-hash algorithm, do the
following:
1. On the first call to the verb, place the non-null key into the MDC variable.
2. Ensure that the chaining_vector variable is set to null (18 bytes of X'00').
3. Decide if the text will be processed in a single segment or multiple segments.
v For a single segment of text, use the LAST keyword.
v For multiple segments of text, begin with the MIDDLE keyword and

continue using the MIDDLE keyword up to the final segment of text. For the
final segment, use the LAST keyword.

As with the default key, you must not alter the value of the MDC or chaining_vector
variables between calls.

Format
The format of CSNBMDG.

CSNBMDG(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mdc)

Parameters
The parameters for CSNBMDG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

text_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
text variable. See “Restrictions” on page 444.

text

Direction: Input

MDC Generate (CSNBMDG)

442 Common Cryptographic Architecture Application Programmer's Guide

Type: String

A pointer to a string variable containing the text for which the verb calculates
the MDC value.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value can be 0, 1, or 2.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. A keyword specifies
the method for calculating the RSA digital signature. Each keyword is
left-aligned in an 8-byte field and padded on the right with blanks. All
keywords must be in contiguous storage. The rule_array keywords are
described in Table 131.

Table 131. Keywords for MDC Generate control information

Keyword Description

Segmenting and key control (One, optional)

ONLY Specifies that segmenting is not used and the default key is used. This is the default.

FIRST Specifies the first segment of text, and use of the default key.

MIDDLE Specifies an intermediate segment of text, or the first segment of text and use of a user-supplied
key.

LAST Specifies the last segment of text, or that segmenting is not used, and use of a user-supplied key.

Algorithm mode (One, optional)

MDC-2 Specifies two encipherments for each 8-byte block using MDC procedures. This is the default.

MDC-4 Specifies four encipherments for each 8-byte block using MDC procedures.

PADMDC-2 Specifies two encipherments for each 8-byte block using PADMDC procedures.

PADMDC-4 Specifies four encipherments for each 8-byte block using PADMDC procedures.

chaining_vector

Direction: Input/Output
Type: String

A pointer to an 18-byte string variable the security server uses as a work area
to hold segmented data between verb invocations.

Important: When segmenting text, the application program must not change
the data in this string between verb calls to the MDC Generate verb.

mdc

Direction: Input/Output
Type: String

A pointer to a user-supplied MDC key or to a 16-byte string variable
containing the MDC value. This value can be the key that the application

MDC Generate (CSNBMDG)

Chapter 10. Data integrity and message authentication 443

program provides. This variable is also used to hold the intermediate MDC
result when segmenting text.

IMPORTANT: When segmenting text, the application program must not
change the data in this string between verb calls to the MDC Generate verb.

Restrictions
The restrictions for CSNBMDG.
v When padding is requested (by specifying an algorithm mode keyword of

PADMDC-2 or PADMDC-4), a text length of zero is valid for any
segment-control keyword specified in the rule_array variable FIRST, MIDDLE,
LAST, or ONLY). When LAST or ONLY is specified, the supplied text is padded
with X'FF' bytes and a padding count in the last byte to bring the total text
length to the next multiple of 8 that is greater than or equal to 16.

v When no padding is requested (by specifying an algorithm mode keyword of
MDC-2 or MDC-4), the total length of text provided (over a single or segmented
calls) must be a minimum of 16 bytes and a multiple of eight bytes. For
segmented calls (that is, segmenting and key control keyword is not ONLY), a
text length of zero is valid on any of the calls.

Required commands
The required commands for CSNBMDG.

In releases prior to CCA 4.1.0 and for installations without CPACF support this
verb requires the MDC Generate command (offset X'008A') to be enabled in the
active role. This command is no longer required in CCA 4.1.0 when CPACF
clear-key function is available (KM, function 1), and enabled for CCA use
(environment variable CSU_HCPUACLR is set to '1', the default value).

The user must enable the MDC Generate command with a Trusted Key Entry (TKE)
workstation before using this verb.

Usage notes
The usage notes for CSNBMDG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBMDGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBMDGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber text_length,
byte[] text_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] chaining_vector,
byte[] mdc);

MDC Generate (CSNBMDG)

444 Common Cryptographic Architecture Application Programmer's Guide

One-Way Hash (CSNBOWH)
Use the One-Way Hash verb to generate a one-way hash on specified text.

These SHA based hashing functions are supported with the CPACF exploitation
layer: SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. For details about
CPACF, see “CPACF support” on page 14.

Format
The format of CSNBOWH.

CSNBOWH(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
chaining_vector_length,
chaining_vector,
hash_length,
hash)

Parameters
The parameters for CSNBOWH.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1 or 2.

rule_array

Direction: Input
Type: String array

These keywords provide control information to the verb. The optional chaining
flag keyword indicates whether calls to this verb are chained together logically
to overcome buffer size limitations. Each keyword is left-aligned in an 8-byte
field and padded on the right with blanks. All keywords must be in
contiguous storage. The rule_array keywords are described in Table 132.

Table 132. Keywords for One-Way Hash control information

Keyword Description

Hash method (One, required). The SHA-based hashing functions use CPACF by default. For details about CPACF,
see “CPACF support” on page 14.

MD5 Hash algorithm is MD5 algorithm. Use this hash method for PKCS-1.0 and PKCS-1.1. Length of
hash generated is 16 bytes.

RPMD-160 Hash algorithm is RIPEMD-160. Length of hash generated is 20 bytes.

One-Way Hash (CSNBOWH)

Chapter 10. Data integrity and message authentication 445

Table 132. Keywords for One-Way Hash control information (continued)

Keyword Description

SHA-1 Hash algorithm is SHA-1 algorithm. Length of hash generated is 20 bytes.

SHA-224 Hash algorithm is SHA-224 algorithm. Length of hash generated is 20 bytes.

SHA-256 Hash algorithm is SHA-256 algorithm. Length of hash generated is 20 bytes.

SHA-384 Hash algorithm is SHA-384 algorithm. Length of hash generated is 20 bytes.

SHA-512 Hash algorithm is SHA-512 algorithm. Length of hash generated is 20 bytes.

Chaining flag (One, optional)

FIRST Specifies this is the first call in a series of chained calls. Intermediate results are stored in the hash
field.

LAST Specifies this is the last call in a series of chained calls.

MIDDLE Specifies this is a middle call in a series of chained calls. Intermediate results are stored in the hash
field.

ONLY Specifies this is the only call and the call is not chained. This is the default.

text_length

Direction: Input
Type: Integer

The length of the text parameter in bytes.

Note: If you specify the FIRST or MIDDLE keyword, the text length must be
a multiple of the block size of the hash method. For MD5, RPMD-160, and
SHA-1, this is a multiple of 64 bytes.

For ONLY and LAST, this verb performs the required padding according to
the algorithm specified.

text

Direction: Input
Type: String

The application-supplied text on which this verb performs the hash.

chaining_vector_length

Direction: Input
Type: Integer

The byte length of the chaining_vector parameter. This must be 128 bytes.

chaining_vector

Direction: Input/Output
Type: String

This field is a 128-byte work area. Your application must not change the data
in this string. The chaining vector permits chaining data from one call to
another.

hash_length

Direction: Input
Type: Integer

One-Way Hash (CSNBOWH)

446 Common Cryptographic Architecture Application Programmer's Guide

The length of the supplied hash field in bytes.

Note: For SHA-1 and RPMD-160 this must be a minimum of 20 bytes. For
MD5 this must be a minimum of 16 bytes.

hash

Direction: Input/Output
Type: String

This field contains the hash, left-aligned. The processing of the rest of the field
depends on the implementation. If you specify the FIRST or MIDDLE
keyword, this field contains the intermediate hash value. Your application must
not change the data in this field between the sequence of FIRST, MIDDLE,
and LAST calls for a specific message.

Restrictions
The restrictions for CSNBOWH.

None.

Required commands
The required commands for CSNBOWH.

None.

Usage notes
The usage notes for CSNBOWH.

Although the algorithms accept zero bit length text, it is not supported for any
hashing method.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBOWHJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBOWHJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber text_length,
byte[] text,
hikmNativeNumber chaining_vector_length,
byte[] chaining_vector,
hikmNativeNumber hash_length,
byte[] hash);

One-Way Hash (CSNBOWH)

Chapter 10. Data integrity and message authentication 447

One-Way Hash (CSNBOWH)

448 Common Cryptographic Architecture Application Programmer's Guide

Chapter 11. Key storage mechanisms

You can use key storage mechanisms and the associated key record verbs to
perform operations on key tokens and key records located in AES, DES, and PKA
key storage.

A key-token record consists of a key-token name (key label) and a key token of
format null, internal, or external. The operations to be performed are: creating,
writing, reading, listing, and deleting key tokens or key records.

The verbs described in this chapter include:
v “AES Key Record Create (CSNBAKRC)” on page 455
v “AES Key Record Delete (CSNBAKRD)” on page 457
v “AES Key Record List (CSNBAKRL)” on page 459
v “AES Key Record Read (CSNBAKRR)” on page 462
v “AES Key Record Write (CSNBAKRW)” on page 464
v “DES Key Record Create (CSNBKRC)” on page 466
v “DES Key Record Delete (CSNBKRD)” on page 467
v “DES Key Record List (CSNBKRL)” on page 469
v “DES Key Record Read (CSNBKRR)” on page 471
v “DES Key Record Write (CSNBKRW)” on page 473
v “PKA Key Record Create (CSNDKRC)” on page 474
v “PKA Key Record Delete (CSNDKRD)” on page 476
v “PKA Key Record List (CSNDKRL)” on page 478
v “PKA Key Record Read (CSNDKRR)” on page 480
v “PKA Key Record Write (CSNDKRW)” on page 482
v “Retained Key Delete (CSNDRKD)” on page 484
v “Retained Key List (CSNDRKL)” on page 487

Key labels and key-storage management
Use these verbs to manage AES, DES, and PKA key storage.

The CCA software manages key storage as an indexed repository of key records.
Access key storage using a key label with verbs that have a key-label or
key-identifier parameter.

An independent key-storage system can be used to manage records for AES key
records, DES key records, and PKA key records:

AES key storage
Holds external, internal, and null AES or HMAC key tokens

DES key storage
Holds external, internal, and null DES key tokens

PKA key storage
Holds external, internal, and null PKA (ECC and RSA) key tokens, and
both internal and external public and private PKA key tokens

© Copyright IBM Corp. 2007, 2018 449

|

Private RSA keys are generated and optionally retained within the coprocessor
using the PKA Key Generate verb. Depending on the other uses for coprocessor
storage, between 75 and 150 keys can normally be retained within the coprocessor.

Key storage must be initialized before any records are created. Before a key token
can be stored in key storage, a key-storage record must be created using the AES
Key Record Create, DES Key Record Create, or PKA Key Record Create verb.

Use the AES Key Record Delete, DES Key Record Delete, or PKA Key Record
Delete verb to delete a key token from a key record, or to entirely delete the key
record from key storage.

Use the AES Key Record List, DES Key Record List, or PKA Key Record List verb
to determine the existence of key records in key storage. These list verbs create a
key-record-list file with information about select key records. The wildcard
character, represented by an asterisk (*), is used to obtain information about
multiple key records. The file can be read using conventional workstation-data-
management services.

Individual key tokens can be read using the AES Key Record Read, DES Key
Record Read, and PKA Key Record Read verbs or written using the AES Key
Record Write, DES Key Record Write, and PKA Key Record Write verbs.

Environment variables for the key storage file
These environment variables contain the name of the key storage file.

There is one for each type: AES, DES, and PKA.

CSUAESDS
AES key storage file.

CSUDESDS
DES key storage file.

CSUPKADS
PKA key storage file.

Key-label content
Use a key label to identify a record in key storage managed by a CCA
implementation.

The key label must be left-aligned in the 64-byte string variable used as input to
the verb. Some verbs use a key label while others use a key identifier. Calls that
use a key identifier accept either a key token or a key label.

A key-label character string has the following properties:
v It contains 64 bytes of data.
v The first character is within the range X'20' - X'FE'. If the first character is within

this range, the input is treated as a key label, even if it is otherwise not valid.
Inputs beginning with a byte valued in the range X'00' - X'1F' are considered to
be some form of key token. A first byte valued to X'FF' is not valid.

v The first character of the key label cannot be numeric (0 - 9).
v The label is ended by a space character on the right (in ASCII it is X'20', and in

EBCDIC it is X'40'). The remainder of the 64-byte field is padded with space
characters.

450 Common Cryptographic Architecture Application Programmer's Guide

v Construct a label with 1 - 7 name tokens, each separated by a period (.). The key
label must not end with a period.

v A name token consists of 1 - 8 characters in the character set A - Z, 0 - 9, and
three additional characters relating to different character symbols in the various
national language character sets as listed in Table 133.

Table 133. Valid symbols for the name token

ASCII systems EBCDIC systems USA graphic (for reference)

X'23' X'7B' #

X'24' X'5B' $

X'40' X'7C' @

The alphabetic and numeric characters and the period should be encoded in the
normal character set for the computing platform that is in use, either ASCII or
EBCDIC.

Note:

1. Some CCA implementations accept the characters a - z and fold these to their
uppercase equivalents, A - Z. For compatibility reasons, only use the
uppercase alphabetic characters.

2. Some implementations internally transform the EBCDIC encoding of a key
label to an ASCII string. Also, the label might be put in tokenized form by
dropping the periods and formatting each name token into 8-byte groups,
padded on the right with space characters.

Some verbs accept a key label containing a wild card represented by an asterisk (*).
(X'2A' in ASCII; X'5C' in EBCDIC). When a verb permits the use of a wild card, the
wild card can appear as the first character, as the last character, or as the only
character in a name token. Any of the name tokens can contain a wild card.

Examples of valid key labels include the following:
A
ABCD.2.3.4.5555
ABCDEFGH
BANKSYS.XXXXX.43*.PDQ

Examples of key labels that are not valid are listed in Table 134.

Table 134. Key labels that are not valid

Key label not valid Problem with key label

A/.B A slash is an unacceptable character

ABCDEFGH9 Name token is greater than 8 characters

1111111.2.3.4.55555 First character cannot be numeric

A1111111.2.3.4.55555.6.7.8 Number of name tokens exceeds 7

BANKSYS.XXXXX.*43*.D Number of wild cards exceeds 1

A.B. Last character cannot be a period

Key storage with Linux on Z, in contrast to z/OS
Key storage for IBM z/OS and for Linux on the IBM platforms other than IBM Z,
diverged in design at their very inception.

Chapter 11. Key storage mechanisms 451

Background information about master key management
There are four types (or sets) of master keys (Symmetric DES, AES, Asymmetric
RSA (PKA), and APKA).

There are three master key registers for each of the four types of master key. In
other words, there are a total of twelve master key registers.

The APKA master-key register set, introduced to CCA beginning with Release
4.1.0, is used to encrypt and decrypt the Object Protection Key (OPK) that is itself
used to wrap the key material of an Elliptic Curve Cryptography (ECC) key. ECC
keys are asymmetric.

For each of the four types, there is a master key register in one of these three
categories:

New master-key (NMK) register
This register holds a master key that is not yet usable for decrypting key
tokens for normal cryptographic operations.

The NMK register can be in one of these states:

EMPTY
No key parts have been loaded yet.

PARTIALLY FULL
Some key parts have been loaded, but not the LAST key part. See
“Master Key Process (CSNBMKP)” on page 157.

FULL The LAST key part has been loaded, but the SET command has not
yet been called. See “Master Key Process (CSNBMKP)” on page
157.

Current master-key (CMK) register
This register holds a master key that can be used to decrypt internal key
tokens for keys in use with normal cryptographic operations. Internal key
tokens are protected under the master key; the keys are actually stored
outside the adapter.

The CMK register can be in one of these states:

EMPTY
No valid key has yet been established with the SET command in
the life of this adapter, or the adapter has been re-initialized to
clear the master key registers.

VALID
A master key has been loaded with the SET command.

Old master-key (OMK) register
This is the master key that previously has been the CMK, before the master
key that is now in the CMK register. The OMK register can also be used to
decrypt internal key tokens, but for these keys a warning with return code
0 and reason code 2 is returned, along with the results from the requested
cryptographic operation.

The OMK register can be in one of these states:

EMPTY
No valid key is in this register.

VALID
A master key that previously was in the CMK register has been

452 Common Cryptographic Architecture Application Programmer's Guide

shifted to the OMK register by the SET command. The same
invocation of the SET command also shifted the contents of the
NMK register into the CMK register.

SET command
The SET command transfers the current master-key to the old master-key register,
and the new master-key to the current master-key register. It then clears the new
master-key register.

The SET command is invoked with “Master Key Process (CSNBMKP)” on page
157, and performs these commands:
1. The master key from the CMK register is copied to the OMK register.
2. The master key from the FULL NMK register is copied to the CMK register.
3. The NMK register status is changed to EMPTY.

Key Storage on z/OS (RTNMK-focused)
Design point - Keys should be re-enciphered to a master key in the NMK register.

This forces the following process to be followed when changing the master key:
v Load all the master key parts for a NMK, such that the LAST key part has been

loaded, but the SET command has not been issued. Now the NMK register is in
the FULL state.

v Re-encipher all of (for example: CKDS) an existing key storage to a copy of that
key storage that is not online, using the RTNMK rule_array keyword of “Key
Token Change (CSNBKTC)” on page 301 (for AES or DES) or “PKA Key Token
Change (CSNDKTC)” on page 710 (for PKA), creating CKDS-pending. Keys in
this copy are enciphered under the NMK register, and so are not usable for
normal cryptographic operations.

v Invoke the SET command for the NMK. See “SET command.” Now the master
keys in the current CKDS are enciphered under the OMK (because of the shift),
and are usable. Also, the master keys in the CKDS-pending are also usable
because the NMK has now become the CMK.

v Delete the old CKDS and change CKDS-pending to be the normal CKDS,
completing the process.

Key Storage for traditional IBM systems other than IBM Z
(RTCMK-focused: Linux, AIX, Windows)

Design point - Keys should be re-enciphered to a master key in the CMK register.

This forces the following process to be followed when changing the master key:
v Load all the master key parts for a NMK, such that the LAST key part has been

loaded, then issue the SET command. Now the previous OMK is gone, the
previous CMK is now the OMK, and the CMK contains the newly-loaded value.
See “SET command.”

v Re-encipher all of an existing CCA host key storage data file's key tokens, which
are enciphered under the OMK, to be enciphered under the CMK. This is done
using the RTCMK rule_arry keyword of “Key Token Change (CSNBKTC)” on
page 301 or “PKA Key Token Change (CSNDKTC)” on page 710.
– This immediately replaces operational keys with the re-enciphered version.
– The CCA key storage file has a data structure with the verification pattern of

the most recently SET master key. The key storage implementation also allows

Chapter 11. Key storage mechanisms 453

writing external tokens into the key storage. This means that external key
tokens, and the internal key tokens encrypted under current master key, will
be allowed into the key storage.
It is impossible with current implementation to use RTNMK together with
CCA key storage.

v During the re-encipherment:
– Some of the keys in the CCA key storage files are enciphered under the OMK

(because of the shift) and are usable
– Some of the keys in the CCA key storage files are enciphered under the CMK,

either because they are new or because they have been re-enciphered.
– No new key tokens can be created with the key wrapped using the OMK.
Both types are usable for cryptographic operations.

Changing the master key for two or more adapters that have
the same master key, with shared CCA key storage

Because the verification pattern of the current master key (CMK) is stored in a
header in key storage, changing the master key for a configuration of multiple
adapters required extra care in prior releases.

Starting with the CCA 6.0 host library, the master key verification pattern in the
key storage header is not checked with the purpose of allowing or disallowing the
use of an adapter. Therefore, the old workaround (change the master key for one
card, move key storage files to a temporary location, change the master key for the
other cards, move the key storage files back), is no longer needed. There is no
change to the format of the key storage files themselves, the change is only to the
key storage handling in the CCA host library.

Key storage file ownership
The last user to access the key storage file owns it, due to the internals of the key
storage functions.

The file is recreated after being compressed, and due to the file creation the owner
is changed.

Having the set-group-id bit (g+s) on in the directory permission causes the file to
be created with the group owner the same as the directory group owner. The
group read/write permissions on the file then allow the other members of the
group continued access to the file.

The Linux on Z approach
Because the CCA key storage design point for the Linux platform host release has
always been CMK-focused, this design point was taken forward for the Linux on Z
approach.

At this time, CCA host key storage does not support nor ship with an additional
utility to manage the 'store-in-pending' approach to re-enciphering key tokens. This
additional utility is necessary to work with use of the RTNMK keyword for “Key
Token Change (CSNBKTC)” on page 301 and “PKA Key Token Change
(CSNDKTC)” on page 710. Therefore, it is suggested that users wanting to make
use of CCA host key storage management follow the 'RTCMK-focused' approach
described in “Key Storage for traditional IBM systems other than IBM Z
(RTCMK-focused: Linux, AIX, Windows)” on page 453.

454 Common Cryptographic Architecture Application Programmer's Guide

|
|
|

|
|
|
|
|
|
|

However it is also desirable to provide as much host-support equivalence with the
z/OS approach as possible, given that the underlying system is running on an IBM
Z platform and likely to collaborate with z/OS software. Therefore, the RTNMK
keyword is provided for “Key Token Change (CSNBKTC)” on page 301 and “PKA
Key Token Change (CSNDKTC)” on page 710 to allow users who have their own
utility or key storage management facility to manage key tokens using the method
most familiar from z/OS:
v The key tokens to be enciphered should be passed directly (not by label) to “Key

Token Change (CSNBKTC)” on page 301 and “PKA Key Token Change
(CSNDKTC)” on page 710 for re-encipherment, and stored outside CCA host key
storage.

v When re-encipherment is complete and the “Master Key Process (CSNBMKP)”
on page 157 SET' command has been issued, the re-enciphered key tokens can
be reintroduced to CCA host key storage if desired, using the standard
mechanisms.

AES Key Record Create (CSNBAKRC)

Use the AES Key Record Create verb to create an AES or HMAC key-token record
in AES key-storage.

The new key record can be a null AES key-token or a valid internal fixed-length
AES key-token or an external or internal variable-length AES or HMAC key-token.
It is identified by the key label specified with the key_label parameter.

After creating an AES key-record, use any of the following verbs to add or update
a key token in the record:
v AES Key Record Delete
v AES Key Record Write
v Key Generate
v Key Token Change
v Key Token Change2
v Symmetric Key Generate
v Symmetric Key Import
v Symmetric Key Import2

Note:

1. To delete a key record from AES key-storage, use the AES Key Record Delete
verb.

2. AES key records are stored in the external key-storage file defined by the
CSUAESDS environment variable.

Chapter 11. Key storage mechanisms 455

|
|

|
|
|

Format
The format of CSNBAKRC.

CSNBAKRC (
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array_count,
key_label,
key_token_length,
key_token)

Parameters
The parameters for CSNBAKRC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

This parameter is ignored.

key_label

Direction: Input
Type: String

A pointer to a string variable containing the key label of the AES key-record to
be created.

key_token_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_token variable. If the value of the key_token_length variable is zero, a record
with a null AES key-token is created.

key_token

Direction: Input
Type: String

A pointer to a string variable containing the key token being written to AES
key-storage.

AES Key Record Create (CSNBAKRC)

456 Common Cryptographic Architecture Application Programmer's Guide

Restrictions
The restrictions for CSNBAKRC.

The record must have a unique label. Therefore, there cannot be another record in
the AES key storage file with the same label and a different key type.

Required commands
The required commands for CSNBAKRC.

None.

Usage notes
The usage notes for CSNBAKRC.

None.

Related information
Additional information about CSNBAKRC.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBAKRCJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBAKRCJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label,
hikmNativeNumber key_token_length,
byte[] key_token);

AES Key Record Delete (CSNBAKRD)
Use the AES Key Record Delete verb to perform one of the tasks listed in the AES
key storage file.
v Overwrite (delete) a key token or key tokens in AES key-storage, replacing the

key token of each selected record with a null AES key-token.
v Delete an entire key record or key records, including the key label and the key

token of each selected record, from AES key-storage.

Identify a task with the rule_array keyword, and the key record or records with the
key_label parameter. To identify multiple records, use a wild card (*) in the key
label.

Note: AES key records are stored in the external key-storage file defined by the
CSUAESDS environment variable.

AES Key Record Create (CSNBAKRC)

Chapter 11. Key storage mechanisms 457

|

Format
The format of CSNBAKRD.

CSNBAKRD (
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

Parameters
The parameters for CSNBAKRD.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are eight bytes in length and must be left-aligned and padded on the right
with space characters. The rule_array keywords are described in Table 135.

Table 135. Keywords for AES Key Record Delete control information

Keyword Description

Task (One, optional)

TOKEN-DL Deletes a key token from a key record in AES key storage. This is the
default.

LABEL-DL Deletes an entire key record, including the key label, from AES key
storage.

key_label

Direction: Input
Type: String

A pointer to a string variable containing the key label of a key-token record or
records in AES key-storage. Use a wild card (*) in the key_label variable to
identify multiple records in key storage.

Restrictions
The restrictions for CSNBAKRD.

The record defined by the key_label must be unique.

AES Key Record Delete (CSNBAKRD)

458 Common Cryptographic Architecture Application Programmer's Guide

Required commands
The required commands for CSNBAKRD.

None.

Usage notes
The usage notes for CSNBAKRD.

None.

Related information
Additional information about CSNBAKRD.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBAKRDJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBAKRDJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label);

AES Key Record List (CSNBAKRL)
The AES Key Record List verb creates a key-record-list file containing information
about specified key records in key storage.

Information listed includes whether record validation is correct, the type of key,
and the date and time the record was created and last updated.

Specify the key records to be listed using the key-label variable. To identify
multiple key records, use the wild card (*) in the key label.

Note:

1. To list all the labels in key storage, specify the key_label parameter with
*, *.*, *.*.*, and so forth, up to a maximum of seven name tokens (*.*.*.*.*.*.*).

2. AES key records are stored in the external key-storage file defined by the
CSUAESDS environment variable.

This verb creates the key-record-list file and returns the name of the file and the
length of the file name to the calling application. This file has a header record,
followed by 0 - n detail records, where n is the number of key records with
matching key-labels.

The file is kept in the /opt/IBM/CCA/keys/deslist directory (assuming the
directory name was not changed during installation). These list files are created

AES Key Record Delete (CSNBAKRD)

Chapter 11. Key storage mechanisms 459

|

under the ownership of the environment of the user that requests the list service.
Make sure the files created kept the same group ID as your installation requires.
This can also be achieved by setting the 'set-group-id-on-execution' bit on in this
directory. See the g+s flags in the chmod command for full details. Not doing this
might cause errors to be returned on key-record-list verbs.

Format
The format of CSNBAKRL.

CSNBAKRL(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
dataset_name_length,
dataset_name,
security_server_name)

Parameters
The parameters for CSNBAKRL.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. This verb
currently does not use keywords.

key_label

Direction: Input
Type: String

A pointer to a string variable containing the key label of a key-token record in
key storage. In a key label, you can use a wild card (*) to identify multiple
records in key storage.

dataset_name_length

Direction: Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data
returned by the verb in the dataset_name variable. The maximum returned
length is 64 bytes.

AES Key Record List (CSNBAKRL)

460 Common Cryptographic Architecture Application Programmer's Guide

dataset_name

Direction: Output
Type: String

A pointer to a string variable containing the name of the file returned by the
verb. The file contains the AES key-record information. When the verb stores a
key-record-list file, it overlays any older file with the same name.

The file name returned by this verb is defined by the CSUAESLD environment
variable.

This verb returns the file name as a fully qualified file specification (for
example, /opt/IBM/CCA/keys/KYRLTnnn.LST), where nnn is the numeric
portion of the name. This value increases by one every time that you use this
verb. When this value reaches 999, it resets to 001.

security_server_name

Direction: Output
Type: String

A pointer to a string variable. The information in this variable is not currently
used, but the variable must be declared.

Restrictions
The restrictions for CSNBAKRL.

None.

Required commands
The required commands for CSNBAKRL.

None.

Usage notes
The usage notes for CSNBAKRL.

None.

Related information
Additional information about CSNBAKRL.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBAKRLJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBAKRLJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,

AES Key Record List (CSNBAKRL)

Chapter 11. Key storage mechanisms 461

|

byte[] rule_array,
byte[] key_label,
hikmNativeNumber data_set_name_length,
byte[] data_set_name,
byte[] security_server_name);

AES Key Record Read (CSNBAKRR)
Use the AES Key Record Read verb to read a key-token record from AES
key-storage and return a copy of the key token to application storage.

The returned key token can be null. In this event, the key_length variable contains a
value of 64 and the key-token variable contains 64 bytes of X'00' beginning at offset
0.

Note: AES key records are stored in the external key-storage file defined by the
CSUAESDS environment variable.

Format
The format of CSNBAKRR.

CSNBAKRR (
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
key_token_length,
key_token)

Parameters
The parameters for CSNBAKRR.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

This parameter is ignored.

key_label

Direction: Input
Type: String

A pointer to a string variable containing the key label of the record to be read
from AES key-storage.

AES Key Record List (CSNBAKRL)

462 Common Cryptographic Architecture Application Programmer's Guide

key_token_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_token variable. The maximum length is 64.

key_token

Direction: Output
Type: String

A pointer to a string variable containing the key token read from AES
key-storage. This variable must be large enough to hold the AES key token
being read. On completion, the key_token_length variable contains the actual
length of the token being returned.

Restrictions
The restrictions for CSNBAKRR.

None.

Required commands
The required commands for CSNBAKRR.

None.

Usage notes
The usage notes for CSNBAKRR.

None.

Related information
Additional information about CSNBAKRR.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBAKRRJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBAKRRJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label,
hikmNativeNumber key_token_length,
byte[] key_token);

AES Key Record Read (CSNBAKRR)

Chapter 11. Key storage mechanisms 463

|

AES Key Record Write (CSNBAKRW)

Use this verb to write a copy of an AES or HMAC key-token from application
storage into AES key-storage.

This verb can perform the following processing options:
v Write the new key-token only if the old token was null.
v Write the new key-token regardless of content of the old token.

AES key records are stored in the external key-storage file defined by the
CSUAESDS environment variable.

Note: Before using this verb, use the verb “AES Key Record Create (CSNBAKRC)”
on page 455 to create a key record in the key storage file.

Format
The format of CSNBAKRW.

CSNBAKRW (
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
key_token_length,
key_token)

Parameters
The parameters for CSNBAKRW.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are eight bytes in length and must be left-aligned and padded on the right
with space characters.

The rule_array keywords are described in Table 136.

Table 136. Keywords for AES Key Record Write control information

Keyword Description

Processing option (One, optional)

AES Key Record Write (CSNBAKRW)

464 Common Cryptographic Architecture Application Programmer's Guide

|
|

Table 136. Keywords for AES Key Record Write control information (continued)

Keyword Description

CHECK Specifies that the record is written only if a record of the same label in AES
key-storage contains a null key-token. This is the default.

OVERLAY Specifies that the record is overwritten regardless of the current content of
the record in AES key-storage.

key_label

Direction: Input
Type: String

A pointer to a string variable containing the key label that identifies the record
in AES key-storage where the key token is to be written.

key_token_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_token variable. This value must be 64.

key_token

Direction: Input
Type: String

A pointer to a string variable containing the AES key-token to be written into
AES key-storage.

Restrictions
The restrictions for CSNBAKRW.

The record defined by the key_label parameter must be unique and must already
exist in the key storage file.

Required commands
The required commands for CSNBAKRW.

None.

Usage notes
The usage notes for CSNBAKRW.

None.

Related information
Additional information about CSNBAKRW.

You can use this verb with the key record create verb to write an initial record to
key storage. Use it following the Key Import and Key Generate verb to write an
operational key imported or generated by these verbs directly to the key storage
file.

AES Key Record Write (CSNBAKRW)

Chapter 11. Key storage mechanisms 465

|

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBAKRWJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBAKRWJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label,
hikmNativeNumber key_token_length,
byte[] key_token);

DES Key Record Create (CSNBKRC)
Use the DES Key Record Create verb to add a key record to the DES key storage
file.

The record contains a key token set to binary zeros and is identified by the label
passed in the key_label parameter. The key label must be unique.

DES key records are stored in the external key-storage file defined by the
CSUDESDS environment variable.

Format
The format of CSNBKRC.

CSNBKRC(
return_code,
reason_code,
exit_data_length,
exit_data,
key_label)

Parameters
The parameters for CSNBKRC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_label

Direction: Input
Type: String

The 64-byte label of a record in the DES key storage file that is the target of
this verb. The created record contains a key token set to binary zeros and has a
key type of NULL.

Restrictions
The restrictions for CSNBKRC.

AES Key Record Write (CSNBAKRW)

466 Common Cryptographic Architecture Application Programmer's Guide

The record must have a unique label. Therefore, there cannot be another record in
the DES key storage file with the same label and a different key type.

Required commands
The required commands for CSNBKRC.

None.

Usage notes
The usage notes for CSNBKRC.

None.

Related information
Additional information for CSNBKRC.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKRCJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKRCJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_label);

DES Key Record Delete (CSNBKRD)
Use the DES Key Record Delete verb to perform one of the following tasks in the
DES key storage file.
v Replace the token in a key record with a null key token
v Delete an entire key record, including the key label, from the key storage file

DES key records are stored in the external key-storage file defined by the
CSUDESDS environment variable.

Format
The format of CSNBKRD.

CSNBKRD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

DES Key Record Create (CSNBKRC)

Chapter 11. Key storage mechanisms 467

|

Parameters
The parameters for CSNBKRD.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Direction: Input
Type: String array

The 8-byte keyword that defines the action to be performed. The rule_array
keywords are described in Table 137.

Table 137. Keywords for DES Key Record Delete control information

Keyword Description

Task (One required)

TOKEN-DL Deletes a key token from a key record in DES key storage.

LABEL-DL Deletes an entire key record, including the key label, from DES key
storage.

key_label

Direction: Input
Type: String

The 64-byte label of a record in the key storage file that is the target of this
verb.

Restrictions
The restrictions for CSNBKRD.

The record defined by the key_label must be unique.

Required commands
The required commands for CSNBKRD.

None.

Usage notes
The usage notes for CSNBKRD.

None.

DES Key Record Delete (CSNBKRD)

468 Common Cryptographic Architecture Application Programmer's Guide

|

Related information
Additional information about CSNBKRD.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKRDJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKRDJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label);

DES Key Record List (CSNBKRL)
The DES Key Record List verb creates a key-record-list file containing information
about specified key records in key storage.

Information listed includes whether record validation is correct, the type of key,
and the date and time the record was created and last updated.

Specify the key records to be listed using the key-label variable. To identify
multiple key records, use the wild card (*) in the key label.

Note: To list all the labels in key storage, specify the key_label parameter with
*, *.*, *.*.*, and so forth, up to a maximum of seven name tokens (*.*.*.*.*.*.*).

This verb creates the key-record-list file and returns the name of the file and the
length of the file name to the calling application. This file has a header record,
followed by 0 - n detail records, where n is the number of key records with
matching key-labels. The file is kept in the /opt/IBM/CCA/keys/deslist directory
(assuming the directory name was not changed during installation). These list files
are created under the ownership of the environment of the user that requests the
list service. Make sure the files created kept the same group ID as your installation
requires. This can also be achieved by setting the “set-group-id-on-execution” bit
on in this directory. See the g+s flags in the chmod command for full details. Not
doing this might cause errors to be returned on key-record-list verbs.

DES key records are stored in the external key-storage file defined by the
CSUDESDS environment variable.

DES Key Record Delete (CSNBKRD)

Chapter 11. Key storage mechanisms 469

Format
The format of CSNBKRL.

CSNBKRL(
return_code,
reason_code,
exit_data_length,
exit_data,
key_label,
dataset_name_length,
dataset_name,
security_server_name)

Parameters
The parameters for CSNBKRL.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_label

Direction: Input
Type: String

The key_label parameter is a pointer to a string variable containing the key label
of a key-token record in key storage. In a key label, you can use a wild card (*)
to identify multiple records in key storage.

dataset_name_length

Direction: Output
Type: Integer

The dataset_name_length parameter is a pointer to an integer variable containing
the number of bytes of data returned by the verb in the dataset_name variable.
The maximum returned length is 64 bytes.

dataset_name

Direction: Output
Type: String

The dataset_name parameter is a pointer to a 64-byte string variable containing
the name of the file returned by the verb. The file contains the key-record
information.

The verb returns the file name as a fully qualified file specification.

Note: When the verb stores a key-record-list file, it overlays any older file with
the same name.

security_server_name

Direction: Output
Type: String

The security_server_name parameter is a pointer to a string variable. The
information in this variable is not currently used, but the variable must be
declared.

DES Key Record List (CSNBKRL)

470 Common Cryptographic Architecture Application Programmer's Guide

Restrictions
The restrictions for CSNBKRL.

None.

Required commands
The required commands for CSNBKRL.

None.

Usage notes
The usage notes for CSNBKRL.

None.

Related information
Additional information about CSNBKRL.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKRLJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKRLJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_label,
hikmNativeNumber data_set_name_length,
byte[] data_set_name,
byte[] security_server_name);

DES Key Record Read (CSNBKRR)
Use the DES Key Record Read verb to copy an internal key token from the DES
key storage file to application storage.

Other cryptographic services can then use the copied key token directly. The key
token can also be used as input to the token copying functions of Key Generate or
Key Import verbs to create additional NOCV keys.

DES key records are stored in the external key-storage file defined by the
CSUDESDS environment variable.

DES Key Record List (CSNBKRL)

Chapter 11. Key storage mechanisms 471

|

Format
The format of CSNBKRR.

CSNBKRR(
return_code,
reason_code,
exit_data_length,
exit_data,
key_label,
key_token)

Parameters
The parameters for CSNBKRR.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_label

Direction: Input
Type: String

The 64-byte label of a record in the DES key storage file. The internal key
token in this record is returned to the caller.

key_token

Direction: Output
Type: String

The 64-byte internal key token retrieved from the DES key storage file.

Restrictions
The restrictions for CSNBKRR.

The record defined by the key_label parameter must be unique and must already
exist in the key storage file.

Required commands
The required commands for CSNBKRR.

None.

Usage notes
The usage notes for CSNBKRR.

None.

Related information
Additional information about CSNBKRR.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

DES Key Record Read (CSNBKRR)

472 Common Cryptographic Architecture Application Programmer's Guide

|

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKRRJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKRRJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_label,
byte[] key_token);

DES Key Record Write (CSNBKRW)
Use the DES Key Record Write verb to copy an internal DES key token from
application storage into the DES key storage file.

The key label must be unique and the record must already exist in the key storage
file.

DES key records are stored in the external key-storage file defined by the
CSUDESDS environment variable.

Note: Before you use this verb, use the DES Key Record Create verb (see “DES
Key Record Create (CSNBKRC)” on page 466) to create a key record in the key
storage file.

Format
The format of CSNBKRW.

CSNBKRW(
return_code,
reason_code,
exit_data_length,
exit_data,
key_token,
key_label)

Parameters
The parameters for CSNBKRW.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

key_token

Direction: Input/Output
Type: String

The 64-byte internal key token that is written to the DES key storage file.

key_label

Direction: Input
Type: String

DES Key Record Read (CSNBKRR)

Chapter 11. Key storage mechanisms 473

The 64-byte label of a record in the DES key storage file that is the target of
this verb. The record is updated with the internal key token supplied in the
key_token parameter.

Restrictions
The restrictions for CSNBKRW.

The record defined by the key_label parameter must be unique and must already
exist in the key storage file.

Required commands
The required commands for CSNBKRW.

None.

Usage notes
The usage notes for CSNBKRW.

None.

Related information
Additional information about CSNBKRW.

You can use this verb with the key record create verb to write an initial record to
key storage. Use it following the Key Import and Key Generate verb to write an
operational key imported or generated by these verbs directly to the key storage
file.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBKRWJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBKRWJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] key_token,
byte[] key_label);

PKA Key Record Create (CSNDKRC)
This verb writes a new ECC or RSA key-token record to the PKA key storage file.
The new key record can be a null PKA key-token or an external or internal ECC or
RSA key-token.

PKA key records are stored in the external key-storage file defined by the
CSUPKADS environment variable.

DES Key Record Write (CSNBKRW)

474 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
|

Format
The format of CSNDKRC.

CSNDKRC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
key_token_length,
key_token)

Parameters
The parameters for CSNDKRC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

This parameter is ignored.

key_label

Direction: Input
Type: String

The label of the record to be created, 64-byte character string.

key_token_length

Direction: Input
Type: Integer

The length of the field containing the token to be written to the PKA key
storage file. If zero is specified, a null token will be added to the file. The
maximum value of key_token_length is the maximum length of a private RSA
token.

key_token

Direction: Input
Type: String

Data to be written to the PKA key storage file if key_token_length is nonzero. An
RSA private token in either external or internal format, or an RSA public token.

PKA Key Record Create (CSNDKRC)

Chapter 11. Key storage mechanisms 475

Restrictions
The restrictions for CSNDKRC.

None.

Required commands
The required commands for CSNDKRC.

None.

Usage notes
The usage notes for CSNDKRC.

None.

Related information
Additional information about CSNDKRC.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDKRCJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDKRCJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label,
hikmNativeNumber key_token_length,
byte[] key_token);

PKA Key Record Delete (CSNDKRD)
Use PKA Key Record Delete to delete a record from the PKA key storage file.

PKA key records are stored in the external key-storage file defined by the
CSUPKADS environment variable.

Format
The format of CSNDKRD.

CSNDKRD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

PKA Key Record Create (CSNDKRC)

476 Common Cryptographic Architecture Application Programmer's Guide

|

Parameters
The parameters for CSNDKRD.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. Each keyword is
left-aligned in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage. The rule_array keywords are described in
Table 138.

Table 138. Keywords for PKA Key Record Delete control information

Keyword Description

Deletion mode (One, optional). Specifies whether the record is to be deleted entirely or whether only its contents are
to be erased.

LABEL-DL Specifies the record will be deleted from the PKA key storage file entirely. This is the default
deletion mode.

TOKEN-DL Specifies only the contents of the record are to be deleted. The record will still exist in the PKA key
storage file, but will contain only binary zeros.

key_label

Direction: Input
Type: String

The label of the record to be deleted, a 64-byte character string.

Restrictions
The restrictions for CSNDKRD.

None.

Required commands
The required commands for CSNDKRD.

None.

Usage notes
The usage notes for CSNDKRD.

None.

PKA Key Record Delete (CSNDKRD)

Chapter 11. Key storage mechanisms 477

|

Related information
Additional information about CSNDKRD.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDKRDJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDKRDJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label);

PKA Key Record List (CSNDKRL)
The PKA Key Record List verb creates a key-record-list file containing information
about specified key records in PKA key-storage.

Information includes whether record validation is correct, the type of key, and the
dates and times when the record was created and last updated.

Specify the key records to be listed using the key_label parameter. To identify
multiple key records, use the wild card (*) in a key label.

Note: To list all the labels in key storage, specify the key_label parameter with
*, *.*, *.*.*, and so forth, up to a maximum of seven name tokens (*.*.*.*.*.*.*).

This verb creates the list file and returns the name of the file and the length of the
file name to the calling application. This verb also returns the name of the security
server where the file is stored. The PKA Key Record List file has a header record,
followed by 0 - n detail records, where n is the number of key records with
matching key labels. The file is kept in the /opt/IBM/CCA/keys/pkalist directory
(assuming the directory name was not changed during installation). These list files
are created under the ownership of the environment of the user that requests the
list verb. Make sure the files created kept the same group ID as your installation
requires. This can also be achieved by setting the “set-group-id-on-execution” bit
on in this directory. See the g+s flags in the chmod command for full details. Not
doing this might cause errors to be returned on key-record-list verbs.

PKA key records are stored in the external key-storage file defined by the
CSUPKADS environment variable.

For information concerning the location of the key-record-list directory, refer to the
IBM 4764 PCI-X Cryptographic Coprocessor CCA Support Program Installation Manual.

PKA Key Record Delete (CSNDKRD)

478 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNDKRL.

CSNDKRL(
return_code,
reason_code,
exit_data_length,
edit_data,
rule_array_count,
rule_array,
key_label,
dataset_name_length,
dataset_name,
security_server_name)

Parameters
The parameters for CSNDKRL.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

This parameter is ignored.

key_label

Direction: Output
Type: String

The key_label parameter is a pointer to a string variable containing a key record
in PKA key-storage. You can use a wild card (*) to identify multiple records in
key storage.

dataset_name_length

Direction: Input
Type: Integer

The dataset_name_length parameter is a pointer to an integer variable containing
the number of bytes of data returned in the dataset_name variable. The
maximum returned length is 64 bytes.

dataset_name

Direction: Output
Type: String

The dataset_name parameter is a pointer to a 64-byte string variable containing
the name of the file returned by the verb. The file contains the key-record
information.

PKA Key Record List (CSNDKRL)

Chapter 11. Key storage mechanisms 479

The verb returns the file name as a fully qualified file specification.

Note: When the verb stores a key-record-list file, it overlays any older file with
the same name.

security_server_name

Direction: Output
Type: String

The security_server_name parameter is a pointer to a string variable. The
information in this variable is not currently used, but the variable must be
declared.

Restrictions
The restrictions for CSNDKRL.

None.

Required commands
The required commands for CSNDKRL.

None.

Usage notes
The usage notes for CSNDKRL.

None.

Related information
Additional information about CSNDKRL.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDKRLJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDKRLJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label,
hikmNativeNumber data_set_name_length,
byte[] data_set_name,
byte[] security_server_name);

PKA Key Record Read (CSNDKRR)
Reads a record from the PKA key storage file and returns the content of the record.
This is true even when the record contains a null PKA token.

PKA Key Record List (CSNDKRL)

480 Common Cryptographic Architecture Application Programmer's Guide

|

PKA key records are stored in the external key-storage file defined by the
CSUPKADS environment variable.

Format
The format of CSNDKRR.

CSNDKRR(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
key_token_length,
key_token)

Parameters
The parameters for CSNDKRR.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

This parameter is ignored.

key_label

Direction: Input
Type: String

The label of the record to be read, a 64-byte character string.

key_token_length

Direction: Input/Output
Type: Integer

The length of the area to which the record is to be returned. On successful
completion of this verb, key_token_length will contain the actual length of the
record returned.

key_token

Direction: Output
Type: String

This is the area into which the returned record will be written. The area should
be at least as long as the record.

PKA Key Record Read (CSNDKRR)

Chapter 11. Key storage mechanisms 481

Restrictions
The restrictions for CSNDKRR.

None.

Required commands
The required commands for CSNDKRR.

None.

Usage notes
The usage notes for CSNDKRR.

None.

Related information
Additional information about CSNDKRR.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDKRRJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDKRRJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label,
hikmNativeNumber key_token_length,
byte[] key_token);

PKA Key Record Write (CSNDKRW)

Use this verb to write over an existing ECC or RSA key-token record from
application storage in the PKA key storage file.

PKA key records are stored in the external key-storage file defined by the
CSUPKADS environment variable.

PKA Key Record Read (CSNDKRR)

482 Common Cryptographic Architecture Application Programmer's Guide

|

|
|

Format
The format of CSNDKRW.

CSNDKRW(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
key_token_length,
key_token)

Parameters
The parameters for CSNDKRW.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. Each keyword is
left-aligned in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage. The rule_array keywords are described in
Table 139.

Table 139. Keywords for PKA Key Record Write control information

Keyword Description

Write mode (One, optional). Specifies the circumstances under which the record is to be written.

CHECK Specifies the record will be written only if a record of type NULL with the same label exists in the
PKA key storage file. If such a record exists, it is overwritten. This is the default condition.

OVERLAY Specifies the record will be overwritten regardless of the current content of the record. If a record with
the same label exists in the PKA key storage file, is overwritten.

key_label

Direction: Input
Type: String

The label of the record to be overwritten, a 64-byte character string.

key_token_length

Direction: Input
Type: Integer

PKA Key Record Write (CSNDKRW)

Chapter 11. Key storage mechanisms 483

The length of the field containing the token to be written to the PKA key
storage file.

key_token

Direction: Input
Type: String

A string variable containing an RSA or ECC private token in either external or
internal format, or an RSA or ECC public token that is to be written to the
PKA key storage file.

Restrictions
The restrictions for CSNDKRW.

None.

Required commands
The required commands for CSNDKRW.

None.

Usage notes
The usage notes for CSNDKRW.

None.

Related information
Additional information about CSNDKRW.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDKRWJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDKRWJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label,
hikmNativeNumber key_token_length,
byte[] key_token);

Retained Key Delete (CSNDRKD)
Use this verb to delete a PKA key-record currently retained within the
cryptographic engine.

PKA Key Record Write (CSNDKRW)

484 Common Cryptographic Architecture Application Programmer's Guide

|
|
|

|

Both public and private keys can be retained within the cryptographic engine
using verbs such as PKA Key Generate. A list of retained keys can be obtained
using the Retained Key List verb.

Important: Before using this verb, see the information about retained keys in
“Using retained keys.”

Format
The format of CSNDRKD.

CSNDRKD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

Parameters
The parameters for CSNDRKD.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

This parameter is ignored.

key_label

Direction: Input
Type: String

A pointer to a string variable containing the key label of an RSA key-record
that has been retained within the cryptographic engine. The use of a wild card
in the key_label variable is not permitted.

Using retained keys
Retained key use is discouraged on the IBM Z platform because a retained key can
exist only in one CEX*C Cryptographic adapter, by definition.
v This has potential problems:

– The key cannot be exported, so it cannot be backed up.
– The key cannot be exported to another card in the same group, so operations

concerning the retained key cannot participate in load-balancing.

Retained Key Delete (CSNDRKD)

Chapter 11. Key storage mechanisms 485

– There is an exception to the above points, in that keys generated in a
deterministic fashion using externally saved regeneration data (it is possible
to save so-called 'regen data' securely) can be recreated from that data or
created in multiple cards across a card group.
However, this is a very sophisticated topic, and is beyond the scope of this
document. Also, the complexity required to implement this properly, as well
as the sophistication involved in its data management, present formidable
obstacles.

Retained key support is offered in this release, however. The following verbs work
with retained keys:
v “PKA Key Generate (CSNDPKG)” on page 689 generates an RSA retained key.

The same restrictions that Integrated Cryptographic Service Facility (ICSF) has
for retained key creation are implemented here. These are:
– Notice that PKA Key Token Build will let you create 'key-mgmt' skeleton key

tokens, and this is as designed. You can still pass these to PKA Key Generate
and have a key pair created. What is not allowed is specifying that this
'key-mgmt' token is to be generated in PKA Key Generate as a RETAIN key
token: a retained key. Such an attempt will fail with error 12 reason code
3046.

– The maximum modulus size is 2048 bits.
– The usage flags are restricted to signature generation.

Specifically, key management usage for retained keys is not allowed because
of the dangers of losing your key encrypting key (kek) for important keys,
when that kek exists only inside a single adapter.

v “Retained Key List (CSNDRKL)” on page 487 lists the retained keys inside an
adapter.

v “Retained Key Delete (CSNDRKD)” on page 484 deletes a retained key from
adapter internal storage.

Restrictions
The restrictions for CSNDRKD.

None.

Required commands
The required commands for CSNDRKD.

This verb requires the Retained Key Delete command (offset X'0203') to be enabled
in the active role.

Usage notes
The usage notes for CSNDRKD.

This verb is not impacted by the AUTOSELECT option. See “Verbs that ignore
AUTOSELECT” on page 12 for more information.

Related information
Additional information about CSNDRKD.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

Retained Key Delete (CSNDRKD)

486 Common Cryptographic Architecture Application Programmer's Guide

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDRKDJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDRKDJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label);

Retained Key List (CSNDRKL)
Use this verb to list the key labels of selected PKA key records that have been
retained within the cryptographic engine.

Specify the keys to be listed using the key_label_mask variable. To identify multiple
keys, use a wild card (*) in the mask. Only labels with matching characters to
those in the mask up to the first “*” is returned. To list all retained key labels,
specify a mask of an *, followed by 63 space characters. For example, if the
cryptographic engine has retained key labels a.a, a.a1, a.b.c.d, and z.a, and you
specify the mask a.*, the verb returns a.a, a.a1 and a.b.c.d. If you specify a mask of
a.a*, the verb returns a.a and a.a1.

To retain PKA keys within the coprocessor, use the PKA Key Generate verb. To
delete retained keys from the coprocessor, use the Retained Key Delete verb.

Important: Before using this verb, see the information about retained keys in
“Using retained keys” on page 485.

Format
The format of CSNDRKL.

CSNDRKL(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label_mask,
retained_keys_count,
key_labels_count,
key_labels)

Parameters
The parameters for CSNDRKL.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Retained Key Delete (CSNDRKD)

Chapter 11. Key storage mechanisms 487

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

This parameter is ignored.

key_label_mask

Direction: Input
Type: String

A pointer to a string variable containing a key-label mask that is used to filter
the list of key names returned by the verb. Use a wild card (*) to identify
multiple key records retained within the coprocessor.

retained_keys_count

Direction: Input/Output
Type: Integer

A pointer to an integer variable to receive the total number of retained-key
records stored within the coprocessor.

key_labels_count

Direction: Input/Output
Type: Integer

A pointer to an integer variable which on input defines the maximum number
of key labels to be returned, and which on output defines the number of key
labels returned by the coprocessor.

key_labels

Direction: Output
Type: String array

A pointer to a string array variable containing the returned key labels. The
coprocessor returns zero or more 64-byte array elements, each of which
contains the key label of a PKA key-record retained within the coprocessor.

Restrictions
The restrictions for CSNDRKL.

None.

Required commands
The required commands for CSNDRKL.

This verb requires the Retained Key List command (offset X'0230') to be enabled
in the active role.

Retained Key List (CSNDRKL)

488 Common Cryptographic Architecture Application Programmer's Guide

Usage notes
The usage notes for CSNDRKL.

This verb is not impacted by the AUTOSELECT option. See “Verbs that ignore
AUTOSELECT” on page 12 for more information.

Related information
Related information about CSNDRKL.

See “Key storage with Linux on Z, in contrast to z/OS” on page 451.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDRKLJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDRKLJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_label_mask,
hikmNativeNumber retained_keys_count,
hikmNativeNumber key_labels_count,
byte[] key_labels);

Retained Key List (CSNDRKL)

Chapter 11. Key storage mechanisms 489

Retained Key List (CSNDRKL)

490 Common Cryptographic Architecture Application Programmer's Guide

Chapter 12. Financial services

The process of validating personal identities in a financial transaction system is
called personal authentication.

The personal identification number (PIN) is the basis for verifying the identity of a
customer across financial industry networks. CCA provides verbs to translate,
verify, and generate PINs. You can use the verbs to prevent unauthorized
disclosures when organizations handle PINs.

The following verbs are described in this topic:
v “Authentication Parameter Generate (CSNBAPG)” on page 508
v “Clear PIN Encrypt (CSNBCPE)” on page 511
v “Clear PIN Generate (CSNBPGN)” on page 515
v “Clear PIN Generate Alternate (CSNBCPA)” on page 518
v “CVV Generate (CSNBCSG)” on page 523
v “CVV Key Combine (CSNBCKC)” on page 526
v “CVV Verify (CSNBCSV)” on page 531
v “Encrypted PIN Generate (CSNBEPG)” on page 535
v “Encrypted PIN Translate (CSNBPTR)” on page 539
v “Encrypted PIN Translate Enhanced (CSNBPTRE)” on page 545
v “Encrypted PIN Verify (CSNBPVR)” on page 555
v “FPE Decipher (CSNBFPED)” on page 560
v “FPE Encipher (CSNBFPEE)” on page 568
v “FPE Translate (CSNBFPET)” on page 575
v “PIN Change/Unblock (CSNBPCU)” on page 583
v “Recover PIN from Offset (CSNBPFO)” on page 591
v “Secure Messaging for Keys (CSNBSKY)” on page 595
v “Secure Messaging for PINs (CSNBSPN)” on page 599
v “Transaction Validation (CSNBTRV)” on page 603

How personal identification numbers (PINs) are used
CCA allows your applications to generate PINs, to verify supplied PINs, and to
translate PINs from one format or encryption key to another.

Many people are familiar with PINs, which are used to access an automated teller
machine (ATM). From the system point of view, PINs are used primarily in
financial networks to authenticate users. Typically, a user is assigned a PIN and
enters the PIN at automated teller machines (ATMs) to gain access to his or her
accounts. It is extremely important that the PIN be kept private so no one other
than the account owner can use it.

© Copyright IBM Corp. 2007, 2018 491

How Visa card verification values are used
The Visa International Service Association (VISA) and MasterCard International,
Incorporated have specified a cryptographic method to calculate a value that
relates to the personal account number (PAN), the card expiration date, and the
service code.

The Visa card-verification value (CVV) and the MasterCard card-verification code
(CVC) can be encoded on either track 1 or track 2 of a magnetic striped card or
chip card and are used to detect forged cards. Because most online transactions use
track-2, the CCA verbs generate and verify the CVV1 by the track-2 method.

The Visa CVV Generate verb calculates a 1-byte to 5-byte value through the
DES-encryption of the PAN, the card expiration date, and the service code using
two data-encrypting keys or two MAC keys. The Visa CVV Verify verb calculates
the CVV by the same method, compares it to the CVV supplied by the application
(which reads the credit card's magnetic stripe or chip) in the CVV_value, and issues
a return code that indicates whether the card is authentic.

The CVV Key Combine verb combines two operational DES keys into one
operational TDES key. The verb accepts as input two single-length keys that are
suitable for use with the CVV (card-verification value) algorithm. The resulting
double-length key meets a more recent industry standard of using TDES to
support PIN-based transactions. In addition, the double-length key is in a format
that can be wrapped using the Key Export to TR31 verb.

Translating data and PINs in networks
More and more data is being transmitted across networks where, for various
reasons, the keys used on one network cannot be used on another network.

Encrypted data and PINs that are transmitted across these boundaries must be
translated securely from encryption under one key to encryption under another
key. For example, a traveler visiting a foreign city might want to use an ATM to
access an account at home. The PIN entered at the ATM might need to be
encrypted at the ATM and sent over one or more financial networks to the
traveler's home bank. At the home bank, the PIN must be verified before access is
allowed. On intermediate systems (between networks), applications can use the
Encrypted PIN Translate verb to re-encrypt a PIN block from one key to another.
Running on CCA, such applications can ensure that PINs never appear in the clear
and that the PIN-encrypting keys are isolated on their own networks.

Working with Europay-Mastercard-Visa Smart cards
There are several verbs you can use in secure communications with
Europay-Mastercard-Visa (EMV) smart cards.

The processing capabilities are consistent with the specifications provided in these
documents:
v EMV 2000 Integrated Circuit Card Specification for Payment Systems Version 4.0

(EMV4.0) Book 2

v Design Visa Integrated Circuit Card Specification Manual

1. The Visa CVV and the MasterCard CVC refer to the same value. CVV is used here to mean both CVV and CVC.

492 Common Cryptographic Architecture Application Programmer's Guide

v Integrated Circuit Card Specification (VIS) 1.4.0 Corrections

EMV smart cards include the following processing capabilities:
v The Diversified Key Generate verb with rule-array options TDES-XOR,

TDESEMV2, and TDESEMV4 enables you to derive a key used to cipher and
authenticate messages, and more particularly message parts, for exchange with
an EMV smart card. You use the derived key with verbs such as: Encipher,
Decipher, MAC Generate, MAC Verify, Secure Messaging for Keys, and Secure
Messaging for PINs. These message parts can be combined with message parts
created using the Secure Messaging for Keys and Secure Messaging for PINs
verbs.

v The Secure Messaging for Keys verb enables secure incorporation of a key into a
message part (generally the value portion of a TLV component of a secure
message for a card). Similarly, the Secure Messaging for PINs verb enables
secure incorporation of a PIN block into a message part.

v PIN Change/Unblock verb enables encryption of a new PIN to send to a new
EMV card, or to update the PIN value on an initialized EMV card. This verb
generates both the required session key (from the master encryption key) and
the required authentication code (from the master authentication key).

v The ZERO-PAD option of the PKA Encrypt enables validation of a digital
signature created according to ISO 9796-2 standard by encrypting information
that you format, including a hash value of the message to be validated. You
compare the resulting enciphered data to the digital signature accompanying the
message to be validated.

v The MAC Generate and MAC Verify verbs post-pad a X'80'...X'00' string to a
message as required for authenticating messages exchanged with EMV smart
cards.

PIN verbs
CCA supports PIN verbs, various PIN algorithms, and PIN block formats.

It also explains the use of PIN-encrypting keys.

You use the PIN verbs to generate, verify, and translate PINs.

Generating a PIN
To generate personal identification numbers, call the Clear PIN Generate or
Encrypted PIN Generate verb.

Using a PIN generation algorithm, data used in the algorithm, and the PIN
generation key, the Clear PIN Generate verb generates a clear PIN and a PIN
verification value, or offset. Using a PIN generation algorithm, data used in the
algorithm, the PIN generation key, and an outbound PIN encrypting key, the
Encrypted PIN Generate verb generates and formats a PIN and encrypts the PIN
block.

Encrypting a PIN
To format a PIN into a supported PIN block format and encrypt the PIN block, call
the Clear PIN Encrypt verb.

Chapter 12. Financial services 493

Generating a PIN validation value from an encrypted PIN block
To generate a clear VISA PIN validation value (PVV) from an encrypted PIN block,
call the Clear PIN Generate Alternate verb.

The PIN block can be encrypted under an input PIN-encrypting key (IPINENC) or
an output PIN encrypting key (OPINENC).

Verifying a PIN
To verify a supplied PIN, call the Encrypted PIN Verify verb.

You supply the enciphered PIN, the PIN-encrypting key that enciphers the PIN,
and other data. You must also specify the PIN verification key and PIN verification
algorithm. The Encrypted PIN Verify verb generates a verification PIN. This verb
compares the two personal identification numbers and if they are the same, it
verifies the supplied PIN.

Translating a PIN
To translate a PIN block format from one PIN-encrypting key to another or from
one PIN block format to another, call the Encrypted PIN Translate verb.

You must identify the input PIN-encrypting key that originally enciphered the PIN.
You also need to specify the output PIN-encrypting key that you want the verb to
use to encipher the PIN. If you want to change the PIN block format, specify a
different output PIN block format from the input PIN block format.

Algorithms for generating and verifying a PIN
CCA supports the following algorithms for generating and verifying personal
identification numbers.
v IBM 3624 institution-assigned PIN
v IBM 3624 customer-selected PIN (through a PIN offset)
v IBM German Bank Pool PIN (verify through an institution key)
v VISA PIN through a VISA PIN validation value
v Interbank PIN

The algorithms are described in detail in Chapter 22, “PIN formats and
algorithms,” on page 1005.

Using PINs on different systems
CCA allows you to translate different PIN block formats, which lets you use
personal identification numbers on different systems.

CCA supports the following formats:
v IBM 3624
v IBM 3621 (same as IBM 5906)
v IBM 4704 encrypting PINPAD format
v ISO 0 (same as ANSI 9.8, VISA 1, and ECI 1)
v ISO 1 (same as ECI 4)
v ISO 2
v VISA 2
v VISA 3

494 Common Cryptographic Architecture Application Programmer's Guide

v VISA 4
v ECI 2
v ECI 3

The algorithms are described in detail in Chapter 22, “PIN formats and
algorithms,” on page 1005.

PIN-Encrypting keys
A unique master key variant enciphers each type of key.

Note that the PIN block variant constant (PBVC) are not supported in this version
of CCA.

Derived unique key per transaction algorithms

CCA supports ANSI X9.24 derived unique key per transaction algorithms to
generate PIN-encrypting keys from user data.

CCA supports both single-length and double-length key generation. Keywords for
single-length and double-length key generation cannot be mixed.

Encrypted PIN Translate

The UKPTIPIN, IPKTOPIN, and UKPTBOTH keywords will cause the verb to
generate single-length keys. and DUKPT-IP, DKPT-OP, and DUKPT-BH are the
respective keywords to generate double-length keys.

The input_PIN_profile and output_PIN_profile parameters must supply the current
key serial number when these keywords are specified.

Encrypted PIN Verify

The UKPTIPIN keyword will cause the verb to verify single-length keys.
DUKPT-IP is the keyword for double-length key generation.

The input_PIN_profile parameter must supply the current key serial number when
these keywords are specified.

ANSI X9.8 PIN restrictions
These access control points implement the PIN-block processing restrictions of the
ANSI X9.8 standard implemented in CCA 4.1.0.

These access control points are available on the IBM z196 starting with the CEX3C
feature. These access control points are disabled in the default role. A TKE
Workstation is required to enable them.

These are the access control points:
v ANSI X9.8 PIN - Enforce PIN block restrictions (offset X'0350'). See “ANSI

X9.8 PIN - Enforce PIN block restrictions” on page 496.
v ANSI X9.8 PIN - Allow modification of PAN (offset X'0351') See “ANSI X9.8

PIN - Allow modification of PAN” on page 496.
v ANSI X9.8 PIN - Allow only ANSI PIN blocks (offset X'0352') See “ANSI X9.8

PIN - Allow only ANSI PIN blocks” on page 497.

Chapter 12. Financial services 495

v ANSI X9.8 PIN - Use stored decimalization tables only (offset X'0356') See
“Use stored decimalization tables only” on page 497.

These verbs are affected by these access control points:
v Clear PIN Generate Alternate (CSNBCPA)
v Encrypted PIN Generate (CSNBEPG)
v Encrypted PIN Translate (CSNBPTR)
v Encrypted PIN Verify (CSNBPVR)
v Secure Messaging for PINs (CSNBSPN)

PIN decimalization tables can be stored in the Coprocessor, starting with CEX3C,
for use by CCA verbs. Only tables that have been activated can be used. A TKE
Workstation is required to manage the tables in the coprocessors.

ANSI X9.8 PIN - Enforce PIN block restrictions
When the ANSI X9.8 PIN - Enforce PIN block restrictions access control point is
enabled, restrictions are enforced.

The following restrictions are enforced:
v The Encrypted PIN Translate and Secure Messaging for PINs verbs will not

accept IBM 3624 PIN format in the output profile parameter when the input
profile parameter is not IBM 3624.

v The Encrypted PIN Translate verb will not accept ISO-0 or ISO-3 formats in the
input PIN profile unless ISO-0 or ISO-3 is in the output PIN profile.

v The Encrypted PIN Translate and Secure Messaging for PINs verbs will not
accept ISO-1 or ISO-2 formats in the output profile parameter when the input
profile parameter contains ISO-0, ISO-3, or VISA4.

v When the input profile parameter for the Encrypted PIN Translate and Secure
Messaging for PINs verbs contains either ISO-0 or ISO-3 formats, the PAN
within the decrypted PIN block will be extracted. This PAN must be the same as
the PAN that was supplied as the input PAN parameter, and this PAN must be
the same as the PAN supplied as the output PAN parameter.

v The input PAN and output PAN parameters for the Encrypted PIN Translate
and Secure Messaging for PINs verbs must be equivalent.

v When the rule array for the Clear PIN Generate Alternate verb contains
VISA-PVV, the input PIN profile must contain ISO-0 or ISO-3 formats.

ANSI X9.8 PIN - Allow modification of PAN
In order to enable the ANSI X9.8 PIN - Allow modification of PAN access control
point, the ANSI X9.8 PIN - Enforce PIN block restrictions must also be enabled.

The ANSI X9.8 PIN - Allow modification of PAN access control point cannot be
enabled by itself.

When the ANSI X9.8 PIN - Allow modification of PAN access control point is
enabled, the input PAN and output PAN parameters will be tested in the
Encrypted PIN Translate and Secure Messaging for PINs verbs. The input PAN will
be compared to the portions of the PAN that are recoverable from the decrypted
PIN block. If the PANs are the same, the account number will be changed in the
output PIN block.

496 Common Cryptographic Architecture Application Programmer's Guide

ANSI X9.8 PIN - Allow only ANSI PIN blocks
In order to enable the ANSI X9.8 PIN - Allow only ANSI PIN blocks access control
point, the ANSI X9.8 PIN - Enforce PIN block restrictions must also be enabled.

The ANSI X9.8 PIN - Allow only ANSI PIN blocks access control point cannot be
enabled by itself.

When this access control point is enabled, the Encrypted PIN Translate verb allows
reformatting of the PIN block as shown in Table 140.

Table 140. ANSI X9.8 PIN - Allow only ANSI PIN blocks

Reformat to: ISO Format 0 ISO Format 1 ISO Format 3

Reformat from:

ISO Format 0 Reformat permitted. Change of PAN
not permitted

Not permitted Reformat permitted. Change of PAN
not permitted.

ISO Format 1 Reformat permitted Reformat
permitted

Reformat permitted

ISO Format 3 Reformat permitted. Change of PAN
not permitted.

Not permitted Reformat permitted. Change of PAN
not permitted.

Use stored decimalization tables only
The ANSI X9.8 PIN - Use stored decimalization tables only access control point
can be enabled by itself.

When this access control point is enabled, the Secure Messaging for PINs, Clear
PIN Generate Alternate, Encrypted PIN Generate, and Encrypted PIN Verify verbs
must supply a decimalization table that matches the active decimalization tables
stored in the coprocessors. The decimalization table in the data_array parameter
will be compared against the active decimalization tables in the coprocessor, and if
the supplied table matches a stored table, the request will be processed. If the
supplied table doesn’t match any of the stored tables or there are no stored tables,
the request fails.

PIN decimalization tables can be stored in the in the Coprocessor, starting with
CEX3C, for use by CCA verbs. Only tables that have been activated can be used. A
TKE Workstation is required to manage the tables in the coprocessors.

The PIN profile
The PIN profile components include a block format, format control, pad digit, and
key serial number.

The PIN profile consists of the following:
v PIN block format (see “PIN block format” on page 498)
v Format control (see “Format control” on page 500)
v Pad digit (see “Pad digit” on page 500)
v Current Key Serial Number (for UKPT and DUKPT – see “Current key serial

number” on page 501)

Table 141 on page 498 shows the format of a PIN profile.

Chapter 12. Financial services 497

Table 141. Format of a PIN profile

Bytes Description

0 - 7 PIN block format

8 - 15 Format control

16 - 23 Pad digit

24 - 47 Current Key Serial Number (for UKPT and DUKPT)

PIN block format
This keyword specifies the format of the PIN block. The 8-byte value must be
left-aligned and padded with blanks.

Refer to Table 142 for a list of valid values.

Table 142. Format values of PIN blocks

Format value Description

ECI-2 Eurocheque International format 2

ECI-3 Eurocheque International format 3

ISO-0 ISO format 0, ANSI X9.8, VISA 1, and ECI 1

ISO-1 ISO format 1 and ECI 4

ISO-2 ISO format 2

ISO-3 ISO format 3

VISA-2 VISA format 2

VISA-3 VISA format 3

VISA-4 VISA format 4

3621 IBM 3621 and 5906

3624 IBM 3624

4704-EPP IBM 4704 encrypting PIN pad

PIN block format and PIN extraction method keywords

In the Clear PIN Generate Alternate, Encrypted PIN Translate, and Encrypted PIN
Verify verbs, you can specify a PIN extraction keyword for a given PIN block
format.

In the table below, the allowable PIN extraction methods are listed for each PIN
block format. The first PIN extraction method keyword listed for a PIN block
format is the default.

Table 143. PIN block format and PIN extraction method keywords

PIN block
format

PIN extraction
method keywords Description

ECI-2 PINLEN04 The PIN extraction method keywords specify a PIN extraction method for a
PINLEN04 format.

ECI-3 PINBLOCK The PIN extraction method keywords specify a PIN extraction method for a
PINBLOCK format.

ISO-0 PINBLOCK The PIN extraction method keywords specify a PIN extraction method for a
PINBLOCK format.

498 Common Cryptographic Architecture Application Programmer's Guide

Table 143. PIN block format and PIN extraction method keywords (continued)

PIN block
format

PIN extraction
method keywords Description

ISO-1 PINBLOCK The PIN extraction method keywords specify a PIN extraction method for a
PINBLOCK format.

ISO-2 PINBLOCK The PIN extraction method keywords specify a PIN extraction method for a
PINBLOCK format.

ISO-3 PINBLOCK The PIN extraction method keywords specify a PIN extraction method for a
PINBLOCK format.

VISA-2 PINBLOCK The PIN extraction method keywords specify a PIN extraction method for a
PINBLOCK format.

VISA-3 PINBLOCK The PIN extraction method keywords specify a PIN extraction method for a
PINBLOCK format.

VISA-4 PINBLOCK The PIN extraction method keywords specify a PIN extraction method for a
PINBLOCK format.

3621 PADDIGIT,
HEXDIGIT,
PINLEN04 -
PINLEN12,
PADEXIST

The PIN extraction method keywords specify a PIN extraction method for an
IBM 3621 PIN block format. The first keyword, PADDIGIT, is the default PIN
extraction method for the PIN block format.

3624 PADDIGIT,
HEXDIGIT,
PINLEN04 -
PINLEN16,
PADEXIST

The PIN extraction method keywords specify a PIN extraction method for an
IBM 3624 PIN block format. The first keyword, PADDIGIT, is the default PIN
extraction method for the PIN block format.

4704-EPP PINBLOCK The PIN extraction method keywords specify a PIN extraction method for a
PINBLOCK format.

The PIN extraction methods operate as follows:

PINBLOCK
Specifies that the service verb use one of these:
v The PIN length, if the PIN block contains a PIN length field
v The PIN delimiter character, if the PIN block contains a PIN delimiter

character.

PADDIGIT
Specifies that the verb use the pad value in the PIN profile to identify the
end of the PIN.

HEXDIGIT
Specifies that the verb use the first occurrence of a digit in the range from
X'A' to X'F' as the pad value to determine the PIN length

PINLENnn
Specifies that the verb use the length specified in the keyword, where nn
can range from 04 - 16, the number of digits used to identify the PIN.

PADEXIST
Specifies that the verb use the character in the 16th position of the PIN
block as the value of the pad value.

Chapter 12. Financial services 499

Enhanced PIN security mode

An enhanced PIN security mode is available. This optional mode is selected by
enabling the Enhanced PIN Security (offset X'0313') access control point in the
CEX*C default role.

When active, this control point affects all PIN verbs that extract or format a PIN
using a PIN-block format of IBM 3624 with a PIN-extraction method of
PADDIGIT .

Table 144 summarizes the verbs affected by the enhanced PIN security mode, and
describes the effect that the mode has when the access control point is enabled.

Table 144. Verbs affected when the enhanced PIN security mode is enabled

PIN-block format and
PIN-extraction method Affected verbs

PIN processing changes when Enhanced PIN Security
Mode enabled

ECI-2, 3621, or 3624
formats AND
PINLENnn

Clear PIN Generate Alternate
Encrypted PIN Translate
Encrypted PIN Verify

The PINLENnn keyword in the rule_array parameter for
PIN extraction method is not allowed if the Enhanced
PIN Security Mode is enabled.
Note: The verb will fail with return code 8 and reason
code X'7E0'.

IBM 3624 format and
HEXDIGIT,
PADDIGIT, or
PADEXIST

Clear PIN Generate Alternate
Encrypted PIN Translate
Encrypted PIN Verify
PIN Change/Unblock

PIN extraction determines the PIN length by scanning
from right to left until a digit, not equal to the PAD
digit, is found. The minimum PIN length is set at four
digits, so scanning ceases one digit past the position of
the fourth PIN digit in the block.

IBM 3624 format and
HEXDIGIT,
PADDIGIT, or
PADEXIST

Clear PIN Encrypt
Encrypted PIN Generate
Encrypted PIN Translate

PIN formatting does not examine the PIN in the output
PIN block to see if it contains the PAD digit.

IBM 3624 format and
HEXDIGIT,
PADDIGIT, or
PADEXIST

Encrypted PIN Translate Restricted to non-decimal digit for PADDIGIT.

Format control
This keyword specifies whether there is any control on the user-supplied PIN
format.

The 8-byte value must be left-aligned and padded with blanks. The only permitted
value is NONE, which indicates no format control will be used.

Pad digit
Some PIN formats require the pad digit parameter.

If the PIN format does not need a pad digit, the verb ignores this parameter.
Table 145 shows the format of a pad digit. The PIN profile pad digit must be
specified in upper case.

Table 145. Format of a pad digit

Bytes Description

16 - 22 Seven space characters

500 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|

|
|
|
|

|
|
|
|

Table 145. Format of a pad digit (continued)

Bytes Description

23 Character representation of a hexadecimal pad digit or a space if a pad digit is not needed. Characters
must be one of the following: digits 0 - 9, letters A - F, or a blank.

Each PIN format supports only a pad digit in a certain range. Table 146 lists the
valid pad digits for each PIN block format.

Table 146. Pad digits for PIN block formats

PIN Block Format Output PIN Profile Input PIN Profile

ECI-2 Pad digit is not used Pad digit is not used

ECI-3 Pad digit is not used Pad digit is not used

ISO-0 F Pad digit is not used

ISO-1 Pad digit is not used Pad digit is not used

ISO-2 Pad digit is not used Pad digit is not used

ISO-3 Pad digit is not used Pad digit is not used

VISA-2 0 - 9 Pad digit is not used

VISA-3 0 - F Pad digit is not used

VISA-4 F Pad digit is not used

3621 0 - F 0 - F

3624 0 - F 0 - F

4704-EPP F Pad digit is not used

The verb returns an error indicating that the PAD digit is not valid if all of these
conditions are met:
v The Enhanced PIN Security (offset X'0313') access control point is enabled in the

active role.
v The output PIN profile specifies 3624 as the PIN-block format.
v The output PIN profile specifies a decimal digit (0 - 9) as the PAD digit.

Recommendations for the pad digit

IBM recommends to use a non-decimal pad digit in the range of A - F when
processing IBM 3624 PIN blocks.

If you use a decimal pad digit, the creator of the PIN block must ensure that the
calculated PIN does not contain the pad digit, or unpredictable results might occur.

For example, you can exclude a specific decimal digit from being in any calculated
PIN by using the IBM 3624 calculation procedure and by specifying a
decimalization table that does not contain the desired decimal pad digit.

Current key serial number
The current key serial number is the concatenation of the initial key serial number
(a 59-bit value) and the encryption counter (a 21-bit value).

The concatenation is an 80-bit (10-byte) value. Table 147 on page 502 shows the
format of the current key serial number.

Chapter 12. Financial services 501

When UKPT or DUKPT is specified, the PIN profile parameter is extended to a
48-byte field and must contain the current key serial number.

Table 147. Format of the Current Key Serial Number Field

Bytes Description

24 - 47 Character representation of the current key serial number used to derive the initial PIN encrypting key.
It is left-aligned and padded with 4 blanks.

Decimalization tables
Decimalization tables can be loaded in the coprocessors to restrict attacks using
modified tables.

The management of the tables requires a TKE workstation.

These verbs make use of the stored decimalization tables:
v Clear PIN Generate (CSNBPGN)
v Clear PIN Generate Alternate (CSNBCPA)
v Encrypted PIN Generate (CSNBEPG)
v Encrypted PIN Verify (CSNBPVR)

The ANSI X9.8 PIN - Use stored decimalization table only (offset X'0356')
access control point is used to restrict the use of the stored decimalization tables.
When the access control point is enabled, the table supplied by the verb will be
compared against the active tables stored in the coprocessor. If the supplied table
does not match any of the active tables, the request will fail.

A TKE workstation (Version 7.1 or later) is required to manage the PIN
decimalization tables. The tables must be loaded and then activated. Only active
tables are checked when the access control point is enabled.

Note: CCA routes work to all active coprocessors based on workload. All
coprocessors must have the same set of decimalization tables for the decimalization
table access control point to be effective.

Visa Format Preserving Encryption
Format preserving encryption (FPE) is a method of encryption where the resulting
ciphertext has the same form as the input cleartext. The form of the text can vary
according to the usage and the application. The contained information provides
background information which is helpful for using the Visa format preserving
encryption (VFPE) services provided by CCA. The Visa Format Preserving
Encryption (VFPE) has an algorithm that uses an alphabet parameter. An alphabet
assigns a sequential number set for all potential characters for a given field type
that is used in the conversion of payment card data prior to encryption.

One example for format preserving encryption is a 16 digit credit card number.
After using FPE to encrypt a credit card number, the resulting ciphertext is another
16 digit number. In this example of the credit card number, the output ciphertext is
limited to numeric digits only.

The FPE services require some knowledge of the input cleartext character set in
order to create the appropriate output ciphertext. The CSNBFPEE, CSNBFPED,

502 Common Cryptographic Architecture Application Programmer's Guide

CSNBFPET, and CSNBPTRE callable services use the tables in the following
subsections to determine valid character sets for the cleartext input parameters.

VFPE applies to these verbs:
v FPE Decipher (CSNBFPED)
v FPE Encipher (CSNBFPEE)
v FPE Translate (CSNBFPET)
v Encrypted PIN Translate Enhanced (CSNBPTRE)

These CCA verbs use the tables in the following subsections to determine valid
character sets for the cleartext input parameters. These services convert payment
card data as required to or from VFPE alphabet numbers as determined by
rule-array keyword. The alphabet tables below are meant to provide a reference for
the valid set of characters for each of the four Visa payment card data formats
(namely, PAN, Cardholder Name, Track 1 Discretionary Data, and Track 2
Discretionary Data).

VFPE payment card data can be in any one of these formats:
v For Track 2, a special modified 5-bit ASCII format, which allows parity checking

of the digits, as specified in ISO 7811
v For Track 1, a special modified 7-bit ASCII format, which allows parity checking

of the digits, as specified in ISO 7811-2 and ISO 7813
v 4-bit Binary Coded Decimal (BCD)
v 7-bit American Standard Code for Information Interchange (ASCII)
v 8-bit Extended Binary Coded Decimal Interchange Code (EBCDIC)

The conversion of payment card data to a VFPE alphabet prior to encryption
serves to standardize the data. The converted encryption result is presented to the
terminal application for constructing payment transaction data. When the
converted encryption result is decrypted, the VFPE alphabet data can be converted
back to any desired format.

When VFPE is applied to a transaction, it must always be applied to all
occurrences of the following fields (when present), and in the following order:
1. Primary Account Number (PAN)
2. Cardholder Name
3. Track 1 Discretionary Data
4. Track 2 Discretionary Data

Any missing data fields will be skipped.

Each character in the set of characters for a given field type is assigned a unique
VFPE alphabet number. VFPE requires translation of each payment card data
character to its assigned VFPE alphabet number prior to encryption. Refer to
Table 148 on page 504.

Chapter 12. Financial services 503

Table 148. VFPE alphabet by field type. Table describing the VFPE alphabet by field type in three columns

Field type VFPE alphabet used Description

Primary Account Number
(PAN)

v For releases starting with 5.0: BASE-10
alphabet.

Refer to Table 149 on page 505.

PAN data must be converted into the
VFPE BASE-10 alphabet prior to
encryption.

Data is obtained from Track 1, Track 2,
chip medium-scale integration (MSI), or
chip account number.

Cardholder Name v For releases starting with 5.0: Track 1
Cardholder Name alphabet.

Refer to the third column of Table 150
on page 505.

Cardholder Name data must be converted
into the VFPE Track 1 Cardholder Name
alphabet prior to encryption.

Data is obtained from Track 1 or chip
data.

Track 1 Discretionary Data v For releases starting with 5.0: Track 1
Discretionary Data alphabet.

Refer to the second column of Table 150
on page 505.

Note: This table has all of the same
characters as the VFPE Track 1
Cardholder Name alphabet plus two
reserved name field characters, namely a
period "." and a slash "/".

Track 1 Discretionary Data must be
converted into the VFPE Track 1
Discretionary alphabet prior to
encryption.

Data is obtained from magnetic stripe or
chip data.

Track 2 Discretionary Data v For release 5.0: BASE-16 alphabet.

Refer to Table 151 on page 507.

v For release 5.2: BASE-10 alphabet.

Refer to Table 149 on page 505.

Track 2 Discretionary Data must be
converted into the VFPE BASE-10
alphabet prior to encryption.

Data is obtained from the magnetic stripe
or chip data.

Note:

1. Characters that are not found in the alphabet table should be skipped and not encrypted.

2. Reserved characters that are not in the table are intentionally missing. Missing reserved characters can be used
for hardware control, start sentinel, field separate, or end sentinel.

VFPE BASE-10 alphabet

The VFPE BASE-10 alphabet is used for converting data when the character set
only consists of numbers zero through nine (0 - 9). VFPE requires translation
(conversion) of the following data to the VFPE alphabet number in Table 149 on
page 505:
v PAN data obtained from payment card Track 1, Track 2, chip MSI, or chip

account number
v Track 2 Discretionary Data obtained from the magnetic strip or chip data.

Any of the data types shown in the table are supported. After the formatted
encrypted data is decrypted, it can be translated to the same or a different data
type than the original coding.

504 Common Cryptographic Architecture Application Programmer's Guide

Table 149. VFPE BASE-10 alphabet for PAN data and Track 2 Discretionary Data

Character

VFPE
alphabet
number

ISO 7811
modified

5-bit ASCII

ISO 7811-2
and ISO 7813

Modified 7-bit
ASCII

Normal data type encoding

4-bit
binary
coded

decimal
(BCD) 7-bit ASCII

8-bit
EBCDIC

0 0 10000 0010000 0000 0110000 11110000

1 1 00001 1010001 0001 0110001 11110001

2 2 00010 1010010 0010 0110010 11110010

3 3 10011 0010011 0011 0110011 11110011

4 4 00100 1010100 0100 0110100 11110100

5 5 10101 0010101 0101 0110101 11110101

6 6 10110 0010110 0110 0110110 11110110

7 7 00111 1010111 0111 0110111 11110111

8 8 01000 1011000 1000 0111000 11111000

9 9 11001 0011001 1001 0111001 11111001

VFPE Track 1 Discretionary Data and Cardholder Name alphabets

There are two VFPE alphabets for Track 1 data. One is for VFPE Track 1
Discretionary Data, and the other for VFPE Track 1 Cardholder Name data:
v The VFPE Track 1 Discretionary Data alphabet is used for converting the Track 1

Discretionary Data obtained from payment card magnetic stripe or chip data.
This alphabet includes two reserved name field characters, namely a period "."
and a slash "/", that the VFPE Track 1 Cardholder Name alphabet does not have.
If a period (".") or a slash ("/") character is encountered in Track 1 Discretionary
Data, it should be converted and encrypted.

v The VFPE Track 1 Cardholder Name alphabet is used for converting the
cardholder name data obtained from payment card Track 1 or chip data. If a
period (".") or a slash ("/") character is encountered in Cardholder Name data, it
should be skipped and not encrypted.

Refer to Table 150. Any of the data types shown in the table are supported. After
the formatted and encrypted data is decrypted, it can be translated to the same or
a different data type than the original coding.

Table 150. VFPE Track 1 Discretionary Data and Cardholder Name alphabets

Character

VFPE Track 1
Discretionary

Data
alphabet
number

VFPE Track 1
Cardholder

Name
alphabet
number

ISO 7811-2
and ISO 7813

Modified
7-bit ASCII

data type

7-bit ASCII
normal data

type
encoding

8-bit EBCDIC
normal data

type
encoding

space 0 0 1000000 0100000 01000000

1 1 1000011 0100011 01111011

$ 2 2 0000100 0100100 01011011

(3 3 0001000 0101000 01001101

) 4 4 1001001 0101001 01011101

- 5 5 0001101 0101101 01100000

Chapter 12. Financial services 505

Table 150. VFPE Track 1 Discretionary Data and Cardholder Name alphabets (continued)

Character

VFPE Track 1
Discretionary

Data
alphabet
number

VFPE Track 1
Cardholder

Name
alphabet
number

ISO 7811-2
and ISO 7813

Modified
7-bit ASCII

data type

7-bit ASCII
normal data

type
encoding

8-bit EBCDIC
normal data

type
encoding

. 6 Skip 0001110 0101110 01001011

/ 7 Skip 1001111 0101111 01100001

0 8 6 0010000 0110000 11110000

1 9 7 1010001 0110001 11110001

2 10 8 1010010 0110010 11110010

3 11 9 0010011 0110011 11110011

4 12 10 1010100 0110100 11110100

5 13 11 0010101 0110101 11110101

6 14 12 0010110 0110110 11110110

7 15 13 1010111 0110111 11110111

8 16 14 1011000 0111000 11111000

9 17 15 0011001 0111001 11111001

A 18 16 1100001 1000001 11000001

B 19 17 1100010 1000010 11000010

C 20 18 0100011 1000011 11000011

D 21 19 1100100 1000100 11000100

E 22 20 0100101 1000101 11000101

F 23 21 0100110 1000110 11000110

G 24 22 1100111 1000111 11000111

H 25 23 1101000 1001000 11001000

I 26 24 0101001 1001001 11001001

J 27 25 0101010 1001010 11010001

K 28 26 1101011 1001011 11010010

L 29 27 0101100 1001100 11010011

M 30 28 1101101 1001101 11010100

N 31 29 1101110 1001110 11010101

O 32 30 0101111 1001111 11010110

P 33 31 1110000 1010000 11010111

Q 34 32 0110001 1010001 11011000

R 35 33 0110010 1010010 11011001

S 36 34 1110011 1010011 11100010

T 37 35 0110100 1010100 11100011

U 38 36 1110101 1010101 11100100

V 39 37 1110110 1010110 11100101

W 40 38 0110111 1010111 11100110

X 41 39 0111000 1011000 11100111

Y 42 40 1111001 1011001 11101000

506 Common Cryptographic Architecture Application Programmer's Guide

Table 150. VFPE Track 1 Discretionary Data and Cardholder Name alphabets (continued)

Character

VFPE Track 1
Discretionary

Data
alphabet
number

VFPE Track 1
Cardholder

Name
alphabet
number

ISO 7811-2
and ISO 7813

Modified
7-bit ASCII

data type

7-bit ASCII
normal data

type
encoding

8-bit EBCDIC
normal data

type
encoding

Z 43 41 1111010 1011010 11101001

[44 42 0111011 1011011 10111010

\ 45 43 1111100 1011100 11100000

] 46 44 0111110 1011101 10111011

Base-16 alphabet

Cards are encoded with the special ISO 7811 modified 5-bit ASCII encoding for
track 2. This data type allows parity checking of the digits. Many systems require
this encoding to be converted into standard data types for processing. Other data
fields may use base-16 encoding and would use this same alphabet when
performing VFPE. These data types support values in the ranges 0 - 9 and A - F.

VFPE requires translation of the characters of the VFPE alphabet number prior to
encryption. Therefore, any of the data types shown in Table 190 are supported.
Decryption may use the same or a different data type than the original encoding.
This alphabet requires the following values to be used in the VFPE algorithm:
Number of characters in alphabet('n'): 16

Table 151. Base-16 alphabet

VFPE
alphabet
number

ISO 7811 modified 5-bit
ASCII encoding Normal data type encoding

Character Binary Character

4-bit
binary
coded

decimal 7-bit ASCII
8-bit

EBCDIC

0 0 10000 0 0000 0110000 11110000

1 1 00001 1 0001 0110001 11110001

2 2 00010 2 0010 0110010 11110010

3 3 10011 3 0011 0110011 11110011

4 4 00100 4 0100 0110100 11110100

5 5 10101 5 0101 0110101 11110101

6 6 10110 6 0110 0110110 11110110

7 7 00111 7 0111 0110111 11110111

8 8 01000 8 1000 0111000 11111000

9 9 11001 9 1001 0111001 11111001

10 : 11010 A 1010 1000001 11000001

11 ; 01011 B 1011 1000010 11000010

12 < 11100 C 1100 1000011 11000011

13 = 01101 D 1101 1000100 11000100

14 > 01110 E 1110 1000101 11000101

15 ? 11111 F 1111 1000110 11000110

Chapter 12. Financial services 507

Usage notes for FPE Encipher (CSNBFPEE) and FPE Decipher
(CSNBFPED) services

The CSNBFPEE and CSNBFPED services support two options:
1. the standard encryption or decryption option which uses the DES CBC mode of

operation
2. the Visa Format Preserving Encryption (VFPE) option.

If the standard encryption or decryption option was selected, the plaintext data
was formatted into blocks and then encrypted or decrypted with triple-DES with a
static TDES key or a DUKPT double length data encryption or decryption key. For
the decryption operation, the data blocks must be decrypted and unblocked to
produce the plaintext. If the data was encrypted or decrypted with the VFPE
option, it was processed in place without changing the data type or length of the
field. Also, DUKPT key management is used.

These services can be used to encrypt or decrypt one or all of the following fields:
v the primary account number (PAN),
v the cardholder name,
v the track 1 discretionary data, or
v the track 2 discretionary data.

There are three encryption or decryption options:
1. the standard option with CBC mode TDES and DUKPT keys
2. the VFPE option with DUKPT keys
3. the standard option with CBC mode TDES and double-length TDES keys.

To use these services, you must specify the following:
v the processing method, which is limited to Visa Data Secure Platform (VDSP)
v the key management method, either STATIC or DUKPT
v the algorithm, which is limited to TDES
v the mode, either CBC or Visa Format Preserving Encryption (VFPE)
v the plaintext to be encrypted or decrypted
v the character set of each field to be encrypted or decrypted using rule-array

keywords
v the base derivation key and key serial number if DUKPT key management is

used, or a double-length TDES key if STATIC key management is used
v a compliance or non-compliance indicator for the check digit of the PAN to be

processed if VFPE is specified.

The services return the encrypted or decrypted fields and optionally, the DUKPT
PIN key, if the DUKPT key management is selected and the PINKEY rule is
specified.

Authentication Parameter Generate (CSNBAPG)
The Authentication Parameter Generate service generates an authentication
parameter (AP) and returns it encrypted using the key supplied in the
AP_encrypting_key_identifier parameter.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

508 Common Cryptographic Architecture Application Programmer's Guide

|

Format
The format of CSNBAPG.

CSNBAPG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
inbound_PIN_encrypting_key_identifier_length,
inbound_PIN_encrypting_key_identifier,
encrypted_PIN_block,
issuer_domestic_code,
card_secure_code,
PAN_data,
AP_encrypting_key_identifier_length,
AP_encrypting_key_identifier,
AP_value)

Parameters
The parameters for CSNBAPG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, or 2.

rule_array

Direction: Input
Type: String array

The keywords that provide control information to the verb. The rule_array
keywords are described in Table 152.

Table 152. Keywords for Authentication Parameter Generate control information

Keyword Description

AP Protection Method (One, optional)

ENCRYPT Specifies that the AP value should be returned encrypted under the AP_encrypting_key_identifier
parameter. This is the default.

CLEAR Specifies that the AP value should be returned in the clear.

AP Value Format (One, optional)

BCD Specifies the output format of the AP as packed binary coded decimal. This is the default.

inbound_PIN_encrypting_key_identifier_length

Direction: Input
Type: Integer

Authentication Parameter Generate (CSNBAPG)

Chapter 12. Financial services 509

Length of the inbound_PIN_encrypting_key_identifier parameter in bytes.
This value must be 64.

inbound_PIN_encrypting_key_identifier

Direction: Input
Type: String

An operational key token or the label of the AES or DES key storage record
containing a double length IPINENC key that decrypts the PIN block.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

encrypted_PIN_block

Direction: Input
Type: String

The ISO-0 PIN block encrypted with the
inbound_PIN_encrypting_key_identifier. The PIN within the PIN block must
be a 5-digit value.

issuer_domestic_code

Direction: Input
Type: String

A 5 byte alphanumeric character string.

card_secure_code

Direction: Input
Type: String

An 8 byte string of digits grouped into two 4 byte sections. The 4 digits in a
section cannot all be zero, for example, the value 0000 is invalid.

PAN_data

Direction: Input
Type: String

The personal account number (PAN). Must be 12 characters long.

AP_encrypting_key_identifier_length

Direction: Input
Type: Integer

The length of the AP_encrypting_key_identifier parameter in bytes. This
value is 64 when a label is supplied. When the key identifier is a key token,
the value is the length of the token. The maximum value is 725. The value may
be 0 when the CLEAR rule_array keyword is specified.

AP_encrypting_key_identifier

Direction: Input
Type: String

An internal key token or the label of the AES or DES key storage record
containing a double length DATA key used to encrypt the AP_value. If the AP
Protection Method was specified as CLEAR keyword in the rule_array
parameter, this parameter is ignored.

Authentication Parameter Generate (CSNBAPG)

510 Common Cryptographic Architecture Application Programmer's Guide

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

AP_value

Direction: Output
Type: String

An 8 byte character string containing the generated authentication parameter.

Restrictions
The restrictions for CSNBAPG.

None.

Required commands
The required commands for CSNBAPG.

The Authentication Parameter Generate verb requires the Authentication
Parameter Generate command (offset X'02B1') to be enabled in the active role.

In addition, rule-array keyword CLEAR requires the Authentication Parameter
Generate - Clear command (offset X'02B2') to be enabled in the active role.

Usage notes
The usage notes for CSNBAPG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBAPGJ .

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBAPGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber inbound_PIN_encrypting_key_identifier_length,
byte[] inbound_PIN_encrypting_key_identifier,
byte[] encrypted_PIN_block,
byte[] issuer_domestic_code,
byte[] card_secure_code,
byte[] PAN_data,
hikmNativeNumber AP_encrypting_key_identifier_length,
byte[] AP_encrypting_key_identifier,
byte[] AP_value);

Clear PIN Encrypt (CSNBCPE)
The Clear PIN Encrypt verb formats a PIN into one of the following PIN block
formats and encrypts the results.

Authentication Parameter Generate (CSNBAPG)

Chapter 12. Financial services 511

You can use this verb to create an encrypted PIN block for transmission. With the
RANDOM keyword, you can have the verb generate random PIN numbers.

Note: A clear PIN is a sensitive piece of information. Ensure your application
program and system design provide adequate protection for any clear PIN value.
v IBM 3621 format
v IBM 3624 format
v ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI formats)
v ISO-1 format (same as the ECI-4 format)
v ISO-2 format
v ISO-3 format
v IBM 4704 encrypting PINPAD (4704-EPP) format
v VISA 2 format
v VISA 3 format
v VISA 4 format
v ECI2 format
v ECI3 format

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBCPE.

CSNBCPE(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_encrypting_key_identifier,
rule_array_count,
rule_array,
clear_PIN,
PIN_profile,
PAN_data,
sequence_number
encrypted_PIN_block)

Parameters
The parameter definitions for CSNBCPE.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

PIN_encrypting_key_identifier

Direction: Input/Output
Type: String

The 64-byte string containing an internal key token or a key label of an
internal key token. The internal key token contains the key that encrypts the
PIN block. The control vector in the internal key token must specify an
OPINENC key type and have the CPINENC usage bit set to B'1'.

rule_array_count

Clear PIN Encrypt (CSNBCPE)

512 Common Cryptographic Architecture Application Programmer's Guide

|

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. Valid values are 0 and 1.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The keyword is
left-aligned in an 8-byte field and padded on the right with blanks. All
keywords must be in contiguous storage. The rule_array keywords are
described in Table 153

Table 153. Keywords for Clear PIN Encrypt control information

Keyword Description

Process Rule (Optional)

ENCRYPT This is the default. Use of this keyword is optional.

RANDOM Causes the verb to generate a random PIN value. The length of the PIN is based on the value in the
clear_PIN variable. Set the value of the clear PIN to zero and use as many digits as the desired
random PIN. Pad the remainder of the clear PIN variable with space characters.

clear_PIN

Direction: Input
Type: String

A 16-character string with the clear PIN. The value in this variable must be
left-aligned and padded on the right with space characters.

PIN_profile

Direction: Input
Type: String array

A 24-byte string containing three 8-byte elements with a PIN block format
keyword, the format control keyword, NONE, and a pad digit as required by
certain formats. See “The PIN profile” on page 497 for additional information.

PAN_data

Direction: Input
Type: String

A 12-byte PAN in character format. The verb uses this parameter if the PIN
profile specifies the ISO-0, ISO-3, or VISA-4 keyword for the PIN block
format. Otherwise, ensure this parameter is a 12-byte variable in application
storage. The information in this variable will be ignored, but the variable must
be specified.

Note: When using the ISO-0 or ISO-3 keyword, use the 12 rightmost digits of
the PAN data, excluding the check digit. When using the VISA-4 keyword, use
the 12 leftmost digits of the PAN data, excluding the check digit.

sequence_number

Direction: Input
Type: Integer

Clear PIN Encrypt (CSNBCPE)

Chapter 12. Financial services 513

The 4-byte character integer. The verb currently ignores the value in this
variable. For future compatibility, the suggested value is 99999.

encrypted_PIN_block

Direction: Output
Type: String

The field that receives the 8-byte encrypted PIN block.

Restrictions
The restrictions for CSNBCPE.

The format control specified in the PIN profile must be NONE.

Required commands
The required commands for CSNBCPE.

This verb requires the Clear PIN Encrypt command (offset X'00AF') to be enabled
in the active role.

An enhanced PIN security mode is available for formatting an encrypted
PIN-block into IBM 3624 format using the PADDIGIT PIN-extraction method. This
mode limits checking of the PIN to decimal digits. No other PIN-block consistency
checking will occur. To activate this mode, enable the Enhanced PIN Security
command (offset X'0313') in the active role.

Usage notes
Usage notes for CSNBCPE.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCPEJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCPEJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] PIN_encrypting_key_identifier,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] clear_PIN,
byte[] PIN_profile,
byte[] PAN_data,
hikmNativeNumber sequence_number,
byte[] encrypted_PIN_block);

Clear PIN Encrypt (CSNBCPE)

514 Common Cryptographic Architecture Application Programmer's Guide

Clear PIN Generate (CSNBPGN)
Use the Clear PIN Generate verb to generate a clear PIN, a PIN validation value
(PVV), or an offset according to an algorithm.

You supply the algorithm or process rule using the rule_array parameter.
v IBM 3624 (IBM-PIN or IBM-PINO)
v VISA PIN validation value (VISA-PVV)
v Interbank PIN (INBK-PIN)

For guidance information about VISA, see their appropriate publications.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBPGN.

CSNBPGN(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_generating_key_identifier,
rule_array_count,
rule_array,
PIN_length,
PIN_check_length,
data_array,
returned_result)

Parameters
The parameters for CSNBPGN.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

PIN_generating_key_identifier

Direction: Input/Output
Type: String

The 64-byte key label or internal key token that identifies the PIN generation
(PINGEN) key.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Direction: Input
Type: String array

The process rule provides control information to the verb. The keyword is
left-aligned in an 8-byte field and padded on the right with blanks. The

Clear PIN Generate (CSNBPGN)

Chapter 12. Financial services 515

|

rule_array keyword is described in Table 154.

Table 154. Keywords for Clear PIN Generate control information

Keyword Description

Process Rule (One, required)

GBP-PIN The IBM German Bank Pool PIN, which uses the institution PINGEN key to generate an institution
PIN (IPIN).

IBM-PIN The IBM 3624 PIN, which is an institution-assigned PIN. It does not calculate the PIN offset.

IBM-PINO The IBM 3624 PIN offset, which is a customer-selected PIN and calculates the PIN offset (the
output).

INBK-PIN The Interbank PIN that is generated.

VISA-PVV The VISA PIN validation value. Input is the customer PIN.

PIN_length

Direction: Input
Type: Integer

The length of the PIN used for the IBM algorithms only, IBM-PIN or
IBM-PINO. Otherwise, this parameter is ignored. Specify an integer in the
range 4 - 16.

PIN_check_length

Direction: Input
Type: Integer

The length of the PIN offset used for the IBM-PINO process rule only.
Otherwise, this parameter is ignored. Specify an integer from 4 - 16.

Note: The PIN check length must be less than or equal to the integer specified
in the PIN_length parameter.

data_array

Direction: Input
Type: String

Three 16-byte data elements required by the corresponding rule_array
parameter. The data array consists of three 16-byte fields or elements whose
specification depends on the process rule. If a process rule only requires one or
two 16-byte fields, the rest of the data array is ignored by the verb. Table 155
describes the array elements.

Table 155. Array elements for the Clear PIN Generate verb

Array element Description

Clear_PIN Clear user selected PIN of 4 - 12 digits of 0 - 9. Left-aligned and padded with spaces. For
IBM-PINO, this is the clear customer PIN (CSPIN).

Decimalization_table Decimalization table for IBM and GBP only. Sixteen digits of 0 - 9.

If the ANSI X9.8 PIN - Use stored decimalization table only access control point
(X'0356') is enabled in the active role, this table must match one of the active decimalization
tables in the coprocessors.

Clear PIN Generate (CSNBPGN)

516 Common Cryptographic Architecture Application Programmer's Guide

Table 155. Array elements for the Clear PIN Generate verb (continued)

Array element Description

Trans_sec_parm For VISA only, the leftmost sixteen digits. Eleven digits of the personal account number
(PAN). One digit key index. Four digits of customer selected PIN.

For Interbank only, sixteen digits. Eleven rightmost digits of the personal account number
(PAN). A constant of 6. One digit key selector index. Three digits of PIN validation data.

Validation_data Validation data for IBM and IBM German Bank Pool padded to 16 bytes. One to sixteen
characters of hexadecimal account data left-aligned and padded on the right with blanks.

Table 156 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule's position within the array.

Table 156. Array elements for Clear PIN Generate

Process Rule
IBM-
PIN

IBM-
PINO

GBP-
PIN GBP-PINO

VISA-
PVV

INBK-
PIN

Decimalization_table 1 1 1 1

Validation_data 2 2 2 2

Clear_PIN 3 3

Trans_sec_parm 1 1

Note: Generate offset for GBP algorithm is equivalent to IBM offset generation
with PIN_check_length of 4 and PIN_length of 6.

returned_result

Direction: Output
Type: String

The 16-byte generated output, left-aligned, and padded on the right with
blanks.

Restrictions
The restrictions for CSNBPGN.

None.

Required commands
The required commands for CSNBPGN.

This verb requires the Clear PIN Generate - 3624 command (offset X'00A0') to be
enabled in the active role.

Whenever the ANSI X9.8 PIN - Use stored decimalization table only command
(offset X'0356') is enabled in the active role, the Decimalization_table element of the
data_array value must match one of the PIN decimalization tables that are in the
active state on the coprocessor. Use of this command provides improved security
and control for PIN decimalization tables.

Usage notes
The usage notes for CSNBPGN.

Clear PIN Generate (CSNBPGN)

Chapter 12. Financial services 517

If you are using the IBM 3624 PIN and IBM German Bank Pool PIN algorithms,
you can supply an unencrypted customer selected PIN to generate a PIN offset.

Related information
Related information about CSNBPGN.

The algorithms are described in detail in Chapter 22, “PIN formats and
algorithms,” on page 1005.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBPGNJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBPGNJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] PIN_generating_key_identifier,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PIN_length,
hikmNativeNumber PIN_check_length,
byte[] data_array,
byte[] returned_result);

Clear PIN Generate Alternate (CSNBCPA)
Use the Clear PIN Generate Alternate verb to generate a clear VISA PVV (PIN
validation value) from an input encrypted PIN block or to produce a 3624 offset
from a customer-selected encrypted PIN.

The PIN block can be encrypted under either an input PIN-encrypting key
(IPINENC) or an output PIN-encrypting key (OPINENC).

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBCPA.

CSNBCPA(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_encryption_key_identifier,
PIN_generation_key_identifier,
PIN_profile,
PAN_data,
encrypted_PIN_block,
rule_array_count,
rule_array,
PIN_check_length,
data_array,
returned_PVV)

Clear PIN Generate (CSNBPGN)

518 Common Cryptographic Architecture Application Programmer's Guide

|

Parameters
The parameters for CSNBCPA.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

PIN_encryption_key_identifier

Direction: Input/Output
Type: String

A 64-byte string consisting of an internal token that contains an IPINENC or
OPINENC key or the label of an IPINENC or OPINENC key that is used to
encrypt the PIN block. If you specify a label, it must resolve uniquely to either
an IPINENC or OPINENC key.

PIN_generation_key_identifier

Direction: Input/Output
Type: String

A 64-byte string that consists of an internal token that contains a PIN
generation (PINGEN) key or the label of a PINGEN key.

PIN_profile

Direction: Input
Type: String

The three 8-byte character elements that contain information necessary to
extract a PIN from a formatted PIN block. The pad digit is needed to extract
the PIN from a 3624 or 3621 PIN block in the Clear PIN Generate Alternate
verb. See “The PIN profile” on page 497 for additional information.

PAN_data

Direction: Input
Type: String

A 12-byte field that contains 12 characters of PAN data. The personal account
number recovers the PIN from the PIN block if the PIN profile specifies ISO-0
or VISA-4 block formats. Otherwise it is ignored, but you must specify this
parameter.

For ISO-0 or ISO-3, use the rightmost 12 digits of the PAN, excluding the
check digit. For VISA-4, use the leftmost 12 digits of the PAN, excluding the
check digit.

encrypted_PIN_block

Direction: Input
Type: String

An 8-byte field that contains the encrypted PIN that is input to the VISA PVV
generation algorithm. The verb uses the IPINENC or OPINENC key that is
specified in the PIN_encryption_key_identifier parameter to encrypt the block.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the

Clear PIN Generate Alternate (CSNBCPA)

Chapter 12. Financial services 519

rule_array variable. This value must be 1 or 2. If the default extraction method
for a PIN block format is desired, specify the rule_array_count value as 1.

rule_array

Direction: Input
Type: String array

The process rule for the PIN generation algorithm. Specify IBM-PINO or
VISA-PVV (the VISA PIN verification value) in an 8-byte field, left-aligned,
and padded with blanks. The rule_array points to an array of one or two 8-byte
elements. The rule_array keywords are described in Table 157.

Table 157. Keywords for Clear PIN Generate Alternate control information

Keyword Description

PIN calculation method (One required)

IBM-PINO This keyword specifies use of the IBM 3624 PIN Offset
calculation method.

VISA-PVV This keyword specifies use of the VISA PVV calculation
method.

PIN extraction method (One optional) See the text following this table.

If the PIN extraction method is provided, one of the PIN extraction method
keywords shown in Table 143 on page 498 can be specified for the given PIN
block format. See “PIN block format and PIN extraction method keywords” on
page 498 for additional information. If the default extraction method for a PIN
block format is desired, specify the rule_array_count value as 1.

The PIN extraction methods operate as follows:

PINBLOCK
Specifies that the verb use one of the following:
v The PIN length, if the PIN block contains a PIN length field
v The PIN delimiter character, if the PIN block contains a PIN

delimiter character.

PADDIGIT
Specifies that the verb use the pad value in the PIN profile to identify
the end of the PIN.

HEXDIGIT
Specifies that the verb use the first occurrence of a digit in the range
from X'A' to X'F' as the pad value to determine the PIN length.

PINLENnn
Specifies that the verb use the length specified in the keyword, where
nn can range from 04 - 16, to identify the PIN.

The PINLENnn keywords are disabled for this verb by default. If these
keywords are used, return code 8 with reason code 33 is returned. To
enable them, the Enhanced PIN Security command (bit X'0313') must
be enabled using a TKE.

PADEXIST
Specifies that the verb use the character in the 16th position of the PIN
block as the value of the pad value.

PIN_check_length

Clear PIN Generate Alternate (CSNBCPA)

520 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: Integer

The length of the PIN offset used only for the IBM-PINO process rule.
Otherwise, this parameter is ignored. Specify an integer from 4 - 16.

Note: The PIN check length must be less than or equal to the integer specified
in the PIN_length parameter.

data_array

Direction: Input
Type: String

Three 16-byte elements. Table 158 describes the format when IBM-PINO is
specified. Table 159 describes the format when VISA-PVV is specified.

Table 158. Array elements for Clear PIN Generate Alternate, data_array (IBM-PINO)

Array element Description

Decimalization_table This element contains the decimalization table of 16 characters (0 - 9) that are used to
convert hexadecimal digits (X'0' - X'F') of the enciphered validation data to the decimal
digits (X'0' - X'9').

If the ANSI X9.8 PIN - Use stored decimmalization table only access control point
(X'0356') is enabled in the active role, this table must match one of the active
decimalization tables in the coprocessors.

validation_data This element contains 1 - 16 characters of account data. The data must be left-aligned
and padded on the right with space characters.

Reserved-3 This field is ignored, but you must specify it.

Table 159. Array elements for Clear PIN Generate Alternate, data_array (VISA-PVV)

Array element Description

Trans_sec_parm For VISA-PVV only, the leftmost twelve digits. Eleven digits of the personal account
number (PAN). One digit key index. The rest of the field is ignored.

Reserved-2 This field is ignored, but you must specify it.

Reserved-3 This field is ignored, but you must specify it.

returned_PVV

Direction: Output
Type: String

A 16-byte area that contains the 4-byte PVV left-aligned and padded with
blanks.

Restrictions
The restrictions for CSNBCPA.

None.

Required commands
The required commands for CSNBCPA.

Clear PIN Generate Alternate (CSNBCPA)

Chapter 12. Financial services 521

This verb requires the commands shown in the following table to be enabled in the
active role based on the keyword specified for the PIN-calculation method:

Rule-array keyword Offset Command

IBM-PINO X'00A4' Clear PIN Generate Alternate - 3624 Offset

VISA-PVV X'00BB' Clear PIN Generate Alternate - VISA PVV

An enhanced PIN security mode, on the CEX*C is available for extracting PINs
from encrypted PIN blocks. This mode only applies when specifying a
PIN-extraction method for an IBM 3624 PIN-block. To do this, you must enable the
Enhanced PIN Security (offset X'0313') access control point in the default role.
When activated, this mode limits checking of the PIN to decimal digits and a PIN
length minimum of 4 is enforced. No other PIN-block consistency checking will
occur.

An enhanced PIN security mode starting with CEX3C is available beginning with
Release 4.1.0, to implement restrictions required by the ANSI X9.8 PIN standard.
The restrictions are to accept only a PIN_profile variable that contains a PIN-block
format of ISO-0 or ISO-3. To enforce these restrictions, you must enable the
following access control points in the default role:
v ANSI X9.8 PIN - Enforce PIN block restrictions (X'0350')

For more information, see “ANSI X9.8 PIN restrictions” on page 495.

Note: A role with offset X'0350' enabled also affects access control of the Encrypted
PIN Translate and the Secure Messaging for PINs verbs.

Whenever the ANSI X9.8 PIN - Use stored decimalization tables only
command (offset X'0356') is enabled in the active role, the Decimalization_table
element of the data_array value must match one of the PIN decimalization tables
that are in the active state on the coprocessor. Use of this command provides
improved security and control for PIN decimalization tables. The VISA-PVV
PIN-calculation method does not have a Decimalization_table element and is
therefore not affected by this command.

Usage notes
The usage notes for CSNBCPA.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCPAJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCPAJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] inbound_PIN_encrypting_key_identifier,
byte[] PIN_generating_key_identifier,
byte[] input_PIN_profile,
byte[] PAN_data,

Clear PIN Generate Alternate (CSNBCPA)

522 Common Cryptographic Architecture Application Programmer's Guide

byte[] encrypted_PIN_block,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PIN_check_length,
byte[] data_array,
byte[] returned_PVV);

CVV Generate (CSNBCSG)
Use the CVV Generate verb to generate a VISA Card Verification Value (CVV) or
MasterCard Card Verification Code (CVC) as defined for track 2.

This verb generates a CVV that is based on the information that the PAN_data, the
expiration_date, and the service_code parameters provide. This verb uses the Key-A
and the Key-B keys to cryptographically process this information. Key-A and
Key-B can be single-length DATA or MAC keys, or a combined Key-A, Key-B
double length DATA or MAC key. If the requested CVV is shorter than 5
characters, the CVV is padded on the right by space characters. The CVV is
returned in the 5-byte variable that the CVV_value parameter identifies. When you
verify a CVV, compare the result to the value that the CVV_value supplies.

See CVV Key Combine (CSNBCKC) for information on combining two
single-length MAC-capable keys into one double-length key.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBCSG.

CSNBCSG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data,
expiration_date,
service_code,
CVV_key_A_Identifier,
CVV_key_B_Identifier,
CVV_value)

Parameters
The parameters for CSNBCSG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, or 2.

rule_array

Clear PIN Generate Alternate (CSNBCPA)

Chapter 12. Financial services 523

|

Direction: Input
Type: String array

Keywords that provide control information to the verb. Each keyword is
left-aligned in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage. The rule_array keywords are described in
Table 160.

Table 160. Keywords for CVV Generate control information

Keyword Description

PAN data length (One, optional)

PAN-13 Specifies that the length of the PAN data is 13 bytes. PAN-13 is the
default value.

PAN-14 Specifies that the length of the PAN data is 14 bytes.

PAN-15 Specifies that the length of the PAN data is 15 bytes.

PAN-16 Specifies that the length of the PAN data is 16 bytes.

PAN-17 Specifies that the length of the PAN data is 17 bytes.

PAN-18 Specifies that the length of the PAN data is 18 bytes.

PAN-19 Specifies that the length of the PAN data is 19 bytes.

CVV length (One, optional)

CVV-1 Specifies that the CVV is to be computed as one byte, followed by four
blanks. CVV-1 is the default value.

CVV-2 Specifies that the CVV is to be computed as two bytes, followed by three
blanks.

CVV-3 Specifies that the CVV is to be computed as three bytes, followed by two
blanks.

CVV-4 Specifies that the CVV is to be computed as four bytes, followed by one
blank.

CVV-5 Specifies that the CVV is to be computed as five bytes.

PAN_data

Direction: Input
Type: String

The PAN_data parameter specifies an address that points to the place in
application data storage that contains personal account number (PAN)
information in character form. The PAN is the account number as defined for
the track-2 magnetic-stripe standards. If the PAN-nn keyword is specified in
the rule_array, where nn is a value between 13 and 19, then nn number of
characters are processed.

If you specify the PAN-nn keyword in the rule_array where nn is less than 16,
the server might copy 16 bytes to a work area. Therefore, ensure that the verb
can address 16 bytes of storage.

expiration_date

Direction: Input
Type: String

The expiration_date parameter specifies an address that points to the place in
application data storage that contains the card expiration date in numeric
character form in a 4-byte field. The application programmer must determine

CVV Generate (CSNBCSG)

524 Common Cryptographic Architecture Application Programmer's Guide

whether the CVV will be calculated with the date form of YYMM or MMYY.

service_code

Direction: Input
Type: String

The service_code parameter specifies an address that points to the place in
application data storage that contains the service code in numeric character
form in a 3-byte field. The service code is the number that the track-2
magnetic-stripe standards define. The service code of X'000' is supported.

CVV_key_A_Identifier

Direction: Input/Output
Type: String

A 64-byte string that is the internal key token containing a single or
double-length DATA or MAC key, or the label of a key storage record
containing a single or double-length DATA or MAC key.

When this key is a double-length key, CVV_key_B_identifier must be 64 byte of
binary zero. When a double-length MAC key is used, the CV bits 0 - 3 must
indicate a CVVKEY-A key (B'0010').

A single-length key contains the key-A key that encrypts information in the
CVV process. The left half of a double-length key contains the key-A key that
encrypts information in the CVV process and the right half contains the key-B
key that decrypts information.

CVV_key_B_Identifier

Direction: Input/Output
Type: String

A pointer to a 64-byte internal key token or a key label of a single-length
DATA or MAC key that decrypts information in the CCV process. The internal
key token contains the Key-B key that decrypts information in the CVV
process.

When CVV_key_A_identifier is a double-length key, this parameter must be 64
byte of binary zero.

CVV_value

Direction: Output
Type: String

A pointer to the location in application data storage that will be used to store
the computed 5-byte character output value.

Restrictions
The restrictions for CSNBCSG.

None.

Required commands
The required commands for CSNBCSG.

This verb requires the VISA CVV Generate command (offset X'00DF') to be enabled
in the active role.

CVV Generate (CSNBCSG)

Chapter 12. Financial services 525

Usage notes
The usage notes for CSNBCSG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCSGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCSGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] PAN_data,
byte[] expiration_date,
byte[] service_code,
byte[] CVV_key_A_Identifier,
byte[] CVV_key_B_Identifier,
byte[] CVV_value);

CVV Key Combine (CSNBCKC)
Use the CVV Key Combine verb to combine two operational DES keys into one
operational TDES key.

The verb accepts as input two single-length keys that are suitable for use with the
CVV (card-verification value) algorithm. The resulting double-length key meets a
more recent industry standard of using TDES to support PIN-based transactions. In
addition, the double-length key is in a format that can be wrapped using the Key
Export to TR31 verb.

The CVV Generate and CVV Verify verbs use the CVV algorithm to generate and
verify card security codes required by Visa (CVV) and MasterCard (CVC).
Previously, these verbs only accepted as input two single-length MAC-capable
keys. These verbs will additionally accept as input a double-length MAC or
MAC-capable DATA key that contains key-A as the left half of the key, and key-B
as the right half of the key. The double-length key must be usable with either the
CVV Generate verb, the CVV Verify verb, or both.

The CVV Key Combine verb allows combining most pairs of single-length DES
keys that formerly functioned as a separate key-A and key-B into one
double-length CVVKEY-A key. The CVVKEY-A attribute in the control vector is
now changed to mean single-length CVV key containing key-A or double-length
CVV key containing key-A and key-B.

To use this verb, specify the following:
v Up to two optional rule-array keywords:

1. A key wrapping method keyword that specifies whether to use the new
enhanced wrapping method, the original wrapping method, or the wrapping
method defined as the default according to a configuration setting.

CVV Generate (CSNBCSG)

526 Common Cryptographic Architecture Application Programmer's Guide

2. A translation control keyword that restricts the translation method to the
enhanced method.

v A single-length operational DES key for key-A

Identify a single-length operational DES key that has a key type of MAC or
DATA. The key identifier length must be 64, which is the length of a DES
key-token or a key label. This parameter identifies the key-A key used with the
CVV algorithm. It is placed in the left half of the double-length output key.
When a MAC key is identified, it must have as its subtype extension ANY-MAC
(CV bits 0 - 3 = B'0000') or CVVKEY-A (CV bits 0 - 3 = B'0010'). If a DATA key is
identified, it must have its MAC generate bit on (CV bit 20), its MAC verify bit
on (CV bit 21), or both bits on.

v A single-length operational DES key for key-B

Identify a single-length operational DES key that has a key type of MAC or
DATA. The key identifier length must be 64, which is the length of a DES
key-token or a key label. This parameter identifies the key-B key used with the
CVV algorithm. It is placed in the right half of the double-length output key.
When a MAC key is identified, it must have as its subtype extension ANY-MAC
(CV bits 0 - 3 = B'0000') or CVVKEY-B (CV bits 0 - 3 = B'0011'). If a DATA key is
identified, it must have its MAC generate bit on (CV bit 20), its MAC verify bit
on (CV bit 21), or both bits on.

v An output key identifier
Identify a null key-token in a 64-byte buffer, or the key label of a DES null
key-token. If the input parameter identifies a key label, the output key is placed
in DES key-storage. otherwise, the output is returned in the buffer provided.
The following table shows the various output combinations that are returned for
the MAC generate and MAC verify attributes. These results are based on the
three possible MAC generate and MAC verify control-vector-bit combinations
(bits 20 - 21) that the pair of input keys can have.

CV bits 20 - 21
of input key
key-A, single

length

CV bits 20 - 21 of input key key-B, single length

MAC generate andMAC
verify

MAC generate
only,single length MAC verify only

MAC generate
andMAC verify

MAC generate and MAC
verifydouble-length key-A

MAC generate only
double-length key-A

MAC verify only
double-length key-A

MAC generate
only

MAC generate
onlydouble-length key-A

MAC generate only
double-length key-A

Invalid combination,
control vector conflict

MAC verify
only

MAC verify
onlydouble-length key-A

Invalid combination,
control vector conflict

MAC verify only
double-length key-A

CVV Key Combine (CSNBCKC)

Chapter 12. Financial services 527

Format
The format of CSNBCKC.

CSNBCKC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_A_identifier_length,
key_A_identifier,
key_B_identifier_length,
key_B_identifier,
output_key_identifier_length
output_key_identifier)

Parameters
The parameters for CSNBCKC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 0, 1, or 2.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are 8 bytes in length and must be left-aligned and padded on the right with
space characters. The rule_array keywords are:

Keyword Meaning

Key wrapping method (one, optional)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the default
wrapping method. The default wrapping method configuration setting may be changed using
the TKE. This keyword is ignored for AES keys.

WRAP-ECB Specifies to wrap the key using the legacy wrapping method.

WRAP-ENH Specifies to wrap the key using the enhanced wrapping method.

Translation control (optional). This is valid only with wrapping method WRAP-ENH or with USECONFG when the
default wrapping method is WRAP-ENH. This option cannot be used on a key with a control vector valued to
binary zeros.

ENH-ONLY Specifies to restrict the key from being wrapped with the legacy wrapping method after it has
been wrapped with the enhanced wrapping method. Sets bit 56 (ENH-ONLY) of the control
vector to B'1'.

There are restrictions on the available wrapping methods for the output key
derived from the wrapping methods employed and control vector restrictions
of the input keys. These are detailed in Table 161 on page 529.

CVV Key Combine (CSNBCKC)

528 Common Cryptographic Architecture Application Programmer's Guide

Table 161. Key-wrapping matrix for the CVV Key Combine verb

key-A or key-B
wrapped using
WRAP-ENH
method

key-A or key-B has
ENH-ONLY bit on
(CV bit 56 = B'1')

WRAP-ENH
(by keyword or
by default)

ENH-
ONLY
keyword

Resulting form of
output key or error

No No No to both No ECB wrapped

Yes No No to both No Wrap type conflict,
8/2161 (X'871')

No No Yes to either No WRAP-ENH, CV
bit 56 = B'0' (NOT
set)

Yes No Yes to either No

No No Yes to either Yes WRAP-ENH, CV
bit 56 = B'1' (IS set)Yes No Yes to either Yes

Yes Yes Yes to either No

Yes Yes Yes to either Yes

No No No to both Yes CV bit 56 conflict,
8/2111 (X'83F')Yes No No to both Yes

Yes Yes No to both No

Yes Yes No to both Yes

key_A_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes in the
key_A_identifier variable. This value must be 64.

key_A_identifier

Direction: Input
Type: String

A pointer to a string variable containing either the operational single-length
DES key-token of the key-A key, or the label of such a key token. This key
must be a MAC key or a DATA key that can perform MAC operations.

key_B_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes in the
key_B_identifier variable. This value must be 64.

key_B_identifier

Direction: Input
Type: String

A pointer to a string variable containing either the operational single-length
DES key-token of the key-B key, or the label of such a key token. This key
must be a MAC key or a DATA key that can perform MAC operations.

output_key_identifier_length

CVV Key Combine (CSNBCKC)

Chapter 12. Financial services 529

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes in the
output_key_identifier variable. This value must be 64.

output_key_identifier

Direction: Input/Output
Type: String

A pointer to a string variable containing a NULL key token, or the key label of
a null DES key-token.

Restrictions
The restrictions for CSNBCKC.

Input key-A and input key-B cannot have different export control bits (CV bit 17
and 57); these bits must match. Use the Prohibit Export verb to change XPORT-OK
to NO-XPORT (CV bit 17), or the Restrict Key Attribute verb to change T31XPTOK
to NOT31XPT (CV bit 57). These two bits are propagated to the output key-token.

Required commands
The required commands for CSNBCKC.

The CVV Key Combine verb requires the CVV Key Combine command (offset
X'0155') to be enabled in the active role.

In addition, these commands are required to be enabled in the active role,
depending on the key-wrapping method keyword:

Keyword Offset Command

WRAP-ECB X'0156' CVV Key Combine - Allow wrapping override keywords

WRAP-ENH X'0156' CVV Key Combine - Allow wrapping override keywords

One additional restriction is related to combining the key-A and key-B pair of keys
when there are mixed types. To permit the combination of mixed key types into a
single set of types (ANY-MAC, CVVKEY-A, CVVKEY-B, and DATA), enable the
CVV Key Combine - Permit mixed key types command (offset X'0157') in the active
role. See Table 162 for when this command is required:

Table 162. Required commands for the CVV Key Combine verb, mixed key types

Input key-A

Input key-B

ANY-MAC CVVKEY-A CVVKEY-B DATA

ANY-MAC Always returns
double-length
CVVKEY-A key

Invalid combination,
control vector conflict

Only returns
double-length
CVVKEY-A key if
X'0157' enabled

Only returns
double-length
CVVKEY-A key if
X'0157' enabled

CVVKEY-A Only returns
double-length
CVVKEY-A key if
X'0157' enabled, else
access error

Invalid combination,
control vector conflict

Always returns
double-length
CVVKEY-A key

Only returns
double-length
CVVKEY-A key if
X'0157' enabled

CVVKEY-B Invalid combination Invalid combination Invalid combination Invalid combination

CVV Key Combine (CSNBCKC)

530 Common Cryptographic Architecture Application Programmer's Guide

Table 162. Required commands for the CVV Key Combine verb, mixed key types (continued)

Input key-A

Input key-B

ANY-MAC CVVKEY-A CVVKEY-B DATA

DATA Only returns
double-length
CVVKEY-A key if
X'0157' enabled, else
access error

Invalid combination,
control vector conflict

Only returns
double-length
CVVKEY-A key if
X'0157' enabled, else
access error

Always returns
double-length
CVVKEY-A key

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCKCJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCKCJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_A_identifier_length,
byte[] key_A_identifier,
hikmNativeNumber key_B_identifier_length,
byte[] key_B_identifier,
hikmNativeNumber output_key_identifier_length,
byte[] output_key_identifier);

CVV Verify (CSNBCSV)
Use the CVV Verify verb to verify a VISA Card Verification Value (CVV) or
MasterCard Card Verification Code (CVC) as defined for track 2.

This verb generates a CVV based on the information the PAN_data, the
expiration_date, and the service_code parameters provide. This verb uses the Key-A
and the Key-B keys to cryptographically process this information. If the requested
CVV is shorter than 5 characters, the CVV is padded on the right by space
characters. The generated CVV is then compared to the value that the CVV_value
supplies for verification.

See CVV Key Combine (CSNBCKC) for information on combining two
single-length MAC-capable keys into one double-length key.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

CVV Key Combine (CSNBCKC)

Chapter 12. Financial services 531

|

Format
The format of CSNBCSV.

CSNBCSV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data,
expiration_date,
service_code,
CVV_key_A_Identifier,
CVV_key_B_Identifier,
CVV_value)

Parameters
The parameters for CSNBCSV.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, or 2.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. Each keyword is
left-aligned in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage. The rule_array keywords are described in
Table 163.

Table 163. Keywords for CVV Verify control information

Keyword Description

PAN data length (One, optional)

PAN-13 Specifies that the length of the PAN data is 13 bytes. PAN-13 is the
default value.

PAN-14 Specifies that the length of the PAN data is 14 bytes.

PAN-15 Specifies that the length of the PAN data is 15 bytes.

PAN-16 Specifies that the length of the PAN data is 16 bytes.

PAN-17 Specifies that the length of the PAN data is 17 bytes.

PAN-18 Specifies that the length of the PAN data is 18 bytes.

PAN-19 Specifies that the length of the PAN data is 19 bytes.

CVV length (One, optional)

CVV-1 Specifies that the CVV is to be computed as one byte, followed by four
blanks. CVV-1 is the default value.

CVV Verify (CSNBCSV)

532 Common Cryptographic Architecture Application Programmer's Guide

Table 163. Keywords for CVV Verify control information (continued)

Keyword Description

CVV-2 Specifies that the CVV is to be computed as two bytes, followed by three
blanks.

CVV-3 Specifies that the CVV is to be computed as three bytes, followed by two
blanks.

CVV-4 Specifies that the CVV is to be computed as four bytes, followed by one
blank.

CVV-5 Specifies that the CVV is to be computed as five bytes.

PAN_data

Direction: Input
Type: String

The PAN_data parameter specifies an address that points to the place in
application data storage that contains personal account number (PAN)
information in character form. The PAN is the account number as defined for
the track-2 magnetic-stripe standards. If the PAN-nn keyword is specified in
the rule_array, where nn is a value between 13 and 19, then nn number of
characters are processed.

If you specify the PAN-nn keyword in the rule_array where nn is less than 16,
the server might copy 16 bytes to a work area. Therefore, ensure that the verb
can address 16 bytes of storage.

expiration_date

Direction: Input
Type: String

The expiration_date parameter specifies an address that points to the place in
application data storage that contains the card expiration date in numeric
character form in a 4-byte field. The application programmer must determine
whether the CVV will be calculated with the date form of YYMM or MMYY.

service_code

Direction: Input
Type: String

The service_code parameter specifies an address that points to the place in
application data storage that contains the service code in numeric character
form in a 3-byte field. The service code is the number that the track-2
magnetic-stripe standards define. The service code of X'000' is supported.

CVV_key_A_Identifier

Direction: Input/Output
Type: String

A 64-byte string that is the internal key token containing a single or
double-length DATA or MAC key, or the label of a key storage record
containing a single or double-length DATA or MAC key.

When this key is a double-length key, CVV_key_B_Identifier must be 64 byte of
binary zero. When a double-length MAC key is used, the CV bits 0 - 3 must
indicate a CVVKEY-A key (B'0010').

CVV Verify (CSNBCSV)

Chapter 12. Financial services 533

A single-length key contains the key-A key that encrypts information in the
CVV process. The left half of a double-length key contains the key-A key that
encrypts information in the CVV process and the right half contains the key-B
key that decrypts information.

CVV_key_B_Identifier

Direction: Input/Output
Type: String

A pointer to a 64-byte internal key token or a key label of a single-length
DATA or MAC key that decrypts information in the CCV process. The internal
key token contains the Key-B key that decrypts information in the CVV
process.

When CVV_key_A_Identifier is a double-length key, this parameter must be 64
byte of binary zero.

CVV_value

Direction: Input
Type: String

The CVV_value parameter specifies an address that contains the CVV value
which will be compared to the computed CVV value. This is a 5-byte field.

Restrictions
The restrictions for CSNBCSV.

None.

Required commands
The required commands for CSNBCSV.

This verb requires the VISA CVV Verify command (offset X'00E0') to be enabled in
the active role.

Usage notes
The usage notes for CSNBCSV.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBCSVJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBCSVJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] PAN_data,
byte[] expiration_date,

CVV Verify (CSNBCSV)

534 Common Cryptographic Architecture Application Programmer's Guide

byte[] service_code,
byte[] CVV_key_A_Identifier,
byte[] CVV_key_B_Identifier,
byte[] CVV_value);

Encrypted PIN Generate (CSNBEPG)
The Encrypted PIN Generate verb formats a PIN and encrypts the PIN block.

To generate the PIN, the verb uses one of the following PIN calculation methods:
v IBM 3624 PIN (IBM-PIN)
v IBM German Bank Pool Institution PIN (GBP-PIN)
v Interbank PIN (NL-PIN-1)

To format the PIN, the verb uses one of the following PIN block formats:
v IBM 3621 format
v IBM 3624 format
v ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI-1 formats)
v ISO-1 format (same as the ECI-4 format)
v ISO-2 format
v ISO-3 format
v IBM 4704 encrypting PINPAD (4704-EPP) format
v VISA 2 format
v VISA 3 format
v VISA 4 format
v ECI-2 format
v ECI-3 format

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBEPG.

CSNBEPG(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_generating_key_identifier,
outbound_PIN_encrypting_key_identifier
rule_array_count,
rule_array,
PIN_length,
data_array,
PIN_profile,
PAN_data,
sequence_number
encrypted_PIN_block)

Parameters
The parameters for CSNBEPG.

CVV Verify (CSNBCSV)

Chapter 12. Financial services 535

|

|

|

|

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

PIN_generating_key_identifier

Direction: Input/Output
Type: String

The 64-byte internal key token or a key label of an internal key token in the
DES key storage file. The internal key token contains the PIN-generating key.
The control vector must specify the PINGEN key type and have the EPINGEN
usage bit set to B'1'.

outbound_PIN_encrypting_key_identifier

Direction: Input
Type: String

A 64-byte internal key token or a key label of an internal key token in the DES
key storage file. The internal key token contains the key to be used to encrypt
the formatted PIN and must contain a control vector that specifies the
OPINENC key type and has the EPINGEN usage bit set to B'1'.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. Each keyword is
left-aligned in an 8-byte field and padded on the right with blanks. All
keywords must be in contiguous storage. The rule_array keywords are
described in Table 164.

Table 164. Keywords for Encrypted PIN Generate control information

Keyword Description

Processing rule (One, required)

GBP-PIN This keyword specifies the IBM German Bank Pool Institution PIN calculation method is to be used
to generate a PIN.

IBM-PIN This keyword specifies the IBM 3624 PIN calculation method is to be used to generate a PIN.

INBK-PIN This keyword specifies the Interbank PIN calculation method is to be used to generate a PIN.

PIN_length

Direction: Input
Type: String

An integer defining the PIN length for those PIN calculation methods with
variable length PINs. Otherwise, the variable should be set to zero.

data_array

Direction: Input

Encrypted PIN Generate (CSNBEPG)

536 Common Cryptographic Architecture Application Programmer's Guide

Type: Integer

Three 16-byte character strings, which are equivalent to a single 48-byte string.
The values in the data array depend on the keyword for the PIN calculation
method. Each element is not always used, but you must always declare a
complete data array. The numeric characters in each 16-byte string must be
from 1 - 16 bytes in length, uppercase, left-aligned, and padded on the right
with space characters. Table 165 describes the array elements.

Table 165. Array elements for Encrypted PIN Generate data_array parameter

Array element Description

Decimalization_table Decimalization table for IBM and GBP only. Sixteen characters that are used to map the
hexadecimal digits (X'0' - X'F') of the encrypted validation data to decimal digits (X'0' -
X'9').

If the ANSI X9.8 PIN - Use stored decimalization tables only command (offset X'0356')
access control point is enabled in the active role, this table must match one of the active
decimalization tables in the coprocessors.

Trans_sec_parm For Interbank only, sixteen digits. Eleven rightmost digits of the personal account number
(PAN). A constant of 6. One digit key selector index. Three digits of PIN validation data.

Validation_data Validation data for IBM and IBM German Bank Pool padded to 16 bytes. 1 - 16 characters
of hexadecimal account data left-aligned and padded on the right with blanks.

Table 166 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule's position within the array.

Table 166. Keywords for Encrypted PIN Generate control information

Process rule IBM-PIN GBP-PIN INBK-PIN

Decimalization_table 1 1

Validation_data 2 2

Trans_sec_parm 1

PIN_profile

Direction: Input
Type: String array

A 24-byte string containing the PIN profile including the PIN block format. See
“The PIN profile” on page 497 for additional information.

PAN_data

Direction: Input
Type: String

A 12-byte string that contains 12 digits of Personal Account Number (PAN)
data. The verb uses this parameter if the PIN profile specifies the ISO-0, ISO-
3, or VISA-4 keyword for the PIN block format. Otherwise, ensure that this
parameter is a 4-byte variable in application storage. The information in this
variable will be ignored, but the variable must be specified.

Note: When using the ISO-0 or ISO- 3 keywords, use the 12 rightmost digits
of the PAN data, excluding the check digit. When using the VISA-4 keyword,
use the 12 leftmost digits of the PAN data, excluding the check digit.

sequence_number

Encrypted PIN Generate (CSNBEPG)

Chapter 12. Financial services 537

Direction: Input
Type: Integer

The 4-byte string that contains the sequence number used by certain PIN block
formats. The verb uses this parameter if the PIN profile specifies the 3621 or
4704-EPP keyword for the PIN block format. Otherwise, ensure this parameter
is a 4-byte variable in application data storage. The information in the variable
will be ignored, but the variable must be declared. To enter a sequence
number, do the following:
v Enter 99999 to use a random sequence number that the service generates.
v For the 3621 PIN block format, enter a value in the range from 0 - 65,535.
v For the 4704-EPP PIN block format, enter a value in the range from 0 - 255.

encrypted_PIN_block

Direction: Output
Type: String

The field where the verb returns the 8-byte encrypted PIN.

Restrictions
The restrictions for CSNBEPG.

The format control specified in the PIN profile must be NONE.

Required commands
The required commands for CSNBEPG.

This verb requires the commands, as shown in the following table, to be enabled in
the active role based on the keyword specified for the PIN-calculation methods.

Rule-array keyword Offset Command

IBM-PIN X'00B0' Encrypted PIN Generate - 3624

GBP-PIN X'00B1' Encrypted PIN Generate - GBP

INBK-PIN X'00B2' Encrypted PIN Generate - Interbank

An enhanced PIN security mode is available for formatting an encrypted PIN
block into IBM 3624 format using the PADDIGIT PIN-extraction method. This
mode limits checking of the PIN to decimal digits, and a minimum PIN length of 4
is enforced; no other PIN-block consistency checking will occur. To activate this
mode, enable the Enhanced PIN Security command (offset X'0313') in the active
role.

Whenever the ANSI X9.8 PIN - Use stored decimalization tables only
command (offset X'0356') command is enabled in the active role, the
Decimalization_table element of the data_array value must match one of the PIN
decimalization tables that are in the active state on the coprocessor. Use of this
command provides improved security and control for PIN decimalization tables.
The INBK-PIN PIN-calculation method does not have a Decimalization_table
element and is therefore not affected by this command.

Encrypted PIN Generate (CSNBEPG)

538 Common Cryptographic Architecture Application Programmer's Guide

Usage notes
The usage notes for CSNBEPG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBEPGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBEPGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] PIN_generating_key_identifier,
byte[] outbound_PIN_encrypting_key_identifier,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PIN_length,
byte[] data_array,
byte[] PIN_profile,
byte[] PAN_data,
hikmNativeNumber sequence_number,
byte[] encrypted_PIN_block);

Encrypted PIN Translate (CSNBPTR)
Use the Encrypted PIN Translate verb to re-encipher a PIN block from one
PIN-encrypting key to another and, optionally, to change the PIN block format,
such as the pad digit or sequence number.

The unique-key-per-transaction key derivation for single and double-length keys is
available for the Encrypted PIN Translate verb. This support is available for the
input_PIN_encrypting_key_identifier and the output_PIN_encrypting_key_identifier
parameters for both REFORMAT and TRANSLAT process rules. The rule_array
keyword determines which PIN keys are derived keys.

The Encrypted PIN Translate verb can be used for unique-key-per-transaction key
derivation.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Encrypted PIN Generate (CSNBEPG)

Chapter 12. Financial services 539

|

Format
The format of CSNBPTR.

CSNBPTR(
return_code,
reason_code,
exit_data_length,
exit_data,
input_PIN_encrypting_key_identifier,
output_PIN_encrypting_key_identifier,
input_PIN_profile,
input_PAN_data,
input_PIN_block,
rule_array_count,
rule_array,
output_PIN_profile,
output_PAN_data,
sequence_number,
PIN_block_out)

Parameters
The parameters for CSNBPTR.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

input_PIN_encrypting_key_identifier

Direction: Input/Output
Type: String

The input PIN-encrypting key (IPINENC) for the PIN_block_in parameter
specified as a 64-byte internal key token or a key label. If keyword
UKPTOPIN, UKPTBOTH, DUKPT-IP, or DUKPT-BH is specified in the
rule_array parameter, the input_PIN_encrypting_key_identifier must specify a key
token or key label of a KEYGENKY with the UKPT usage bit enabled.

output_PIN_encrypting_key_identifier

Direction: Input/Output
Type: String

The output PIN-encrypting key (OPINENC) for the output_PIN_block
parameter specified as a 64-byte internal key token or a key label. If keyword
UKPTOPIN, UKPTBOTH, DUKPT-IP, or DUKPT-BH is specified in the
rule_array parameter, the output_PIN_encrypting_key_identifier must specify a
key token or key label of a KEYGENKY with the UKPT usage bit enabled.

input_PIN_profile

Direction: Input
Type: String

The three 8-byte character elements that contain information necessary to either
create a formatted PIN block or extract a PIN from a formatted PIN block. A
particular PIN profile can be either an input PIN profile or an output PIN
profile depending on whether the PIN block is being enciphered or deciphered
by the verb. See “The PIN profile” on page 497 for additional information.

If you choose the TRANSLAT processing rule or the REFORMAT processing
rule in the rule_array parameter, the input PIN profile and output PIN profile

Encrypted PIN Translate (CSNBPTR)

540 Common Cryptographic Architecture Application Programmer's Guide

can have different PIN block formats. If you specify UKPTIPIN with
DUKPT-IP or UKPTBOTH with DUKPT-BH in the rule_array parameter, the
input_PIN_profile is extended to a 48-byte field and must contain the current
key serial number. See “The PIN profile” on page 497 for additional
information.

The pad digit is needed to extract the PIN from a 3624 or 3621 PIN block in
the Encrypted PIN Translate verb with a process rule (rule_array parameter) of
REFORMAT. If the process rule is TRANSLAT, the pad digit is ignored.

The PINLENnn keywords are disabled for this verb by default. If these
keywords are used, return code 8 with reason code 33 is returned. To enable
them, the PTR Enhanced PIN Security access control point (bit X'0313') must be
enabled using a TKE.

input_PAN_data

Direction: Input
Type: String

The personal account number (PAN) if the process rule (rule_array parameter)
is REFORMAT and the input PIN format is ISO-0, ISO-3, or VISA-4 only.
Otherwise, this parameter is ignored. Specify 12 digits of account data in
character format.

For ISO-0 or ISO-3, use the rightmost 12 digits of the PAN, excluding the
check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

input_PIN_block

Direction: Input
Type: String

The 8-byte enciphered PIN block that contains the PIN to be translated.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

rule_array

Direction: Input
Type: String array

The process rule for the verb is described in Table 167.

Table 167. Keywords for Encrypted PIN Translate control information

Keyword Description

Processing rule (One, required)

REFORMAT Changes the PIN format, the contents of the PIN block, and the PIN-encrypting key.

TRANSLAT Changes the PIN-encrypting key only. It does not change the PIN format and the contents of
the PIN block.

Encrypted PIN Translate (CSNBPTR)

Chapter 12. Financial services 541

Table 167. Keywords for Encrypted PIN Translate control information (continued)

Keyword Description

PIN block format
and PIN
extraction method
(Optional)

See “PIN block format and PIN extraction method keywords” on page 498 for additional
information and a list of PIN block formats and PIN extraction method keywords.
Note: If a PIN extraction method is not specified, the first one listed in Table 143 on page 498
for the PIN block format will be the default.

DUKPT keywords - Single length key derivation (One, optional)

UKPTIPIN The input_PIN_encrypting_key_identifier is derived as a single length key. The
input_PIN_encrypting_key_identifier must be a KEYGENKY key with the UKPT usage bit
enabled. The input_PIN_profile must be 48 bytes and contain the key serial number.

UKPTOPIN The output_PIN_encrypting_key_identifier is derived as a single length key. The
output_PIN_encrypting_key_identifier must be a KEYGENKYY key with the UKPT usage bit
enabled. The output_PIN_profile must be 48 bytes and contain the key serial number.

UKPTBOTH Both the input_PIN_encrypting_key_identifier and the output_PIN_encrypting_key_identifier are
derived as a single length key. Both the input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier must be KEYGENKY keys with the UKPT usage bit
enabled. Both the input_PIN_profile and the output_PIN_profile must be 48 bytes and contain the
respective key serial number.

DUKPT keywords - double length key derivation (One, optional)

DUKPT-IP The input_PIN_encrypting_key_identifier is derived as a double length key. The
input_PIN_encrypting_key_identifier must be a KEYGENKY key with the UKPT usage bit
enabled. The input_PIN_profile must be 48 bytes and contain the key serial number.

DUKPT-OP The output_PIN_encrypting_key_identifier is derived as a double length key. The
output_PIN_encrypting_key_identifier must be a KEYGENKY key with the UKPT usage bit
enabled. The output_PIN_profile must be 48 bytes and contain the key serial number.

DUKPT-BH Both the input_PIN_encrypting_key_identifier and the output_PIN_encrypting_key_identifier are
derived as a double length key. Both the input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier must be KEYGENKY keys with the UKPT usage bit
enabled. Both the input_PIN_profile and the output_PIN_profile must be 48 bytes and contain the
respective key serial number.

output_PIN_profile

Direction: Input
Type: String

The three 8-byte character elements that contain information necessary to either
create a formatted PIN block or extract a PIN from a formatted PIN block. A
particular PIN profile can be either an input PIN profile or an output PIN
profile, depending on whether the PIN block is being enciphered or deciphered
by the verb.
v If you choose the TRANSLAT processing rule in the rule_array parameter,

the input_PIN_profile and the output_PIN_profile must specify the same PIN
block format.

v If you choose the REFORMAT processing rule in the rule_array parameter,
the input PIN profile and output PIN profile can have different PIN block
formats.

v If you specify UKPTOPIN or UKPTBOTH in the rule_array parameter, the
output_PIN_profile is extended to a 48-byte field and must contain the current
key serial number. See “The PIN profile” on page 497 for additional
information.

Encrypted PIN Translate (CSNBPTR)

542 Common Cryptographic Architecture Application Programmer's Guide

v If you specify DUKPT-OP or DUKPT-BH in the rule_array parameter, the
output_PIN_profile is extended to a 48-byte field and must contain the current
key serial number. See “The PIN profile” on page 497 for additional
information.

output_PAN_data

Direction: Input
Type: String

The personal account number (PAN) if the process rule (rule_array parameter)
is REFORMAT and the output PIN format is ISO-0, ISO-3, or VISA-4 only.
Otherwise, this parameter is ignored. Specify 12 digits of account data in
character format.

For ISO-0 or ISO-3, use the rightmost 12 digits of the PAN, excluding the
check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

sequence_number

Direction: Output
Type: Integer

The sequence number if the process rule (rule_array parameter) is REFORMAT
and the output PIN block format is 3621 or 4704-EPP only. Specify the integer
value 99999. Otherwise, this parameter is ignored.

output_PIN_block

Direction: Input
Type: String

The 8-byte output PIN block that is re-enciphered.

Restrictions
The restrictions for CSNBPTR.

None.

Required commands
The required commands for CSNBPTR.

This verb requires the commands, as shown in the following table, to be enabled in
the active role based on the keyword specified for the PIN-calculation methods.

Rule-array
keyword

Input profile format
control keyword

Output profile format
control keyword Offset Command

TRANSLAT NONE NONE X'00B3' Encrypted PIN Translate - Translate

REFORMAT NONE NONE X'00B7' Encrypted PIN Translate - Reformat

This verb also requires the UKPT - PIN Verify, PIN Translate command (offset
X'00E1') to be enabled if you employ UKPT processing.

Note: A role with offset X'00E1' enabled can also use the Encrypted PIN Verify
verb with UKPT processing.

Encrypted PIN Translate (CSNBPTR)

Chapter 12. Financial services 543

An enhanced PIN security mode is available for extracting PINs from an IBM 3624
encrypted PIN-block and formatting an encrypted PIN block into IBM 3624 format
using the PADDIGIT PIN-extraction method. This mode limits checking of the
PIN to decimal digits, and a minimum PIN length of 4 is enforced; no other
PIN-block consistency checking will occur. To activate this mode, enable the
Enhanced PIN Security command (offset X'0313') in the active role.

The verb returns an error indicating that the PAD digit is not valid if all of these
conditions are met:
1. The Enhanced PIN Security command is enabled in the active role.
2. The output PIN profile specifies 3624 as the PIN-block format.
3. The output PIN profile specifies a decimal digit (0 - 9) as the PAD digit.

Beginning with Release 4.1.0, three new commands are added (offsets X'0350',
X'0351', and X'0352'). The list hereafter describes how these three commands affect
the PIN processing.
1. Enable the ANSI X9.8 PIN - Enforce PIN block restrictions command (offset

X'0350') in the active role to apply additional restrictions to PIN processing
implemented in CCA 4.1.0, as follows:
v Do not translate or reformat a non-ISO PIN block into an ISO PIN block.

Specifically, do not allow an IBM 3624 PIN-block format in the
output_PIN_profile variable when the PIN-block format in the
input_PIN_profile variable is not IBM 3624.

v Constrain use of ISO-2 PIN blocks to offline PIN verification and PIN change
operations in integrated circuit card environments only. Specifically, do not
allow ISO-2 input or output PIN blocks.

v Do not translate or reformat a PIN-block format that includes a PAN into a
PIN-block format that does not include a PAN. Specifically, do not allow an
ISO-1 PIN-block format in the output_PIN_profile variable when the PIN-block
format in the input_PIN_profile variable is ISO-0 or ISO-3.

v Do not allow a change of PAN data. Specifically, when performing
translations between PIN block formats that both include PAN data, do not
allow the input_PAN_data and output_PAN_data variables to be different from
the PAN data enciphered in the input PIN block.

Note: A role with offset X'0350' enabled also affects access control of the Clear
PIN Generate Alternate and the Secure Messaging for PINs verbs.

2. Enable the ANSI X9.8 PIN - Allow modification of PAN command (offset
X'0351') in the active role to override the restriction to not allow a change of
PAN data. This override is applicable only when either the ANSI X9.8 PIN -
Enforce PIN block restrictions command (offset X'0350') or the ANSI X9.8 PIN -
Allow only ANSI PIN blocks command (offset X'0352') or both are enabled in
the active role. This override is to support account number changes in issuing
environments. Offset X'0351' has no effect if neither offset X'0350' nor offset
X'0352' is enabled in the active role.

Note: A role with offset X'0351' enabled also affects access control of the Secure
Messaging for PINs verbs.

3. Enable the ANSI X9.8 PIN - Allow only ANSI PIN blocks command (offset
X'0352') in the active role to apply a more restrictive variation of the ANSI X9.8
PIN - Enforce PIN block restrictions command (offset X'0350'). In addition
to the previously described restrictions of offset X'0350', this command also
restricts the input_PIN_profile and the output_PIN_profile to contain only ISO-0,

Encrypted PIN Translate (CSNBPTR)

544 Common Cryptographic Architecture Application Programmer's Guide

ISO-1, and ISO-3 PIN block formats. Specifically, the IBM 3624 PIN-block
format is not allowed with this command. Offset X'0352' overrides offset
X'0350'.

Note: A role with offset X'0352' enabled also affects access control of the Secure
Messaging for PINs verbs.

For more information, see “ANSI X9.8 PIN restrictions” on page 495.

Usage notes
The usage notes for CSNBPTR.

Some PIN block formats are known by several names. The following table shows
the additional names.

Table 168. Additional names for PIN formats

PIN format Additional name

ISO-0 ANSI X9.8, VISA format 1, ECI format 1

ISO-1 ECI format 4

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBPTRJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBPTRJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] input_PIN_encrypting_key_identifier,
byte[] output_PIN_encrypting_key_identifier,
byte[] input_PIN_profile,
byte[] input_PAN_data,
byte[] input_PIN_block,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] output_PIN_profile,
byte[] output_PAN_data,
hikmNativeNumber sequence_number,
byte[] output_PIN_block);

Encrypted PIN Translate Enhanced (CSNBPTRE)
The Encrypted PIN Translate Enhanced verb reformats a PIN into a different
PIN-block format using an enciphered PAN field. You can use this verb in an
interchange-network application, or to change the PIN block to conform to the
format and encryption key used in a PIN-verification database.

The CSNBPTRE verb supports Visa Data Secure Platform (VDSP, formerly known
as Visa Merchant Data Secure (VMDS)) processing. With this verb you can also use
derived unique key per transaction (DUKPT) PIN-block encryption (ANS X9.24) for
both input and output PIN blocks. The verb supports translation of PINs whose
PAN information has been enciphered using the VDSP standard and Visa Format
Preserving Encryption (VFPE) methods.

Encrypted PIN Translate (CSNBPTR)

Chapter 12. Financial services 545

PIN blocks are sometimes formatted using the PAN information. For the
CSNBPTRE verb, either the input PIN block profile or the output PIN block profile
must specify a PIN block format that incorporates a PAN. The PIN block formats
which incorporate a PAN are ISO-0, ISO-3, and Visa Format 4. VDSP enciphered
PAN data can be enciphered using DUKPT key management or static TDES key
management. The enciphered PAN could be enciphered with the CBC mode or the
VFPE mode. VDSP requires that the same key management scheme and type of
keys are used for both the PIN and PAN. For VDSP, the following pairings are
supported:

Table 169. Pairings supported for VDSP.

Function

Source Target

Key
management VDSP option Key management VDSP option

Translation

DUKPT Standard CBC Static TDES
non-DUKPT
(Zone Encryption
Keys)

Standard CBC

VFPE

Static TDES
non-DUKPT

Standard CBC

Terminology: The VDSP specification speaks of two key management methods:
DUKPT (derived unique key per transaction) and Zone Encryption Keys. The process for
deriving these keys is documented in ANS X9.24 Part 1. Zone Encryption Keys are
called static keys in CCA. Static keys are presented for use and are not derived
during verb processing. They are double length TDES keys for this service which
are called static TDES keys in this document.

The verb operates in reformat mode. In reformat mode, the verb performs the
translate-mode functions (changes the wrapping key) and, in addition, processes
the cleartext information. Following the rules that you specify, the PIN is extracted
from the recovered cleartext PIN block using the specified input PIN encrypting
key and formatted into an output PIN block according to the output PIN profile
for encryption. The PIN block is re-enciphered with the specified output PIN
encrypting key. Change of PAN data is not allowed.

The Encrypted PIN Translate Enhanced verb performs the following processing:
v It decrypts the input PIN-block by using the supplied IPINENC key in ECB

mode, or derives the decryption key using the specified KEYGENKY key and
the current-key serial number (CKSN), and then uses ANS X9.24-specified
special decryption or the Triple-DES (TDES) method. The PAN must be
deciphered using either the data decryption key derived from the base
derivation key and CKSN or using the specified static TDES data decryption key
(DECIPHER, CIPHER).

v Checks the control vector of the input PIN encryption key to ensure that for an
IPINENC key the REFORMAT bit (CV bit 22) is set to B'1' for reformat mode, or
for a KEYGENKY key, that the UKPT bit (CV bit 18) is set to B'1'. Likewise the
OPINENC key must have the REFORMAT bit set according to the requested
mode.

v In reformat mode, performs these steps:
– It extracts the PIN from the specified PIN-block format using the method

specified by default or by a rule-array keyword. If required by the PIN-block
format, PAN data is used in the extraction process.

Encrypted PIN Translate Enhanced (CSNBPTRE)

546 Common Cryptographic Architecture Application Programmer's Guide

– Formats the extracted-PIN into the format declared for the output PIN-block.
As required by the PIN-block format, the verb incorporates PAN data,
sequence number, and pad character information in formatting the output.

v It enciphers the output PIN-block by using the supplied static OPINENC key in
ECB mode, or derives the decryption key using the specified KEYGENKY key
and the output current-key serial number (CKSN) from the output PIN profile
and uses ANS X9.24-specified special encryption or Triple-DES method. The
REFORMAT bit must be set to B'1' in the OPINENC control vector, or the UKPT
bit must be set to B'1' in the KEYGENKY control vector.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBPTRE.

CSNBPTRE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_PIN_encrypting_key_identifier_length,
input_PIN_encrypting_key_identifier,
output_PIN_encrypting_key_identifier_length,
output_PIN_encrypting_key_identifier,
PAN_key_identifier_length,
PAN_key_identifier,
input_PIN_profile_length,
input_PIN_profile,
PAN_data_length,
PAN_data,
input_PIN_block_length,
input_PIN_block,
output_PIN_profile_length,
output_PIN_profile,
sequence_number,
output_PIN_block_length,
output_PIN_block,
reserved1_length,
reserved1,
reserved2_length,
reserved2)

Parameters
The parameters for CSNBPTRE.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be in the range 6 – 9.

rule_array

Encrypted PIN Translate Enhanced (CSNBPTRE)

Chapter 12. Financial services 547

|

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are 8 bytes in length, and are left-aligned and padded on the right with space
characters. The returned rule array keywords express the contents of the token.

Table 170. Keywords for Encrypted PIN Translate Enhanced control information

Keyword Description

Processing method (required)

VMDS Specifies that the VDSP method (Visa Data Secure Platform method, formally known as the
Visa Merchant Data Secure (VMDS) method) is to be used for processing.

Mode (required)

REFORMAT Specifies that either the PIN-block format and the PIN-block encryption, or both, are to be
changed. If the PIN-extraction method is not chosen by default, another element in the rule
array must specify one of the keywords that indicates a PIN-extraction method.

Input PAN data key management method (one, required).

IN-DUKPT Specifies that the key to be used to decrypt the PAN data is to be derived using the key
specified in the input_PIN_encrypting_key_identifier. See the description of the
input_PIN_encrypting_key_identifier for the requirements of the key. The DUKPT-BH or
DUKPT-IP keyword is required.

OUTDUKPT Specifies that the key to be used to decrypt the PAN data is to be derived using the key
specified in the output_PIN_encrypting_key_identifier. See the description of the
output_PIN_encrypting_key_identifier for the requirements of the key. The DUKPT-BH or
DUKPT-OP keyword is required.

STATIC Specifies the use of static double length (2-key) Triple-DES symmetric keys for the PAN.

Input data algorithm (one, required)

TDES Specifies that Triple-DES encryption was used for the PAN.

Input data mode (one, required)

CBC Specifies that CBC mode encryption was used for the PAN. This is the mode for the Standard
Encryption option.

VFPE Specifies that Visa format preserving encryption was used for the PAN.

PAN input character set (one, required)

PAN4BITX Specifies that the PAN data character set is 4-bit hex. Two digits per byte. Not valid with the
CBC rule.

PAN8BITA Specifies that the PAN data character set is normal ASCII, represented in binary format. Not
valid with CBC rule.

PAN-EBLK Specifies that the PAN data is in a CBC encrypted block. Valid only with CBC rule.

PAN check digit compliance (one required if mode VFPE and PAN input character set keyword are present,
otherwise not allowed)

CMPCKDGT Last digit of the PAN contains a compliant check digit per ISO/IEC 7812-1.

NONCKDGIT Last digit of the PAN does not contain a compliant check digit per ISO/IEC 7812-1.

Unique Key Per Transaction (one, optional). These keywords are for the PIN-encrypting keys.

DUKPT-BH Specifies that the input and output PIN-encrypting keys are to be derived using the
key-generating key specified in the respective parameters. See the descriptions of the
input_PIN_key_identifier and output_PIN_key_identifier parameters for the requirements of
the keys.

Encrypted PIN Translate Enhanced (CSNBPTRE)

548 Common Cryptographic Architecture Application Programmer's Guide

Table 170. Keywords for Encrypted PIN Translate Enhanced control information (continued)

Keyword Description

DUKPT-IP Specifies the use of DUKPT input-key derivation and PIN-block decryption, Triple-DES
method. Specifies that the input PIN-encrypting key is to be derived using the key-generating
key specified in the input_PIN_key_identifier parameter. See the description of the
input_PIN_key_identifier parameter for the requirements of the key.

DUKPT-OP Specifies that the output PIN-encrypting key is to be derived using the key-generating key
specified in the output_PIN_key_identifier parameter. See the description of the
output_PIN_key_identifier parameter for the requirements of the key.

PIN-extraction method (one, optional).

If the PIN block format is provided, one of the PIN extraction method keywords shown in Table 143 on page 498
can be specified for the given PIN block format.
Note: Specify the PIN block format keyword in the PIN_profile variable (see “PIN block format” on page 498).

The following PIN-block formats are supported:

3624

ISO-0

ISO-1

ISO-2

ISO-3

The following S390 formats are also supported: VISA-2, VISA-3, VISA-4, OEM-1, ECI-2, ECI-3.

See “PIN block format and PIN extraction method keywords” on page 498 for additional information. If the default
extraction method for a PIN block format is desired, specify the rule_array_count value as 1.

input_PIN_encrypting_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
input_PIN_encrypting_key_identifier variable. Set the value to 64.

input_PIN_encrypting_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an operational fixed-length DES
key-token or a key label of an operational fixed-length DES key-token record.

This is the identifier of the key to decrypt the input PIN block. Or it is the
key-generating key to be used to derive the key to decrypt the input PIN
block. The key-generating key can optionally be used to derive the key to
decrypt the PAN data.

The key identifier is an operational token or the key label of an operational
token in key storage. If you do not use the UKPT process or you specify the
DUKPT-OP rule array keyword, the key token must contain the
PIN-encrypting key to be used to decipher the input PIN block. The key
algorithm must be DES, the key type must be IPINENC and the key usage
REFORMAT bit must be enabled (B'1').

If you use the UKPT process for the input PIN block by specifying the
DUKPT-IP or the DUKPT-BH rule array keyword, the key token must contain
the key-generating key to derive the PIN-encrypting key. If you have also

Encrypted PIN Translate Enhanced (CSNBPTRE)

Chapter 12. Financial services 549

specified the IN-DUKPT keyword, the key is used to derive the key to decrypt
the PAN data. The key algorithm must be DES, the key type must be
KEYGENKY and the key usage UKPT bit must be enabled.

output_PIN_encrypting_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
output_PIN_encrypting_key_identifier variable. Set the value to 64.

output_PIN_encrypting_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an operational key token or a key
label of an operational key token record in DES key storage.

The identifier of the key to encrypt the output PIN block or the key-generating
key to be used to derive the key to encrypt the output PIN block. The
key-generating key can optionally be used to derive the key to decrypt the
PAN data.

If you do not use the UKPT process or you specify the DUKPT-IP rule array
keyword, the key token must contain the PIN-encrypting key to be used to
encipher the output PIN block. The key algorithm must be DES, the key type
must be OPINENC and the key usage REFORMAT bit must be enabled.

If you use the UKPT process for the output PIN block by specifying the
DUKPT-OP or the DUKPT-BH rule array keyword, the key token must contain
the key-generating key to derive the PIN-encrypting key. If you have also
specified the OUTDUKPT keyword, the key is used to derive the key to
decrypt the PAN data. The key algorithm must be DES, the key type must be
KEYGENKY and the key usage UKPT bit must be enabled (B'1').

PAN_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
PAN_key_identifier variable. Set the value to 0 if the PAN key management
method keyword specifies DUKPT. Set it to 64 if the PAN key management
method specifies STATIC.

PAN_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an internal fixed-length DES
key-token or the key label of such a record in DES key-storage. This token
contains a double-length data decryption key if the input PAN data key
management method is STATIC. If the key token contains a double-length data
encryption key (Zone Encryption Key in the VDSP specification), the token
must have a key type of CIPHER or DECIPHER.

The key is used to decipher the input PAN data. If IN-DUKPT is specified as
the input PAN data key management method, the base derivation key in the
input_PIN_encrypting_key_identifier parameter is used to create the
decryption key for the PAN.

Encrypted PIN Translate Enhanced (CSNBPTRE)

550 Common Cryptographic Architecture Application Programmer's Guide

If OUTDUKPT is specified as the input PAN data key management method,
the base derivation key in the output_PIN_encrypting_key_identifier
parameter is used to create the decryption key for the PAN. This parameter is
not used if IN-DUKPT or OUTDUKPT is specified.

The key identifier is an operational token or the key label of an operational
token in key storage. The key algorithm must be DES, the key type must be
CIPHER or DECIPHER and the key must be a double-length key.

Note: DATA keys with ENC or DEC bits on are not supported. Also, zero CV
data keys are not supported.

input_PIN_profile_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
input_PIN_profile variable. Set the value to 24 if the profile does not contain a
CKSN extension. Otherwise, set the value to 48.

input_PIN_profile

Direction: Input
Type: String

A pointer to a string variable containing three 8-byte character strings with
information defining the PIN-block format and, optionally, an additional 24
bytes containing the input CKSN extension. The strings are equivalent to
24-byte or 48-byte strings.

PAN_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
PAN_data parameter if the mode is CBC. If the mode is VFPE, this variable
contains the number of PAN digits. The value is in the range 15 - 19 for VFPE.
It is 16 if the standard encryption option is selected.

PAN_data

Direction: Input
Type: String

A pointer to a string variable containing the PAN data. For VFPE mode, if the
PAN contains an odd number of 4-bit hex digits, the data must be left justified
in the PAN variable and the right-most 4 bits are ignored. The verb uses this
data to recover the PIN from the PIN block if you specify the REFORMAT
keyword and the input PIN profile specifies the ISO-0, VISA-4 or ISO-3
keyword for the PIN-block format. If the output PIN profile specifies the ISO-0,
VISA-4, or ISO-3 keyword for the PIN-block format, the 12 rightmost digits of
the (decrypted) PAN, excluding the check digit, are used to format the output
PIN block.

input_PIN_block_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
encrypted input PIN block. The value must be 8.

Encrypted PIN Translate Enhanced (CSNBPTRE)

Chapter 12. Financial services 551

input_PIN_block

Direction: Input
Type: String

A pointer to a string variable containing the encrypted PIN-block.

output_PIN_profile_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
output_PIN_profile variable. The value is 24 or 48.

output_PIN_profile

Direction: Input
Type: String

A pointer to a string variable containing three 8-byte character strings with
information defining the PIN-block format and, optionally, an additional 24
bytes containing the output CKSN extension. The strings are equivalent to
24-byte or 48-byte strings.

sequence_number

Direction: Input
Type: Integer

A pointer to an integer variable containing the sequence number. Ensure that
the referenced integer variable is valued to 99999 if the output PIN block
format is 3621 or 4704-EPP. Otherwise, this parameter is ignored.

output_PIN_block_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
re-enciphered PIN block. The value must be at least 8.

output_PIN_block

Direction: Output
Type: String

A pointer to a string variable containing the re-enciphered and, optionally,
reformatted PIN-block returned by the verb. The buffer can be larger on input.
However, on output this field is updated to indicate the actual number of bytes
returned by the card.

reserved1_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
reserved1 variable. This value must be zero.

reserved1

Direction: Input/Output
Type: String

Encrypted PIN Translate Enhanced (CSNBPTRE)

552 Common Cryptographic Architecture Application Programmer's Guide

A pointer to a string variable. This parameter is reserved for future use.

reserved2_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
reserved2 variable. This value must be zero.

reserved2

Direction: Output
Type: String

A pointer to a string variable. This parameter is reserved for future use.

Restrictions
The restrictions for CSNBPTRE.

None.

Required commands
The required commands for CSNBPTRE.

The Encrypted PIN Translate Enhanced verb requires the Encrypted PIN Translate
Enhanced command (offset X'02D5') to be enabled in the active role. This ACP is
ON by default. The following additional commands must be enabled depending
on the capabilities that are requested:

Rule-array
keyword

Input profile
format control
keyword

Output profile
format control
keyword
Explanation Offset Command

REFORMAT NONE NONE X'00B7' Encrypted PIN Translate -
Reformat

One or more
of the
following:
IN-DUKPT,
OUTDUKPT,
DUKPT-OP,
DUKPT-IP, or
DUKPT-BH

X'001E' Reencipher CKDS

An enhanced PIN security mode is available for extracting PINs from an IBM 3624
encrypted PIN-block and formatting an encrypted PIN block into 3621 or 3624
format using the PADDIGIT PIN-extraction method. This mode limits checking of
the PIN to decimal digits, and a minimum PIN length of 4 is enforced. No other
PIN-block consistency checking occurs. To activate this mode, enable the Enhanced
PIN Security command (offset X'0313') in the active role.

The verb returns an error indicating that the PAD digit is not valid if all of these
conditions are met:

Encrypted PIN Translate Enhanced (CSNBPTRE)

Chapter 12. Financial services 553

1. The Enhanced PIN Security command is enabled in the active role.
2. The output PIN profile specifies 3624 as the PIN-block format.
3. The output PIN profile specifies a decimal digit (0 - 9) as the PAD digit.

Three additional commands should be considered (offsets X'0350', X'0351', and
X'0352'). If enabled, these three commands affect how PIN processing by this and
other verbs is performed:
1. Enable the ANSI X9.8 PIN - Enforce PIN block restrictions command (offset

X'0350') in the active role to apply additional restrictions to PIN processing as
follows:
v Do not translate or reformat a non-ISO PIN block into an ISO PIN block.

Specifically, do not allow an IBM 3624 PIN-block format in the
output_PIN_profile variable when the PIN-block format in the
input_PIN_profile variable is not 3624.

v Constrain use of ISO-2 PIN blocks to offline PIN verification and PIN change
operations in integrated circuit card environments only. Specifically, do not
allow ISO-2 input or output PIN blocks.

v Do not translate or reformat a PIN-block format that includes a PAN into a
PIN-block format that does not include a PAN. Specifically, do not allow an
ISO-1 PIN-block format in the output_PIN_profile variable when the
PIN-block format in the input_PIN_profile variable is ISO-0 or ISO-3.

2. Enable the ANSI X9.8 PIN - Allow modification of PAN command (offset
X'0351') in the active role to override the restriction to not allow a change of
PAN data. This override is applicable only when either the ANSI X9.8 PIN -
Enforce PIN block restrictions command (offset X'0350') or the ANSI X9.8
PIN - Allow only ANSI PIN blocks command (offset X'0352') or both are
enabled in the active role. This override supports environments that issue
account number changes. Offset X'0351' has no effect if neither offset X'0350'
nor offset X'0352' is enabled in the active role. This rule does not apply for
PTRE. Also, PAN changes are not allowed.

3. Enable the ANSI X9.8 PIN - Allow only ANSI PIN blocks command (offset
X'0352') in the active role to apply a more restrictive variation of the ANSI X9.8
PIN - Enforce PIN block restrictions command (offset X'0350'). In addition
to the previously described restrictions of offset X'0350', this command also
restricts the input_PIN_profile and the output_PIN_profile parameters to
contain only ISO-0, ISO-1, and ISO-3 PIN block formats. Specifically, the IBM
3624 PIN-block format is not allowed with this command. The command at
offset X'0352' overrides the one at offset X'0350'.

Usage notes
The usage notes for CSNBPTRE.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBPTREJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBPTREJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,

Encrypted PIN Translate Enhanced (CSNBPTRE)

554 Common Cryptographic Architecture Application Programmer's Guide

hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber input_PIN_encrypting_key_identifier_length,
byte[] input_PIN_encrypting_key_identifier,
hikmNativeNumber output_PIN_encrypting_key_identifier_length,
byte[] output_PIN_encrypting_key_identifier,
hikmNativeNumber PAN_key_identifier_length,
byte[] PAN_key_identifier,
hikmNativeNumber input_PIN_profile_length,
byte[] input_PIN_profile,
hikmNativeNumber PAN_data_length,
byte[] PAN_data,
hikmNativeNumber input_PIN_block_length,
byte[] input_PIN_block,
hikmNativeNumber output_PIN_profile_length,
byte[] output_PIN_profile,
hikmNativeNumber sequence_number,
hikmNativeNumber output_PIN_block_length,
byte[] output_PIN_block,
hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2);

Encrypted PIN Verify (CSNBPVR)
Use the Encrypted PIN Verify verb to verify that one of the customer selected trial
PINs is valid.

Use the verb to verify that one of the following PINs is valid:
v IBM 3624 (IBM-PIN)
v IBM 3624 PIN offset (IBM-PINO)
v IBM German Bank Pool (GBP-PIN)
v VISA PIN validation value (VISA-PVV)
v VISA PIN validation value (VISAPVV4)
v Interbank PIN (INBK-PIN)

The unique-key-par-transaction key derivation for single and double-length keys is
available for the input_PIN_encrypting_key_identifier parameter.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Encrypted PIN Translate Enhanced (CSNBPTRE)

Chapter 12. Financial services 555

|

Format
The format of CSNBPVR.

CSNBPVR(
return_code,
reason_code,
exit_data_length,
exit_data,
input_PIN_encrypting_key_identifier,
PIN_verifying_key_identifier,
input_PIN_profile,
PAN_data,
encrypted_PIN_block,
rule_array_count,
rule_array,
PIN_check_length,
data_array)

Parameters
The parameters for CSNBPVR.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

input_PIN_encrypting_key_identifier

Direction: Input/Output
Type: String

The 64-byte key label or internal key token containing the PIN-encrypting key
(IPINENC) that enciphers the PIN block. If keyword UKPTIPIN or DUKPT-IP
is specified in the rule_array, the input_PIN_encrypting_key_identifier must
specify a key token or key label of a KEYGENKY with the UKPT usage bit
enabled.

PIN_verifying_key_identifier

Direction: Input/Output
Type: String

The 64-byte key label or internal key token that identifies the PIN verify
(PINVER) key.

input_PIN_profile

Direction: Input
Type: String

The three 8-byte character elements that contain information necessary to either
create a formatted PIN block or extract a PIN from a formatted PIN block. A
particular PIN profile can be either an input PIN profile or an output PIN
profile depending on whether the PIN block is being enciphered or deciphered
by the verb. If you specify UKPTIPIN in the rule_array parameter, the
input_PIN_profile is extended to a 48-byte field and must contain the current
key serial number. See “The PIN profile” on page 497 for additional
information.

If you specify DUKPT-IP in the rule_array parameter, the input_PIN_profile is
extended to a 48-byte field and must contain the current key serial number. See
“The PIN profile” on page 497 for additional information.

Encrypted PIN Verify (CSNBPVR)

556 Common Cryptographic Architecture Application Programmer's Guide

The pad digit is needed to extract the PIN from a 3624 or 3621 PIN block in
the Encrypted PIN Verify verb.

The PINLENnn keywords are disabled for this verb by default. If these
keywords are used, return code 8 with reason code 33 is returned. To enable
them, the PTR Enhanced PIN Security access control point (bit X'0313') must be
enabled using a TKE workstation.

PAN_data

Direction: Input
Type: String

The personal account number (PAN) is required for ISO-0, ISO-3, and VISA-4.
Otherwise, this parameter is ignored. Specify 12 digits of account data in
character format.

For ISO-0 or ISO-3, use the rightmost 12 digits of the PAN, excluding the
check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

encrypted_PIN_block

Direction: Input
Type: String

The 8-byte enciphered PIN block that contains the PIN to be verified.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

rule_array

Direction: Input
Type: String array

The process rule for the PIN verify algorithm, described in Table 171.

Table 171. Keywords for Encrypted PIN Verify control information

Keyword Description

Algorithm value (One, required)

GBP-PIN The IBM German Bank Pool PIN. It verifies the PIN entered by the customer and compares that
PIN with the institution generated PIN by using an institution key.

IBM-PIN The IBM 3624 PIN, which is an institution-assigned PIN. It does not calculate the PIN offset.

IBM-PINO The IBM 3624 PIN offset, which is a customer-selected PIN and calculates the PIN offset.

INBK-PIN The Interbank PIN verify algorithm.

VISA-PVV The VISA PIN verify value.

VISAPVV4 The VISA PIN verify value. If the length is 4 digits, normal processing for VISA-PVV will occur.

Encrypted PIN Verify (CSNBPVR)

Chapter 12. Financial services 557

Table 171. Keywords for Encrypted PIN Verify control information (continued)

Keyword Description

PIN block
format and PIN
extraction
method
(Optional)

See “PIN block format and PIN extraction method keywords” on page 498 for additional
information and a list of PIN block formats and PIN extraction method keywords.

The PINLENnn keywords are disabled for this verb by default. If these keywords are used, return
code 8 with reason code 33 is returned. To enable them, the PTR Enhanced PIN Security access
control point (bit X'0313') must be enabled using a TKE workstation.
Note: If a PIN extraction method is not specified, the first one listed in Table 143 on page 498 for
the PIN block format will be the default.

DUKPT keyword - single length key derivation (Optional)

UKPTIPIN The input_PIN_encrypting_key_identifier is derived as a single length key. The
input_PIN_encrypting_key_identifier must be a KEYGENKY key with the UKPT usage bit enabled.
The input_PIN_profile must be 48 bytes and contain the key serial number.

DUKPT keyword - double length key derivation (Optional)

DUKPT-IP The input_PIN_encrypting_key_identifier is to be derived using the DUKPT algorithm. The
input_PIN_encrypting_key_identifier must be a KEYGENKY key with the DUKPT usage bit enabled.
The input_PIN_profile must be 48 bytes and contain the key serial number.

PIN_check_length

Direction: Input
Type: String

The PIN check length for the IBM-PIN or IBM-PINO process rules only.
Otherwise, it is ignored. Specify the rightmost digits, 4 - 16, for the PIN to be
verified.

data_array

Direction: Input
Type: Integer

Three 16-byte elements required by the corresponding rule_array parameter.
The data array consists of three 16-byte fields whose specification depend on
the process rule. If a process rule requires only one or two 16-byte fields, the
rest of the data array is ignored by the verb. Table 172 describes the array
elements.

Table 172. Array elements for Encrypted PIN Verify data_array parameter

Array element Description

Decimalization_table Decimalization table for IBM and GBP only. Sixteen decimal digits of 0 - 9.

If the ANSI X9.8 PIN - Use stored decimalization tables only command (offset
X'0356') access control point is enabled in the active role, this table must match one of
the active decimalization tables in the coprocessors.

PIN_offset Offset data for IBM-PINO. One to twelve numeric characters, 0 - 9, left-aligned and
padded on the right with blanks. For IBM-PINO, the PIN offset length is specified in the
PIN_check_length parameter. For IBM-PIN and GBP-PIN, the field is ignored.

Trans_sec_parm For VISA, only the leftmost twelve digits of the 16-byte field are used. These consist of
the rightmost eleven digits of the personal account number (PAN) and a one-digit key
index. The remaining four characters are ignored.

For Interbank only, all 16 bytes are used. These consist of the rightmost eleven digits of
the PAN, a constant of X'6', a one-digit key index, and three numeric digits of PIN
validation data.

Encrypted PIN Verify (CSNBPVR)

558 Common Cryptographic Architecture Application Programmer's Guide

Table 172. Array elements for Encrypted PIN Verify data_array parameter (continued)

Array element Description

RPVV For VISA-PVV only, referenced PVV (four bytes) that is left-aligned. The rest of the field
is ignored.

Validation_data Validation data for IBM and GBP padded to 16 bytes. 1 - 16 characters of hexadecimal
account data left-aligned and padded on the right with blanks.

Table 173 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule's position within the array.

Table 173. Array elements required by the process rule

Process rule IBM-PIN IBM-PINO GBP-PIN VISA-PVV INBK-PIN

Decimalization_table 1 1 1

Validation_data 2 2 2

PIN_offset 3 3 3

Trans_sec_parm 1 1

RPVV 2

Restrictions
The restrictions for CSNBPVR.

None.

Required commands
The required commands for CSNBPVR.

This verb requires the following commands to be enabled in the active role:

Rule-array keyword Offset Command

IBM-PIN, IBM-PINO X'00AB' Encrypted PIN Verify - 3624

GBP-PIN X'00AC' Encrypted PIN Verify - GBP

VISA-PVV, VISAPVV4 X'00AD' Encrypted PIN Verify - VISA PVV

INBK-PIN X'00AE' Encrypted PIN Verify - Interbank

This verb also requires the UKPT - PIN Verify, PIN Translate command (offset
X'00E1') to be enabled in the active role if you employ UKPT processing.

Note: A role with offset X'00E1' enabled can also use the Encrypted PIN Translate
verb with UKPT processing.

An enhanced PIN security mode is available for extracting PINs from an IBM 3624
encrypted PIN-block using the PADDIGIT PIN-extraction method. This mode
limits checking of the PIN to decimal digits, and a minimum PIN length of four is
enforced. No other PIN-block consistency checking will occur. To activate this
mode, enable the Enhanced PIN Security command (offset X'0313') in the active
role.

Whenever the ANSI X9.8 PIN - Use stored decimalization tables only
command (offset X'0356') is enabled in the active role, the Decimalization_table

Encrypted PIN Verify (CSNBPVR)

Chapter 12. Financial services 559

element of the data_array value must match one of the PIN decimalization tables
that are in the active state on the coprocessor. Use of this command provides
improved security and control for PIN decimalization tables. The VISA-PVV,
VISAPVV4, and INBK-PIN PIN calculation methods do not have a
Decimalization_table element and are therefore not affected by this command.

Usage notes
The usage notes for CSNBPVR.

None.

Related information
Additional information about CSNBPVR.

The algorithms are described in detail in Chapter 22, “PIN formats and
algorithms,” on page 1005.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBPVRJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBPVRJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
byte[] input_PIN_encrypting_key_identifier,
byte[] PIN_verifying_key_identifier,
byte[] input_PIN_profile,
byte[] PAN_data,
byte[] encrypted_PIN_block,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PIN_check_length,
byte[] data_array);

FPE Decipher (CSNBFPED)
The FPE Decipher verb is used to decrypt payment card data for the Visa Data
Secure Platform (VDSP) processing.

The FPE Decipher verb uses the TDES (Triple-DES) algorithm with cipher block
chaining (CBC) or Visa Format Preserving Encryption (VFPE) mode and a cipher
key to decipher data called ciphertext. This verb returns data called plaintext.

The verb can be used to decipher one or all of the following fields:
the primary account number (PAN),
the cardholder name,
the Track 1 Discretionary Data,
the Track 2 Discretionary Data.

Also refer to “Visa Format-Preserving Encryption supporting information”.

Encrypted PIN Verify (CSNBPVR)

560 Common Cryptographic Architecture Application Programmer's Guide

The CSNBFPED verb returns the enciphered fields and optionally the DUKPT PIN
key, if DUKPT key management is selected.

Terminology: The VDSP specification speaks of two key management methods:
DUKPT (derived unique key per transaction) and Zone Encryption Keys. The process for
deriving these keys is documented in ANS X9.24 Part 1. Zone Encryption Keys are
called static keys in CCA. Static keys are presented for use and are not derived
during verb processing. They are double length TDES keys for this service which
are called static TDES keys in this document.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBFPED.

CSNBFPED(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
enc_PAN_length,
enc_PAN,
enc_cardholder_name_length,
enc_cardholder_name,
enc_dtrack1_data_length,
enc_dtrack1_data,
enc_dtrack2_data_length,
enc_dtrack2_data,
key_identifier_length,
key_identifier,
derivation_data_length,
derivation_data,
clear_PAN_length,
clear_PAN,
clear_cardholder_name_length,
clear_cardholder_name,
clear_dtrack1_data_length,
clear_dtrack1_data,
clear_dtrack2_data_length,
clear_dtrack2_data,
DUKPT_PIN_key_identifier_length,
DUKPT_PIN_key_identifier,
reserved1_length,
reserved1,
reserved2_length,
reserved2)

Parameters
The parameters for CSNBFPED.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the

FPE Decipher (CSNBFPED)

Chapter 12. Financial services 561

|

rule_array variable. The minimum value is 5. The maximum value is 10.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The rule_array
keywords are described in Table 174.

Note: At least one character set keyword is required.

Table 174. Keywords for FPE Decipher control information

Keyword Description

Processing method (required)

VMDS Specifies that the VDSP method (Visa Data Secure Platform method, formally known as the Visa
Merchant Data Secure (VMDS) method) is to be used for processing.

Key management method (one required)

STATIC Specifies the use of double length (2-key) triple-DES symmetric keys. This is a non-DUKPT key.

DUKPT Specifies the use of the transaction unique general purpose Data Encryption Keys generated by the
DUKPT process at the point of service for data encryption. This is required if VFPE mode is
specified. Otherwise, this is optional.

Algorithm (required)

TDES Specifies the use of CBC mode triple-DES encryption.

Mode (one required)

CBC Specifies the use of CBC mode. This is the mode for the standard encryption option.

VFPE Specifies the use of Visa format preserving encryption.

PAN input output character set (one required if the clear_PAN_length variable is greater than 0. Otherwise, it is not
allowed.)

PAN8BITA Specifies that the PAN data character set is ASCII represented in binary form. Valid ASCII values are
in the range 0 - 9 (X'30' - X'39').

PAN4BITX Specifies that the PAN data character set is 4-bit hex with two digits per byte. Valid 4-bit
hexadecimal values are in the range X'0' - X'9'.

Cardholder name input output character set (required if the clear_cardholder_name_length variable is greater than
0. Otherwise, it is not allowed.)

CN8BITA Specifies that the cardholder name character set is ASCII represented in binary format, one character
per byte. See Table 148 on page 504 for valid characters.

Track_1 input output character set (required if the clear_dtrack1_data_length variable is greater than 0. Otherwise,
it is not valid.)

TK18BITA Specifies that the track 1 discretionary data character set is ASCII represented in binary format, one
character per byte. See Table 148 on page 504 for valid characters.

Track_2 input output character set (required if the clear_dtrack2_data_length variable is greater than 0. Otherwise,
it is not valid.)

TK28BITA Specifies that the track 2 discretionary data character set is ASCII represented in binary format, one
character per byte. Valid ASCII values are in the range 0 - 9 (X'30' - X'39') and A - F (X'41' - X'46').

PIN encryption key output selection (one, optional, if DUKPT is specified. Otherwise, it is not valid.)

NOPINKEY Do not return a DUKPT PIN encryption key. This is the default.

PINKEY Return a DUKPT PIN encryption key.

PAN check digit compliance (one required if mode VFPE and the pan character set keyword is present. Otherwise, it
is not allowed.)

FPE Decipher (CSNBFPED)

562 Common Cryptographic Architecture Application Programmer's Guide

Table 174. Keywords for FPE Decipher control information (continued)

Keyword Description

CMPCKDGT Last digit of the PAN contains a compliant check digit per ISO/IEC 7812-1.

NONCKDGT Last digit of the PAN does not contain a compliant check digit per ISO/IEC 7812-1.

enc_PAN_length

Direction: Input
Type: Integer

Specifies the length of the enc_PAN parameter in bytes if the mode is CBC or
the number of PAN digits if the mode is VFPE. The value is either 0 or in the
range 15 - 19 for VFPE. The value must be 0 or 16 if the standard option with
CBC mode is selected. The value is zero when the PAN has not been presented
for decryption.

enc_PAN

Direction: Input
Type: String

The enciphered primary account number (PAN) that is to be decrypted. For
VFPE mode, if the PAN contains an odd number of 4-bit digits, the data is left
justified in the PAN variable and the right-most 4 bits are ignored.

enc_cardholder_name_length

Direction: Input
Type: Integer

Specifies the length of the enc_cardholder_name parameter in bytes. The input
value is either 0 or in the range 1 - 32, inclusive for VFPE. For the standard
method, the input value is either 0 or in the range 2 - 32 for VFPE. For CBC
mode, the input value is 0, 16, 24, 32, or 40. The value is zero when the
cardholder name has not been presented for decryption.

enc_cardholder_name

Direction: Input
Type: String

The enciphered cardholder full name that is to be decrypted. Only characters
in Table 150 on page 505 are valid.

enc_dtrack1_data_length

Direction: Input
Type: Integer

Specifies the length of the enc_dtrack1_data parameter in bytes. The input
value is either 0 or in the range 1 - 56, inclusive for VFPE. For the standard
method, the input value is either 0 or in the range 1 - 56 for VFPE. For CBC
mode, the input value is 0 or 16, 24, 32, 40, 48, 56, or 64. The value is zero
when the track 1 discretionary data has not been presented for decryption.

enc_dtrack1_data

Direction: Input
Type: String

FPE Decipher (CSNBFPED)

Chapter 12. Financial services 563

The encrypted track 1 data that is to be decrypted. Only characters in Table 150
on page 505 are valid.

enc_dtrack2_data_length

Direction: Input
Type: Integer

Specifies the length of the enc_dtrack2_data parameter in bytes. The input
value is either 0 or in the range 1 - 19 for VFPE. For mode CBC, the input
value is 0, 8, or 16. The value is zero when the track 2 discretionary data is not
presented for decryption.

enc_dtrack2_data

Direction: Input
Type: String

The encrypted track 2 data that is to be decrypted.

key_identifier_length

Direction: Input
Type: Integer

Specifies the length of the key_identifier parameter in bytes. The value must
be 64, because only fixed length DES tokens are supported as the key
identifier.

key_identifier

Direction: Input/Output
Type: String

The identifier of the key that is used to either decrypt the card data (key
management STATIC) or derive the DUKPT_PIN_key_identifer (key
management DUKPT). The key identifier is an operational token or the key label
of an operational token in key storage.

For key management DUKPT, the key type must be KEYGENKY. In addition,
it must have a control vector with bit 18 equal to B'1' (UKPT). The base
derivation key is the one from which the operational keys are derived using
the DUKPT algorithm defined in ANS X9.24 Part 1.

For key management STATIC, (Zone Encryption Key in the VDSP
specification), the key type must be either CIPHER or ENCIPHER. For
production purposes, it is recommended that the key have left and right halves
that are not equal.

Note: Data keys are not supported.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

derivation_data_length

Direction: Input
Type: Integer

Specifies the length of the derivation_data parameter in bytes. The value must
be 10 if a DUKPT key is specified in the key_identifier parameter. If a data
encryption key is specified in the key_identifier parameter, this value must
be set to zero.

FPE Decipher (CSNBFPED)

564 Common Cryptographic Architecture Application Programmer's Guide

derivation_data

Direction: Input
Type: String

Contains the 80 bit (10 byte) derivation data that is used as input to the
DUKPT derivation process. The derivation data contains the current key serial
number (CKSN), which is composed of the 59 bit initial key serial number, and
concatenated with the 21 bit value of the current encryption counter, which the
device increments for each new transaction. This field is in binary format.

clear_PAN_length

Direction: Input/Output
Type: Integer

Specifies the number of PAN digits in the clear_PAN parameter. This value
must either be 0 or in the range 15 - 19, inclusive on output.

clear_PAN

Direction: Output
Type: String

This parameter returns the deciphered primary account number. The full
account number, including check digit, is recovered. The data for this
parameter is returned in binary format. It is the binary representation of 4-bit
hex (keyword PAN4BITX) or ASCII (keyword PAN8BITA) as indicated by the
supplied rule array keyword. The clear PAN is left justified in this field.

clear_cardholder_name_length

Direction: Input/Output
Type: Integer

Specifies the length of the clear_cardholder_name parameter in bytes. This
output value is either 0 or in the range 2 - 32 on output. The variable can be
larger on input. However, on output, this field is updated to indicate the actual
number of bytes returned by the service.

clear_cardholder_name

Direction: Output
Type: String

This parameter returns the deciphered cardholder full name. The output data
for this parameter is in binary format. It is the binary representation of ASCII
as indicated by the supplied rule array keyword.

clear_dtrack1_data_length

Direction: Input/Output
Type: Integer

Specifies the length of the clear_dtrack1_data parameter in bytes. The output
value is either 0 or in the range 1 - 56. The value can be larger on input.
However, on output, this field is updated to indicate the actual number of
bytes returned by the service.

clear_dtrack1_data

Direction: Output
Type: String

FPE Decipher (CSNBFPED)

Chapter 12. Financial services 565

This parameter returns the deciphered discretionary track 1 data.

clear_dtrack2_data_length

Direction: Input/Output
Type: Integer

Specifies the length of the clear_dtrack2_data parameter in bytes. The output
value is either 0 or in the range 1 - 19. The value can be larger on input.
However, on output, this field is updated to indicate the actual number of
bytes returned by the service.

clear_dtrack2_data

Direction: Output
Type: String

This parameter returns the deciphered discretionary track 2 data.

DUKPT_PIN_key_identifier_length

Direction: Input/Output
Type: Integer

Specifies the length of the DUKPT_PIN_key_identifier parameter in bytes. If the
PINKEY rule-array keyword is specified, set this value to 64. Otherwise, set
this value to 0. On output, the variable is updated with the length of the data
returned in the DUKPT_PIN_key_identifier variable.

DUKPT_PIN_key_identifier

Direction: Input/Output
Type: String

On input, this parameter must contain a DES OPINENC or IPINENC skeleton
token. On output, it contains the DES token with the derived DES OPINENC
or IPINENC key.

reserved1_length

Direction: Input
Type: Integer

Specifies the length of the reserved1 parameter in bytes. The value must be 0.

reserved1

Direction: Input
Type: String

This parameter is ignored.

reserved2_length

Direction: Input/Output
Type: Integer

Specifies the length of the reserved2 parameter in bytes. The value must be 0.

reserved2

Direction: Input
Type: String

This parameter is ignored.

FPE Decipher (CSNBFPED)

566 Common Cryptographic Architecture Application Programmer's Guide

Restrictions
The restrictions for CSNBFPED.

None.

Required commands
The required commands for CSNBFPED.

This verb requires the FPE Decrypt command (offset X'02D0') to be enabled in the
active role. This ACP is ON by default in z/OS. If DUKPT is specified, the verb
also requires the UKPT - PIN Verify, PIN Translate command (offset X'00E1') to
be enabled if you employ DUKPT processing.

Usage notes
The usage notes for CSNBFPED.

See “Usage notes for FPE Encipher (CSNBFPEE) and FPE Decipher (CSNBFPED)
services” on page 508.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBFPEDJ .

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBFPEDJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber enc_PAN_length,
byte[] enc_PAN,
hikmNativeNumber enc_cardholder_name_length,
byte[] enc_cardholder_name,
hikmNativeNumber enc_dtrack1_data_length,
byte[] enc_dtrack1_data,
hikmNativeNumber enc_dtrack2_data_length,
byte[] enc_dtrack2_data,
hikmNativeNumber key_identifier_length,
byte[] key_identifier,
hikmNativeNumber derivation_data_length,
byte[] derivation_data,
hikmNativeNumber clear_PAN_length,
byte[] clear_PAN,
hikmNativeNumber clear_cardholder_name_length,
byte[] clear_cardholder_name,
hikmNativeNumber clear_dtrack1_data_length,
byte[] clear_dtrack1_data,
hikmNativeNumber clear_dtrack2_data_length,
byte[] clear_dtrack2_data,
hikmNativeNumber DUKPT_PIN_key_identifier_length,
byte[] DUKPT_PIN_key_identifier,
hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2);

FPE Decipher (CSNBFPED)

Chapter 12. Financial services 567

FPE Encipher (CSNBFPEE)
The FPE Encipher verb is used to encrypt payment card data for the Visa Data
Secure Platform (VDSP) processing.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBFPEE.

CSNBFPEE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_PAN_length,
clear_PAN,
clear_cardholder_name_length,
clear_cardholder_name,
clear_dtrack1_data_length,
clear_dtrack1_data,
clear_dtrack2_data_length,
clear_dtrack2_data,
key_identifier_length,
key_identifier,
derivation_data_length,
derivation_data,
enc_PAN_length,
enc_PAN,
enc_cardholder_name_length,
enc_cardholder_name,
enc_dtrack1_data_length,
enc_dtrack1_data,
enc_dtrack2_data_length,
enc_dtrack2_data,
DUKPT_PIN_key_identifier_length,
DUKPT_PIN_key_identifier,
reserved1_length,
reserved1,
reserved2_length,
reserved2)

Parameters
The parameters for CSNBFPEE.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The minimum value is 5. The maximum value is 10.

rule_array

Direction: Input

FPE Encipher (CSNBFPEE)

568 Common Cryptographic Architecture Application Programmer's Guide

|

Type: String array

Keywords that provide control information to the verb. The rule_array
keywords are described in Table 175.

Note: At least one character set keyword is required.

Table 175. Keywords for CSNBFPEE control information

Keyword Description

Processing method (required)

VMDS Specifies that the VDSP method (Visa Data Secure Platform method, formally known as the Visa
Merchant Data Secure (VMDS) method) is to be used for processing.

Key management method (one required)

STATIC Specifies the use of double length (2-key) triple-DES symmetric keys. This is a non-DUKPT key.

DUKPT Specifies the use of the transaction unique general purpose Data Encryption Keys generated by the
DUKPT process at the point of service for data encryption. This is required if VFPE mode is
specified. Otherwise, this is optional.

Algorithm (required)

TDES Specifies the use of CBC mode triple-DES encryption.

Mode (one required)

CBC Specifies the use of CBC mode. This is the mode for the standard encryption option.

VFPE Specifies the use of Visa format preserving encryption.

PAN input output character set (one required if the clear_PAN_length variable is greater than 0. Otherwise, it is not
allowed.)

PAN8BITA Specifies that the PAN data character set is BASE-10 ASCII represented in binary form. Valid ASCII
values are in the range 0 - 9 (X'30' - X'39').

PAN4BITX Specifies that the PAN data character set is BASE-10 4-bit hex with two digits per byte. Valid 4-bit
hexadecimal values are in the range X'0' - X'9'.

Cardholder name input output character set (required if the clear_cardholder_name_length variable is greater than
0. Otherwise, it is not allowed.)

CN8BITA Specifies that the cardholder name character set is ASCII represented in binary format, one character
per byte. See Table 148 on page 504 for valid characters.

Track_1 input output character set (required if the clear_dtrack1_data_length variable is greater than 0. Otherwise,
it is not valid.)

TK18BITA Specifies that the track 1 discretionary data character set is ASCII represented in binary format, one
character per byte. See Table 148 on page 504 for valid characters.

Track_2 input output character set (required if the clear_dtrack2_data_length variable is greater than 0. Otherwise,
it is not valid.)

TK28BITA Specifies that the track 2 discretionary data character set is ASCII represented in binary format, one
character per byte. Valid ASCII values are in the range 0 - 9 (X'30' - X'39') and A - F (X'41' - X'46').

PIN encryption key output selection (one, optional)

NOPINKEY Do not return a DUKPT PIN encryption key. This is the default.

PINKEY Return a DUKPT PIN encryption key.

PAN check digit compliance (one required if mode VFPE and the pan input output character set keyword is present.
Otherwise, it is not allowed.)

CMPCKDGT Last digit of the PAN contains a compliant check digit per ISO/IEC 7812-1.

NONCKDGT Last digit of the PAN does not contain a compliant check digit per ISO/IEC 7812-1.

FPE Encipher (CSNBFPEE)

Chapter 12. Financial services 569

clear_PAN_length

Direction: Input
Type: Integer

Specifies the number of digits in the clear_PAN parameter. This value must be
0 if clear_PAN is not to be enciphered. The value must be in the range 15 - 19 if
PAN data is presented for encryption.

clear_PAN

Direction: Input
Type: String

Contains the account number with which the PIN is associated. The full
account number, including check digit, should be included. The data for this
parameter is in binary format. It is the binary representation of 4-bit hex
(keyword PAN4BITX) or ASCII (keyword PAN8BITA). If the PAN contains an
odd number of 4-bit digits, the data must be left justified in the PAN variable
and the right-most 4 bits are ignored.

If the clear_PAN_length parameter is zero, this parameter is ignored.

clear_cardholder_name_length

Direction: Input
Type: Integer

Specifies the length of the clear_cardholder_name parameter in bytes. This
value must be 0 if the cardholder name is not to be enciphered. The value
must be in the range 2 - 32 if the cardholder name data is presented for
encryption.

clear_cardholder_name

Direction: Input
Type: String

Contains the card holder's full name. The data for this parameter is in binary
format. It is the binary representation of ASCII characters as defined in
Table 150 on page 505. Only characters from this table are valid.

clear_dtrack1_data_length

Direction: Input
Type: Integer

Specifies the length of the clear_dtrack1_data parameter in bytes. This value
must be 0 if the track 1 discretionary data is not to be enciphered. The value
must be in the range 1 - 56 if the track 1 discretionary data is presented for
encryption.

clear_dtrack1_data

Direction: Input
Type: String

Contains the discretionary data that is stored on track 1 of a magnetic stripe
card. This data does not include the PAN, cardholder name, expiration date, or
service code. The data for this parameter is in binary format. It is the binary
representation of ASCII characters as defined in Table 150 on page 505. Only
characters defined in this table are valid.

clear_dtrack2_data_length

FPE Encipher (CSNBFPEE)

570 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: Integer

Specifies the length of the clear_dtrack2_data parameter in bytes. This value
must be 0 if the track 2 discretionary data is not to be enciphered. The value
must be in the range 1 - 19 if the track 2 discretionary data is presented for
encryption.

clear_dtrack2_data

Direction: Input
Type: String

Contains the discretionary data that is stored on track 2 of a magnetic stripe
card. This data does not include the PAN, expiration date, or service code. The
data for this parameter is in binary format. It is the binary representation of
ASCII characters. The data for this parameter is in BASE-16 binary format. It is
the binary representation of ASCII in the range X'30' - X'39' and X'41' - X'46'
(ASCII: 0 - 9 and A - F).

key_identifier_length

Direction: Input
Type: Integer

Specifies the length of the key_identifier parameter in bytes. The value must
be 64.

key_identifier

Direction: Input/Output
Type: String

The identifier of the key that is used to either encrypt the card data (key
management STATIC) or derive the DUKPT_PIN_key_identifer (key
management DUKPT). The key identifier is an operational token or the key label
of an operational token in key storage.

For key management DUKPT, the key type must be KEYGENKY. In addition,
it must have a control vector with bit 18 equal to B'1' (UKPT). The base
derivation key is the one from which the operational keys are derived using
the DUKPT algorithm defined in ANS X9.24 Part 1.

For key management STATIC, (Zone Encryption Key in the VDSP
specification), the key type must be either CIPHER or ENCIPHER. For
production purposes, it is recommended that the key have left and right halves
that are not equal.

Note: Data keys are not supported.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

derivation_data_length

Direction: Input
Type: Integer

Specifies the length of the derivation_data parameter in bytes. The value must
be 10 if a DUKPT key is specified in the key_identifier parameter. If a data
encryption key is specified in the key_identifier parameter, this value must
be set to zero.

FPE Encipher (CSNBFPEE)

Chapter 12. Financial services 571

derivation_data

Direction: Input
Type: String

Contains the 80 bit (10 byte) derivation data that is used as input to the
DUKPT derivation process. The derivation data contains the current key serial
number (CKSN), which is composed of the 59 bit initial key serial number
concatenated with the 21 bit value of the current encryption counter, which the
device increments for each new transaction. This field is in binary format.

enc_PAN_length

Direction: Input
Type: Integer

Specifies the number of PAN digits in the enc_PAN parameter. This value must
either be 0 or in the range 15 - 19, inclusive on output.

enc_PAN

Direction: Output
Type: String

This parameter returns the enciphered primary account number. For VFPE
mode, if the PAN contains an odd number of 4-bit digits, the data is
left-justified in the PAN variable and the right-most 4 bits can be ignored.

enc_cardholder_name_length

Direction: Input/Output
Type: Integer

Specifies the length of the enc_cardholder_name parameter in bytes. This
output value is either 0 or in the range 2 - 32 for VFPE. For CBC mode, the
output value is in the range 16 - 40 and a multiple of 8 if the service is
successful and cardholder name data is enciphered. The parameter can be
larger on input. However, on output, this length is updated to indicate the
actual number of bytes returned by the service.

enc_cardholder_name

Direction: Output
Type: String

The field where the enciphered cardholder full name is returned.

enc_dtrack1_data_length

Direction: Input/Output
Type: Integer

Specifies the length of the enc_dtrack1_data parameter in bytes. The output
value is either 0 or in the range 1 - 56 for mode VFPE. For mode CBC, the
output value is in the range16 - 64 and a multiple of 8 if the service is
successful and the track 1 discretionary data is enciphered. The parameter can
be larger on input. However, on output, this length is updated to indicate the
actual number of bytes returned by the service.

enc_dtrack1_data

Direction: Output
Type: String

FPE Encipher (CSNBFPEE)

572 Common Cryptographic Architecture Application Programmer's Guide

This parameter returns the enciphered discretionary track 1 data.

enc_dtrack2_data_length

Direction: Input/Output
Type: Integer

Specifies the length of the enc_dtrack2_data parameter in bytes. The output
value is either 0 or in the range 1 - 19 for mode VFPE. For mode CBC, the
output value is 8 or 16 if the service is successful and the data is enciphered.
The parameter can be larger on input. However, on output, this length is
updated to indicate the actual number of bytes returned by the service.

enc_dtrack2_data

Direction: Output
Type: String

This parameter returns the enciphered discretionary track 2 data.

DUKPT_PIN_key_identifier_length

Direction: Input/Output
Type: Integer

Specifies the length of the DUKPT_PIN_key_identifier parameter in bytes. If the
PINKEY rule-array keyword is specified, set this value to 64. Otherwise, set
this value to 0. On output, the variable is updated with the length of the data
returned in the DUKPT_PIN_key_identifier variable.

DUKPT_PIN_key_identifier

Direction: Input/Output
Type: String

On input, this parameter must contain a DES OPINENC or IPINENC skeleton
token. On output, it contains the DES token with the derived DES OPINENC
or IPINENC key.

reserved1_length

Direction: Input
Type: Integer

Specifies the length of the reserved1 parameter in bytes. The value must be 0.

reserved1

Direction: Input
Type: String

This parameter is ignored.

reserved2_length

Direction: Input
Type: Integer

Length of the reserved2 parameter in bytes. The value must be 0.

reserved2

Direction: Input
Type: String

FPE Encipher (CSNBFPEE)

Chapter 12. Financial services 573

This parameter is ignored.

Restrictions
The restrictions for CSNBFPEE.

None.

Required commands
The required commands for CSNBFPEE.

This verb requires the FPE Encrypt command (offset X'02CF') to be enabled in the
active role. This ACP is ON by default in z/OS. If DUKPT is specified, the verb
also requires the UKPT - PIN Verify, PIN Translate command (offset X'00E1') to
be enabled if you employ DUKPT processing.

Usage notes
The usage notes for CSNBFPEE.

See “Usage notes for FPE Encipher (CSNBFPEE) and FPE Decipher (CSNBFPED)
services” on page 508.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBFPEEJ .

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBFPEEJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber clear_PAN_length,
byte[] clear_PAN,
hikmNativeNumber clear_cardholder_name_length,
byte[] clear_cardholder_name,
hikmNativeNumber clear_dtrack1_data_length,
byte[] clear_dtrack1_data,
hikmNativeNumber clear_dtrack2_data_length,
byte[] clear_dtrack2_data,
hikmNativeNumber key_identifier_length,
byte[] key_identifier,
hikmNativeNumber derivation_data_length,
byte[] derivation_data,
hikmNativeNumber enc_PAN_length,
byte[] enc_PAN,
hikmNativeNumber enc_cardholder_name_length,
byte[] enc_cardholder_name,
hikmNativeNumber enc_dtrack1_data_length,
byte[] enc_dtrack1_data,
hikmNativeNumber enc_dtrack2_data_length,
byte[] enc_dtrack2_data,
hikmNativeNumber DUKPT_PIN_key_identifier_length,
byte[] DUKPT_PIN_key_identifier,

FPE Encipher (CSNBFPEE)

574 Common Cryptographic Architecture Application Programmer's Guide

hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2);

FPE Translate (CSNBFPET)
The FPE Translate verb is used to translate payment data from encryption under
one key to encryption under another key with a possibly different format.

You should avoid having plaintext payment data in your environment. Translations
can be performed with data that has been encrypted using the standard encryption
option or with data that has been encrypted using the VFPE option. However, the
target translation uses double length static TDES keys and the standard encryption
option.

This service can be used to translate one or all of the following fields: the primary
account number (PAN), the cardholder name, the track 1 discretionary data, or the
track 2 discretionary data.

The following translation options are supported:
1. Translate standard option with CBC mode TDES and DUKPT keys.
2. Translate VFPE option with VFPE mode TDES andDUKPT keys.
3. Translate standard option with CBC mode TDES and static TDES keys.

To use this service, you must specify the following:
v the processing method, which is limited to Visa Data Secure Platform (VDSP)
v the key management method, either STATIC or DUKPT
v the algorithm, which is limited to TDES
v the mode, either CBC or Visa Format Preserving Encryption (VFPE) for the

inbound data
v the ciphertext to be translated
v the character set of each field to be translated using rule-array keywords
v the base derivation key and key serial number if DUKPT key management is

used, or a double-length TDES key if standard key management is used to
recover the plaintext

v the double length static TDES key used to re-encrypt the data
v Optionally, a check digit compliance indicator if VFPE is specified.

The service returns the translated fields and optionally, the DUKPT PIN encryption
key, if the DUKPT key management is selected and the PINKEY rule is specified.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

FPE Encipher (CSNBFPEE)

Chapter 12. Financial services 575

|

Format
The format of CSNBFPET.

CSNBFPET(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_PAN_length,
input_PAN,
input_cardholder_name_length,
input_cardholder_name,
input_dtrack1_data_length,
input_dtrack1_data,
input_dtrack2_data_length,
input_dtrack2_data,
input_key_identifier_length,
input_key_identifier,
output_key_identifier_length,
output_key_identifier,
derivation_data_length,
derivation_data,
output_PAN_length,
output_PAN,
output_cardholder_name_length,
output_cardholder_name,
output_dtrack1_data_length,
output_dtrack1_data,
output_dtrack2_data_length,
output_dtrack2_data,
DUKPT_PIN_key_identifier_length,
DUKPT_PIN_key_identifier,
reserved1_length,
reserved1,
reserved2_length,
reserved2)

Parameters
The parameters for CSNBFPET.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The minimum value is 4. The maximum value is 10.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The rule_array
keywords are described in Table 176 on page 577.

Note: At least one character set keyword is required.

FPE Translate (CSNBFPET)

576 Common Cryptographic Architecture Application Programmer's Guide

Table 176. Keywords for FPE Translate control information

Keyword Description

Processing method (required)

VMDS Specifies that the VDSP method (Visa Data Secure Platform method, formally known as the Visa
Merchant Data Secure (VMDS) method) is to be used for processing.

Key management method (one required)

STATIC Specifies the use of double length (2-key) triple-DES symmetric keys. This is a non-DUKPT key.

DUKPT Specifies the use of the transaction unique general purpose Data Encryption Keys generated by the
DUKPT process at the point of service for data encryption. This is required if VFPE mode is
specified. Otherwise, this is optional.

Algorithm (required)

TDES Specifies the use of CBC mode triple-DES encryption.

Mode (one required)

CBC Specifies the use of CBC mode. This is the mode for the standard encryption option.

VFPE Specifies the use of Visa format preserving encryption.

PAN input output character set (one required if the clear_PAN_length variable is greater than 0. Otherwise, it is not
allowed.)

PAN8BITA Specifies that the PAN data character set is ASCII represented in binary form. Valid only for VFPE
mode.

PAN4BITX Specifies that the PAN data character set is 4-bit hex with two digits per byte. Valid only for VFPE
mode.

PAN-EBLK Specifies that the PAN data is in a CBC encrypted block. Valid only for CBC mode.

Cardholder name input output character set (required if the clear_cardholder_name_length variable is greater than
0.)

CN8BITA Specifies that the cardholder name character set is ASCII represented in binary format, one character
per byte. See Table 148 on page 504 for valid characters.

CN-EBLK Specifies that the cardholder name data is in a CBC-encrypted block.

Track_1 input output character set (required if the clear_dtrack1_data_length variable is greater than 0. Otherwise,
it is not valid.)

TK18BITA Specifies that the track 1 discretionary data character set is ASCII represented in binary format, one
character per byte. See Table 148 on page 504 for valid characters.

TK1-EBLK Specifies that the track 1 discretionary data is in a CBC-encrypted block. Valid only for CBC mode.

Track_2 input output character set (required if the clear_dtrack2_data_length variable is greater than 0. Otherwise,
it is not valid.)

TK28BITA Specifies that the track 2 discretionary data character set is ASCII represented in binary format.
Valid only for VFPE mode.

TK2-EBLK Specifies that the track 2 discretionary data is in a CBC encrypted block. Valid only for CBC mode.

PIN encryption key output selection (one, optional, if DUKPT is specified. Otherwise, it is not valid.)

NOPINKEY Do not return a DUKPT PIN encryption key. This is the default.

PINKEY Return a DUKPT PIN encryption key.

PAN check digit compliance (one required if mode VFPE and the PAN input character set keyword is present.
Otherwise, it is not allowed.)

CMPCKDGT Last digit of the PAN contains a compliant check digit per ISO/IEC 7812-1.

NONCKDGT Last digit of the PAN does not contain a compliant check digit per ISO/IEC 7812-1.

input_PAN_length

FPE Translate (CSNBFPET)

Chapter 12. Financial services 577

Direction: Input
Type: Integer

Specifies the length of the input_PAN parameter in bytes if the mode is CBC.
Specifies the number of PAN digits if the mode is VFPE. The value is 0 if PAN
data has not been presented for translation. Otherwise, the value is in the
range 15 - 19 for VFPE. The value must be 16 if the standard option with CBC
mode is selected.

input_PAN

Direction: Input
Type: String

The enciphered primary account number (PAN) that is to be translated. For
VFPE mode, if the PAN contains an odd number of 4-bit digits, the data is left
justified in the PAN variable and the right-most 4 bits are ignored.

input_cardholder_name_length

Direction: Input
Type: Integer

Specifies the length of the input_cardholder_name parameter in bytes. This
value must be 0 if cardholder name is not presented for translation. Otherwise,
the value is in the range 1 - 32 for VFPE. For CBC mode, the input value is
either 16, 24, 32, or 40.

input_cardholder_name

Direction: Input
Type: String

The enciphered cardholder full name that is to be translated. Only characters
in Table 150 on page 505 are valid.

input_dtrack1_data_length

Direction: Input
Type: Integer

Specifies the length of the input_dtrack1_data parameter in bytes. This value
must be 0 if track 1 discretionary data is not presented for translation.
Otherwise, the value is in the range 1 - 56 for VFPE. For CBC mode, the input
value is either 16, 24, 32, 40, 48, 56, or 64.

input_dtrack1_data

Direction: Input
Type: String

The encrypted track 1 data that is to be translated. Only characters in Table 150
on page 505 are valid.

input_dtrack2_data_length

Direction: Input
Type: Integer

Specifies the length of the input_dtrack2_data parameter in bytes. This value
must be 0 if track 2 discretionary data is not presented for translation.
Otherwise, the value is in the range 1 - 19 for VFPE. For CBC mode, the input
value is either 8 or 16.

FPE Translate (CSNBFPET)

578 Common Cryptographic Architecture Application Programmer's Guide

input_dtrack2_data

Direction: Input
Type: String

The encrypted track 2 data that is to be translated.

input_key_identifier_length

Direction: Input
Type: Integer

Specifies the length of the input_key_identifier parameter in bytes. The value
must be 64, because only fixed length DES tokens are supported as the key
identifier.

input_key_identifier

Direction: Input/Output
Type: String

The identifier of the key that is used to either decrypt the card data (key
management STATIC) or derive the DUKPT_PIN_key_identifer (key
management DUKPT). The key identifier is an operational token or the key label
of an operational token in key storage.

For key management DUKPT, the key type must be KEYGENKY. In addition,
it must have a control vector with bit 18 equal to B'1' (UKPT). The base
derivation key is the one from which the operational keys are derived using
the DUKPT algorithm defined in ANS X9.24 Part 1.

For key management STATIC, (Zone Encryption Key in the VDSP
specification), the key type must be either CIPHER or ENCIPHER. For
production purposes, it is recommended that the key have left and right halves
that are not equal.

Note: Data keys are not supported.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

output_key_identifier_length

Direction: Input
Type: Integer

Specifies the length of the output_key_identifier parameter in bytes. The
value must be 64, because only fixed length DES tokens are supported as the
key identifier.

output_key_identifier

Direction: Input/Output
Type: String

The identifier of the key that is used to decrypt the output card data. The key
identifier is an operational token or the key label of an operational token in key
storage.

The key type must be either CIPHER or ENCIPHER. For production purposes,
it is recommended that the key have left and right halves that are not equal.

Note: Data keys are not supported.

FPE Translate (CSNBFPET)

Chapter 12. Financial services 579

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

derivation_data_length

Direction: Input
Type: Integer

Specifies the length of the derivation_data parameter in bytes. The value must
be 10 if a DUKPT key is specified in the key_identifier parameter. If a data
encryption key is specified in the key_identifier parameter, this value must
be set to zero.

derivation_data

Direction: Input
Type: String

Contains the 80 bit (10 byte) derivation data that is used as input to the
DUKPT derivation process. The derivation data contains the current key serial
number (CKSN), which is composed of the 59 bit initial key serial number
concatenated with the 21 bit value of the current encryption counter, which the
device increments for each new transaction. This field is in binary format.

output_PAN_length

Direction: Input/Output
Type: Integer

Specifies the number of bytes of data in the output_PAN parameter. This value
is 0 or 16 on output.

output_PAN

Direction: Output
Type: String

This parameter returns the translated primary account number with which the
PIN is associated. The full account number, including check digit, is translated.
The data for this parameter is returned as TDES-encrypted data in binary
format. The 16 byte output is left justified in this field.

output_cardholder_name_length

Direction: Input/Output
Type: Integer

Specifies the length of the output_cardholder_name parameter in bytes. This
output value is either 0 or 16, 24, 32, or 40 bytes on output. The variable can
be larger on input. However, on output, this field is updated to indicate the
actual number of bytes returned by the card.

output_cardholder_name

Direction: Output
Type: String

This parameter returns the translated cardholder full name. The data for this
parameter is returned as TDES-encrypted data in binary format.

output_dtrack1_data_length

Direction: Input/Output
Type: Integer

FPE Translate (CSNBFPET)

580 Common Cryptographic Architecture Application Programmer's Guide

Specifies the length of the output_dtrack1_data parameter in bytes. The output
value is either 0 or 16, 24, 32, 40, 48, 56, or 64 bytes. The value can be larger on
input. However, on output, this field is updated to indicate the actual number
of bytes returned by the service.

output_dtrack1_data

Direction: Output
Type: String

This parameter returns the translated discretionary track 1 data. This is the
discretionary data from track 1 of a magnetic stripe card. The data for this
parameter is returned as TDES-encrypted data in binary format.

output_dtrack2_data_length

Direction: Input/Output
Type: Integer

Specifies the length of the output_dtrack2_data parameter in bytes. The output
value is either 0, 8, or 16. The value can be larger on input. However, on
output, this field is updated to indicate the actual number of bytes returned by
the service.

output_dtrack2_data

Direction: Output
Type: String

This parameter returns the translated discretionary track 2 data. This is the
discretionary data from track 2 of a magnetic stripe card. The data for this
parameter is returned as TDES-encrypted data in binary format.

DUKPT_PIN_key_identifier_length

Direction: Input/Output
Type: Integer

Specifies the length of the DUKPT_PIN_key_identifier parameter in bytes. If the
PINKEY rule-array keyword is specified, set this value to 64. Otherwise, set
this value to 0. On output, the variable is updated with the length of the data
returned in the DUKPT_PIN_key_identifier variable.

DUKPT_PIN_key_identifier

Direction: Input/Output
Type: String

On input, this parameter must contain a DES OPINENC or IPINENC skeleton
token. On output, it contains the DES token with the derived DES OPINENC
or IPINENC key.

reserved1_length

Direction: Input
Type: Integer

Specifies the length of the reserved1 parameter in bytes. The value must be 0.

reserved1

Direction: Input
Type: String

FPE Translate (CSNBFPET)

Chapter 12. Financial services 581

This parameter is ignored.

reserved2_length

Direction: Input
Type: Integer

Specifies the length of the reserved2 parameter in bytes. The value must be 0.

reserved2

Direction: Input
Type: String

This parameter is ignored.

Restrictions
The restrictions for CSNBFPET.

None.

Required commands
The required commands for CSNBFPET.

This verb requires the FPE Translate command (offset X'02D1') to be enabled in
the active role. This ACP is ON by default in z/OS. If DUKPT is specified, the verb
also requires the UKPT - PIN Verify, PIN Translate command (offset X'00E1') to
be enabled if you employ DUKPT processing.

Usage notes
The usage notes for CSNBFPET.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBFPETJ .

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBFPETJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber input_PAN_length,
byte[] input_PAN,
hikmNativeNumber input_cardholder_name_length,
byte[] input_cardholder_name,
hikmNativeNumber input_dtrack1_data_length,
byte[] input_dtrack1_data,
hikmNativeNumber input_dtrack2_data_length,
byte[] input_dtrack2_data,
hikmNativeNumber input_key_identifier_length,
byte[] input_key_identifier,
hikmNativeNumber output_key_identifier_length,

FPE Translate (CSNBFPET)

582 Common Cryptographic Architecture Application Programmer's Guide

byte[] output_key_identifier,
hikmNativeNumber derivation_data_length,
byte[] derivation_data,
hikmNativeNumber output_PAN_length,
byte[] output_PAN,
hikmNativeNumber output_cardholder_name_length,
byte[] output_cardholder_name,
hikmNativeNumber output_dtrack1_data_length,
byte[] output_dtrack1_data,
hikmNativeNumber output_dtrack2_data_length,
byte[] output_dtrack2_data,
hikmNativeNumber DUKPT_PIN_key_identifier_length,
byte[] DUKPT_PIN_key_identifier,
hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2);

PIN Change/Unblock (CSNBPCU)
The PIN Change/Unblock verb is used to generate a special PIN block to change
the PIN accepted by an integrated circuit card (smartcard).

The PIN Change/Unblock verb prepares an encrypted message-portion for
communicating an original or replacement PIN for an EMV smart card. The verb
embeds the PINs in an encrypted PIN-block from information that you supply. You
incorporate the information created with the verb in a message sent to the smart
card.

The processing is consistent with the specifications provided in these documents:
v EMV 2000 Integrated Circuit Card Specifications for Payment Systems Version 4.0

(EMV4.0)

v Visa Integrated Circuit Card Specification Manual, Version 1.4.0

v Integrated Circuit Card Specification (VIS) 1.4.0 Corrections

You specify the following information:
v Through the optional choice of one rule-array keyword, the key-diversification

process to employ in deriving the session key used to encrypt the PIN block. See
“Working with Europay-Mastercard-Visa Smart cards” on page 492 for
processing details.

TDES-XOR
An exclusive-OR process described in “Deriving the CCA TDES-XOR
session key” on page 585. It is the default.

TDESEMV2
The tree-based-diversification process with a branch factor of 2.

TDESEMV4
The tree-based-diversification process with a branch factor of 4.

v Through the required choice of one rule-array keyword, if you are providing a
PIN for a smart card:

AMEXPCU1
For a card with a current PIN, provide the existing PIN in an encrypted
PIN-block in the current_reference_PIN_block variable, and supply the
new PIN-value in an encrypted PIN-block in the
new_reference_PIN_block variable.

FPE Translate (CSNBFPET)

Chapter 12. Financial services 583

AMEXPCU2
For a card without a PIN, provide the new PIN in an encrypted
PIN-block in the new_reference_PIN_block variable. The contents of the
five current_reference_PIN_x variables are ignored.

VISAPCU1
For a card without a PIN, provide the new PIN in an encrypted
PIN-block in the new_reference_PIN_block variable. The contents of the
five current_reference_PIN_x variables are ignored.

VISAPCU2
For a card with a current PIN, provide the existing PIN in an encrypted
PIN-block in the current_reference_PIN_block variable, and supply the
new PIN-value in an encrypted PIN-block in the
new_reference_PIN_block variable.

v Issuer-provided master-derivation keys (MDK). The card-issuer provides two
keys for diversifying the same data:
– The MAC-MDK key that you incorporate in the variable specified by the

authentication_key_identifier parameter. The verb uses this key to derive an
authentication value incorporated in the PIN block. The control vector for the
MAC-MDK key must specify a DKYGENKY key type with DKYL0 (level-0),
and DMAC or DALL permissions.

– The ENC-MDK key that you incorporate in the variable specified by the
encryption_key_identifier parameter. The verb uses this key to derive the
PIN-block encryption key. The control vector for the ENC-MDK key must
specify a DKYGENKY key type with DKYL0 (level-0), and DMPIN or DALL
permissions.

v The diversification_data_length to indicate the sum of the lengths of:
– Data, 8 or 16 bytes, encrypted by the verb using the MDK keys to generate

the ENC-UDK and Unique DES Key.
– The 2-byte application transaction counter (ATC). You receive the ATC value

from the EMV smart card.
– The optional 16-byte initial value used in the TDESEMVn processes.
Valid lengths are 10, 18, 26, and 34 bytes.

v The diversification_data variable. Concatenate the 8-byte or 16-byte data, the
ATC, and optionally the Initial Value.
The 16-bit ATC counter is processed as a two-byte string, not as an integer
value.

v The new-reference PIN in an encrypted PIN block. You provide:
– the key to decrypt the PIN block
– the PIN block
– the format information that defines how to parse the PIN block
– when using an ISO-0 or ISO-3 PIN-block format, primary account number

(PAN) information to enable PIN recovery from the ISO-0 or ISO-3 PIN-block
format.

v If you specified VISAPCU2 (because the target smart card already has a PIN),
the current_reference_PIN in an encrypted PIN block with the associated
decrypting key, PIN-block format, and PAN data. In any case, you must declare
the five current_reference_PIN_x variables.

v The output_PIN_message variable to receive the encrypted PIN block for the
smart card, and the length in bytes of the PIN block (16). The PIN-block format
you specify (VISAPCU1 or VISAPCU2) corresponds to the one or two PIN
values to be communicated to the smart card.

PIN Change/Unblock (CSNBPCU)

584 Common Cryptographic Architecture Application Programmer's Guide

v Two variables which are reserved for future use: output_PIN_data_length
(valued to zero), and an output_PIN_data string variable (or set the associated
parameter to a null pointer).

The PIN Change/Unblock verb:
v Decrypts the MDK keys and verifies the required control vector permissions.
v Diversifies the left-most eight bytes of data using the MAC-MDK key to obtain

the authentication value for placement into the PIN block.
v Recovers the supplied PIN values provided that PIN-block encrypting keys are

one of IPINENC or OPINENC type, and the use of the specific type is
authorized with the appropriate access-control command.

v Constructs and pads the output PIN block to a 16-byte string.
v Generates the session key used to encrypt the output-PIN block using the

ENC-MDK, the key_generation_data, the ATC counter value, and the optional
Initial Value.

v Triple encrypts the 16-byte padded PIN-block in ECB mode.
v Returns the encrypted, padded PIN-block in the output_PIN_message variable.

The generating DKYGENKY cannot have replicated halves. The
encryption_master_key is a DKYGENKY that permits generation of a SMPIN key.
The authentication_master_key is also a DKYGENKY that permits generation of a
double length MAC key.

Deriving the CCA TDES-XOR session key

In the Diversified_Key_Generate and PIN_Change/Unblock verbs, the TDES-XOR
process first derives a smart-card-specific intermediate key from the
issuer-supplied ENC-MDK key and card-specific data. (This intermediate key is
also used in the TDESEMV2 and TDESEMV4 processes. See the next section.) The
intermediate key is then modified using the application transaction counter (ATC)
value supplied by the smart card.

The double-length session-key creation steps:

1. 2. 3. 4.
1. Obtain the left-half of an intermediate key by ECB-mode Triple-DES encrypting

the (first) eight bytes of card specific data using the issuer-supplied ENC-MDK
key.

2. Again using the ENC-MDK key, obtain the right-half of the intermediate key by
ECB-mode Triple-DES encrypting with one of these methods:
v The second 8 bytes of card-specific derivation data when 16 bytes have been

supplied.
v The exclusive-OR of the supplied 8 bytes of derivation data with X'FFFFFFFF

FFFFFFFF'.
3. Pad the ATC value to the left with six bytes of X'00' and exclusive-OR the

result with the left-half of the intermediate key to obtain the left-half of the
session key.

4. Obtain the one's complement of the ATC by exclusive-ORing the ATC with
X'FFFF'. Pad the result on the left with six bytes of X'00'. Exclusive-OR the
8-byte result with the right-half of the intermediate key to obtain the right-half
of the session key.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

PIN Change/Unblock (CSNBPCU)

Chapter 12. Financial services 585

|

Format
The format of CSNBPCU.

CSNBPCU(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
authentication_master_key_length,
authentication_master_key,
encryption_master_key_length,
encryption_master_key,
key_generation_data_length,
key_generation_data,
new_reference_PIN_key_length,
new_reference_PIN_key,
new_reference_PIN_block,
new_reference_PIN_profile,
new_reference_PAN_data,
current_reference_PIN_key_length,
current_reference_PIN_key,
current_reference_PIN_block,
current_reference_PIN_profile,
current_reference_PAN__data,
output_PIN_data_length,
output_PIN_data,
output_PIN_profile,
output_PIN_message_length,
output_PIN_message)

Parameters
The parameters for CSNBPCU.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1 or 2.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The keywords are
left-aligned in an 8-byte field and padded on the right with blanks. The
keywords must be in contiguous storage. The rule_array keywords are
described in Table 177.

Table 177. Keywords for PIN Change/Unblock control information

Keyword Description

Algorithm (One, optional)

PIN Change/Unblock (CSNBPCU)

586 Common Cryptographic Architecture Application Programmer's Guide

Table 177. Keywords for PIN Change/Unblock control information (continued)

Keyword Description

TDES-XOR TDES encipher clear data to generate the intermediate (card-unique) key, followed by XOR of the final
two bytes of each key with the ATC counter. This is the default.

TDESEMV2 Same processing as in the Diversified Key Generate verb.

TDESEMV4 Same processing as in the Diversified Key Generate verb.

PIN processing method (One, required)

AMEXPCU1 Form the new PIN from the new reference PIN, the smart-card-unique, intermediate key, and the
current reference PIN.

AMEXPCU2 Form the new PIN from the new reference PIN and the smart-card-unique, intermediate key.

VISAPCU1 Form the new PIN from the new reference PIN and the intermediate (card-unique) key only.

VISAPCU2 Form the new PIN from the new reference PIN, the intermediate (card-unique) key and the current
reference PIN.

authentication_master_key_length

Direction: Input
Type: Integer

The length of the parameter. Currently, the value must be 64.

authentication_master_key

Direction: Input/Output
Type: String

The label name or internal token of a DKYGENKY key type that is to be used
to generate the card-unique diversified key. The control vector of this key must
be a DKYL0 key that permits the generation of a double-length MAC key
(DMAC). This DKYGENKY might not have replicated key halves.

encryption_master_key_length

Direction: Input
Type: Integer

The length of the encryption_master_key parameter. Currently, the value must
be 64.

encryption_master_key

Direction: Input/Output
Type: String

The label name or internal token of a DKYGENKY key type that is to be used
to generate the card-unique diversified key and the secure messaging session
key for the protection of the output PIN block. The control vector of this key
must be a DKYL0 key that permits the generation of a SMPIN key type. This
DKYGENKY might not have replicated key halves.

key_generation_data_length

Direction: Input
Type: Integer

The length of the key_generation_data parameter. This value must be 10, 18,
26, or 34 bytes.

PIN Change/Unblock (CSNBPCU)

Chapter 12. Financial services 587

key_generation_data

Direction: Input
Type: String

The data provided to generate the card-unique session key. For TDES-XOR,
this consists of 8 or 16 bytes of data to be processed by TDES to generate the
card-unique diversified key followed by a 16-bit ATC counter to offset the
card-unique diversified key to form the session key. For TDESEMV2 and
TDESEMV4, this can be 10, 18, 26, or 34 bytes. See “Diversified Key Generate
(CSNBDKG)” on page 183 for more information.

new_reference_PIN_key_length

Direction: Input
Type: Integer

The length of the new_reference_PIN_key parameter. Currently, the value must
be 64.

new_reference_PIN_key

Direction: Input/Output
Type: String

The label name or internal token of a PIN encrypting key that is to be used to
decrypt the new_reference_PIN_block. This must be an IPINENC or OPINENC
key. If the label name is supplied, the name must be unique in the DES key
storage file.

new_reference_PIN_block

Direction: Input
Type: String

This is an 8-byte field that contains the enciphered PIN block of the new PIN.

new_reference_PIN_profile

Direction: Input
Type: String

This is a 24-byte field that contains three 8-byte elements with a PIN block
format keyword, a format control keyword (NONE), and a pad digit as
required by certain formats.

new_reference_PAN_data

Direction: Input
Type: String

This is a 12-byte field containing the PAN in character format. This data might
be needed to recover the new reference PIN if the format is ISO-0, ISO-3, or
VISA-4. If neither is used, this parameter might be blanks.

For ISO-0 or ISO-3, use the rightmost 12 digits of the PAN, excluding the
check digit. For VISA-4, use the leftmost 12 digits of the PAN, excluding the
check digit.

current_reference_PIN_key_length

Direction: Input
Type: Integer

PIN Change/Unblock (CSNBPCU)

588 Common Cryptographic Architecture Application Programmer's Guide

The length of the current_reference_PIN_key parameter. For the current
implementation, the value must be 64. If the rule_array contains VISAPCU1,
this value must be 0.

current_reference_PIN_key

Direction: Input/Output
Type: String

The label name or internal token of a PIN encrypting key that is to be used to
decrypt the current_reference_PIN_block. This must be an IPINENC or
OPINENC key. If the label name is supplied, the name must be unique in the
key storage. If the rule_array contains VISAPCU1, this value is ignored.

current_reference_PIN_block

Direction: Input
Type: String

This is an 8-byte field that contains the enciphered PIN block of the new PIN.
If the rule_array contains VISAPCU1, this value is ignored.

current_reference_PIN_profile

Direction: Input
Type: String

This is a 24-byte field that contains three 8-byte elements with a PIN block
format keyword, a format control keyword (NONE), and a pad digit as
required by certain formats. If the rule_array contains VISAPCU1, this value
is ignored.

current_reference_PAN_data

Direction: Input
Type: String

This is a 12-byte field containing PAN in character format. This data might be
needed to recover the new reference PIN if the format is ISO-0, ISO-3, or
VISA-4. If neither is used, this parameter might be blanks. If the rule_array
contains VISAPCU1, this value is ignored.

For ISO-0 or ISO-3, use the rightmost 12 digits of the PAN, excluding the
check digit. For VISA-4, use the leftmost 12 digits of the PAN, excluding the
check digit.

output_PIN_data_length

Direction: Input
Type: Integer

Currently this field is reserved. This value must be 0.

output_PIN_data

Direction: Input
Type: String

This parameter is ignored.

output_PIN_profile

Direction: Input
Type: String

PIN Change/Unblock (CSNBPCU)

Chapter 12. Financial services 589

This is a 24-byte field that contains three 8-byte elements with a PIN block
format keyword (VISAPCU1 or VISCPU2), a format control keyword (NONE),
and eight bytes of spaces.

output_PIN_message_length

Direction: Input/Output
Type: Integer

The length of the output_PIN_message field. Currently the value must be a
minimum of 16.

output_PIN_message

Direction: Output
Type: String

The reformatted PIN block with the new reference PIN enciphered under the
SMPIN session key.

Restrictions
The restrictions for CSNBPCU.

None.

Required commands
The required commands for CSNBPCU.

This verb requires the following commands to be enabled in the active role based
on the permissible key-type, IPINENC or OPINENC, used in the decryption of the
input PIN blocks.

PIN-block
encrypting
key-type Offset Command Comment

OPINENC X'00BC' PIN Change/Unblock -
change EMV PIN with
OPINENC

Required if either the
new_reference_PIN_key or the
current_reference_PIN_key are permitted to
be an OPINENC key type.

IPINENC X'00BD' PIN Change/Unblock -
change EMV PIN with
IPINENC

Required if either the
new_reference_PIN_key or the
current_reference_PIN_key are permitted to
be an IPINENC key type.

When a MAC-MDK or an ENC-MDK of key type DKYGENKY is specified with
control vector bits (19 - 22) of B'1111', the Diversified Key Generate - DKYGENKY -
DALL command (offset X'0290') must also be enabled in the active role.

Note: A role with offset X'0290' enabled can also use the Diversified Key Generate
verb with a DALL key.

An enhanced PIN security mode is available for extracting PINs from an IBM 3624
encrypted PIN-block using the PADDIGIT PIN-extraction method. This mode
limits checking of the PIN to decimal digits, and a minimum PIN length of 4 is

PIN Change/Unblock (CSNBPCU)

590 Common Cryptographic Architecture Application Programmer's Guide

enforced; no other PIN-block consistency checking will occur. To activate this
mode, enable the Enhanced PIN Security command (offset X'0313') in the active
role.

Usage notes
The usage notes for CSNBPCU.

There are additional access points for this verb.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBPCUJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBPCUJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber authentication_master_key_length,
byte[] authentication_master_key,
hikmNativeNumber encryption_master_key_length,
byte[] encryption_master_key,
hikmNativeNumber key_generation_data_length,
byte[] key_generation_data,
hikmNativeNumber new_reference_PIN_key_length,
byte[] new_reference_PIN_key,
byte[] nnew_reference_PIN_block,
byte[] new_reference_PIN_profile,
byte[] new_reference_PAN_data,
hikmNativeNumber current_reference_PIN_key_length,
byte[] current_reference_PIN_key,
byte[] current_reference_PIN_block,
byte[] current_reference_PIN_profile,
byte[] current_reference_PAN__data,
hikmNativeNumber output_PIN_data_length,
byte[] output_PIN_data,
byte[] output_PIN_profile,
hikmNativeNumber output_PIN_message_length,
byte[] output_PIN_message);

Recover PIN from Offset (CSNBPFO)
Use the Recover PIN from Offset verb to calculate the encrypted customer-entered
PIN from a PIN generating key, account information, and an IBM-PINO Offset.

The customer-entered PIN is returned in a PIN block formatted to the
specifications of the PIN_profile and PAN_data parameters, and encrypted with the
key supplied in parameter PIN_encryption_key_identifier as described in
“Parameters” on page 592.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

PIN Change/Unblock (CSNBPCU)

Chapter 12. Financial services 591

|

Format
The format of CSNBPFO.

CSNBPFO(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PIN_encryption_key_identifier_length,
PIN_encryption_key_identifier,
PIN_generation_key_identifier_length,
PIN_generation_key_identifier,
PIN_profile,
PAN_data,
offset,
reserved_1,
data_array,
encrypted_PIN_block_length,
encrypted_PIN_block)

Parameters
The parameters for CSNBFPET.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

There are no keywords for this service. Therefore, this parameter is ignored.

PIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Length of the PIN_encryption_key_identifier parameter in bytes. This value
must be 64.

PIN_encryption_key_identifier

Direction: Input
Type: String

An internal key token or the label of the AES or DES key storage record
containing an OPINENC key that is used to encrypt the
returned_encrypted_PIN_block.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

Recover PIN From Offset (CSNBPFO)

592 Common Cryptographic Architecture Application Programmer's Guide

PIN_generation_key_identifier_length

Direction: Input
Type: Integer

Length of the PIN_generation_key_identifier parameter in bytes. This value
must be 64.

PIN_generation_key_identifier

Direction: Input
Type: String

An internal key token or the label of the AES or DES key storage record
containing a PINGEN key that is used to generate the bank reference PIN.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

PIN_profile

Direction: Input
Type: String array

This parameter consists of three 8-byte character elements that contain
information necessary to format a PIN block. The pad digit is needed to format
an IBM 3624 PIN block. The format control constant must be NONE. The first
element of the PIN_profile (PIN Block Format) determines the format of the
output PIN block.

PAN_data

Direction: Input
Type: String

A 12-byte personal account number (PAN) in character format. The PAN is
used in formatting the PIN block if the PIN profile specifies ISO-0, ISO-3, or
VISA-4 block formats. Otherwise, ensure that this parameter is a 12-byte
variable in application storage. The information in this variable is ignored, but
the variable must be specified.

offset

Direction: Input
Type: String

A 16 byte area that contains the 4-byte PVV left-justified and padded with
blanks. This is the value which was returned by a prior call to the Clear PIN
Generate Alternate service (see “Clear PIN Generate Alternate (CSNBCPA)”
on page 518).

data_array

Direction: Input
Type: String

A pointer to a string variable containing three 16-byte numeric character
strings, which are equivalent to a single 48-byte string. The values in the
data_array parameter depend on the keyword for the PIN-calculation method.
Each element is not always used, but you must always declare a complete data
array.

Recover PIN From Offset (CSNBPFO)

Chapter 12. Financial services 593

Array Element Description

Decimalization_table This element contains the decimalization table of 16 characters that
are used to convert the hexadecimal digits X'0' to X'F' of the
enciphered validation data to the decimal digits 0 to 9.

validation_data This element contains 1 to 16 characters of account data, left
justified and padded on the right with spaces.

reserved_field Must be 16 bytes of blanks.

reserved_1

Direction: Input
Type: Integer

The reserved_1 parameter must be zero.

encrypted_PIN_block_length

Direction: Input/Output
Type: Integer

Length of the encrypted_PIN_block parameter in bytes.

encrypted_PIN_block

Direction: Input
Type: String

This parameter is an 8-byte field that contains the encrypted customer PIN that
was originally used in the Clear PIN Generate Alternate service (see “Clear
PIN Generate Alternate (CSNBCPA)” on page 518).

Restrictions
The restrictions for CSNBPFO.

None.

Required commands
The required commands for CSNBPFO.

This verb requires the Recover PIN From Offset command (offset X'02B0') to be
enabled in the active role.

When the ANSI X9.8 PIN - Enforce PIN block restrictions command (offset
X'0350') is enabled in the active role, only a PIN-block format keyword of ISO-0 or
ISO-3 is allowed in the input PIN_profile parameter. Note that offset X'0350' also
affects access control of the Encrypted PIN Translate and the Secure Messaging for
PINs verbs.

When the ANSI X9.8 PIN - Use stored decimalization tables only command
(offset X'0356') is enabled in the active role, the Decimalization_table element of
the data_array value must match one of the PIN decimalization tables that are in
the active state on the coprocessor. Use of this command provides improved
security and control for PIN decimalization tables.

An enhanced PIN security mode is available for formatting an encrypted
PIN-block into IBM 3624 format. This mode limits checking of the PIN to decimal

Recover PIN From Offset (CSNBPFO)

594 Common Cryptographic Architecture Application Programmer's Guide

digits; no other PIN-block consistency checking will occur. To activate this mode,
enable the Enhanced PIN Security command (offset X'0313') in the active role.

Usage notes
The usage notes for CSNBFPET.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBPFO .

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBPFO(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PIN_encryption_key_identifier_length,
byte[] PIN_encryption_key_identifier,
hikmNativeNumber PIN_generation_key_identifier_length,
byte[] PIN_generation_key_identifier,
byte[] PIN_profile,
byte[] PAN_data,
byte[] offset,
hikmNativeNumber reserved_1,
byte[] data_array,
hikmNativeNumber encrypted_PIN_block_length,
byte[] encrypted_PIN_block);

Secure Messaging for Keys (CSNBSKY)
The Secure Messaging for Keys verb will encrypt a text block including a clear key
value decrypted from an internal or external DES token.

The text block is normally a "Value" field of a secure message TLV
(Tag/Length/Value) element of a secure message. TLV is defined in ISO/IEC
7816-4.

Recover PIN From Offset (CSNBPFO)

Chapter 12. Financial services 595

Format
The format of CSNBSKY.

CSNBSKY(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_key_identifier,
key_encrypting_key_identifier,
secmsg_key_identifier,
text_length,
clear_text,
initialization_vector,
key_offset,
key_offset_field_length,
enciphered_text,
output_chaining_vector)

Parameters
The parameters for CSNBSKY.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The processing method
is the encryption mode used to encrypt the message. The rule_array keywords
are described in Table 178.

Table 178. Keywords for Secure Messaging for Keys control information

Keyword Description

Enciphering mode (One, optional)

TDES-CBC Use CBC mode to encipher the message. This is the default.

TDES-ECB Use EBC mode to encipher the message.

input_key_identifier

Direction: Input/Output
Type: String

The internal token, external token, or key label of an internal token of a double
length DES key. The key is recovered in the clear and placed in the text to be
encrypted. The control vector of the DES key must not prohibit export.

Secure Messaging for Keys (CSNBSKY)

596 Common Cryptographic Architecture Application Programmer's Guide

key_encrypting_key_identifier

Direction: Input/Output
Type: String

If the input_key_identifier is an external token, this parameter is the internal
token or the key label of the internal token of IMPORTER or EXPORTER. If it
is not, it is a null token. If a key label is specified, the key label must be
unique.

secmsg_key_identifier

Direction: Input/Output
Type: String

The internal token or key label of a secure message key for encrypting keys.
This key is used to encrypt the updated clear_text containing the recovered
DES key.

text_length

Direction: Input
Type: Integer

The length of the clear_text parameter. Length must be a multiple of eight.
Maximum length is 4096.

clear_text

Direction: Input
Type: String

Cleartext that contains the recovered DES key at the offset specified and is then
encrypted. Any padding or formatting of the message must be done by the
caller on input.

initialization_vector

Direction: Input
Type: String

The 8-byte supplied string for the TDES-CBC mode of encryption. The
initialization_vector is XORed with the first eight bytes of clear_text before
encryption. This field is ignored for TDES-ECB mode.

key_offset

Direction: Input
Type: Integer

The offset within the clear_text parameter at key_offset where the recovered clear
input_key_identifier value is to be placed. The first byte of the clear_text field is
offset 0.

key_offset_field_length

Direction: Input
Type: Integer

The length of the field within clear_text parameter at key_offset where the
recovered clear input_key_identifier value is to be placed. Length must be a
multiple of eight and is equal to the key length of the recovered key. The key
must fit entirely within the clear_text.

Secure Messaging for Keys (CSNBSKY)

Chapter 12. Financial services 597

enciphered_text

Direction: Output
Type: String

The field where the ciphertext is returned. The length of this field must be at
least as long as the clear_text field.

output_chaining_vector

Direction: Output
Type: String

This field contains the last eight bytes of enciphered text and is used as the
initialization_vector for the next encryption call if data needs to be chained for
TDES-CBC mode. No data is returned for TDES-ECB.

Restrictions
The restrictions for CSNBSKY.

None.

Required commands
The required commands for CSNBSKY.

This verb requires the Secure Messaging for Keys command (offset X'0273') to be
enabled in the active role.

Usage notes
The usage notes for CSNBSKY.

Keys appear in the clear only within the secure boundary of the cryptographic
coprocessor, and never in host storage.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBSKYJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBSKYJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] input_key_indentifier,
byte[] key_encrypting_key,
byte[] session_key,
hikmNativeNumber text_length,
byte[] clear_text,
byte[] initialization_vector,
hikmNativeNumber key_offset,
hikmNativeNumber key_offset_field_length,
byte[] cipher_text,
byte[] output_chaining_value);

Secure Messaging for Keys (CSNBSKY)

598 Common Cryptographic Architecture Application Programmer's Guide

Secure Messaging for PINs (CSNBSPN)
The Secure Messaging for PINs verb will encrypt a text block including a clear PIN
block recovered from an encrypted PIN block.

The input PIN block will be reformatted if the block format in the input_PIN_profile
is different from the block format in the output_PIN_profile. The clear PIN block
will only be self encrypted if the SELFENC keyword is specified in the rule_array.
The text block is normally a "Value" field of a secure message TLV
(Tag/Length/Value) element of a secure message. TLV is defined in ISO/IEC
7816-4.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBSPN.

CSNBSPN(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_PIN_block,
PIN_encrypting_key_identifier,
input_PIN_profile,
input_PAN_data,
secmsg_key_identifier,
output_PIN_profile,
output_PAN_data,
text_length,
clear_text,
initialization_vector,
PIN_offset,
PIN_offset_field_length,
enciphered_text,
output_chaining_vector)

Parameters
The parameters for CSNBSPN.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, or 2.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The processing method
is the algorithm used to create the generated key. The keywords are

Secure Messaging for PINs (CSNBSPN)

Chapter 12. Financial services 599

|

left-aligned and padded on the right with blanks. The rule_array keywords are
described in Table 179.

Table 179. Keywords for Secure Messaging for PINs control information

Keyword Description

Enciphering mode (One, optional)

TDES-CBC Use CBC mode to encipher the message. This is the default.

TDES-ECB Use EBC mode to encipher the message.

PIN encryption (One, optional)

CLEARPIN Recovered clear input PIN block (might be reformatted) is placed in the clear in
the message for encryption with the secure message key. This is the default.

SELFENC Recovered clear input PIN block (might be reformatted) is self-encrypted and then
placed in the message for encryption with the secure message key.

input_PIN_block

Direction: Input
Type: String

The 8-byte input PIN block that is to be recovered in the clear and, perhaps,
reformatted and then placed in the clear_text to be encrypted.

PIN_encrypting_key_identifier

Direction: Input/Output
Type: String

The internal token or key label of the internal token of the PIN encrypting key
used in encrypting the input_PIN_block. The key must be an IPINENC key.

input_PIN_profile

Direction: Input
Type: String

The three 8-byte character elements that contain information necessary to
extract the PIN from a formatted PIN block. The valid input PIN formats are
ISO-0, ISO-1, ISO-2, and ISO-3. See “The PIN profile” on page 497 for
additional information.

input_PAN_data

Direction: Input
Type: String

The 12 digit personal account number (PAN) if the input PIN format is ISO-0
or ISO-3. Otherwise, the parameter is ignored.

For ISO-0 or ISO-3, use the rightmost 12 digits of the PAN, excluding the
check digit.

secmsg_key_identifier

Direction: Input/Output
Type: String

The internal token or key label of an internal token of a secure message key for
encrypting PINs. This key is used to encrypt the updated clear_text.

output_PIN_profile

Secure Messaging for PINs (CSNBSPN)

600 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: String

The three 8-byte character elements that contain information necessary to
create a formatted PIN block. If reformatting is not required, the
input_PIN_profile and the output_PIN_profile must specify the same PIN block
format. Output PIN block formats supported are ISO-0, ISO-1, ISO-2, and
ISO-3.

output_PAN_data

Direction: Input
Type: String

The 12 digit personal account number (PAN) if the output PIN format is ISO-0
or ISO-3. Otherwise, this parameter is ignored.

For ISO-0 or ISO-3, use the rightmost 12 digits of the PAN, excluding the
check digit.

text_length

Direction: Input
Type: Integer

The length of the clear_text parameter that follows. Length must be a multiple
of eight. Maximum length is 4096.

clear_text

Direction: Input
Type: String

Cleartext that contains the recovered and/or reformatted/encrypted PIN at
offset specified and then encrypted. Any padding or formatting of the message
must be done by the caller on input.

initialization_vector

Direction: Input
Type: String

The 8-byte supplied string for the TDES-CBC mode of encryption. The
initialization_vector is XORed with the first eight bytes of clear_text before
encryption. This field is ignored for TDES-ECB mode.

PIN_offset

Direction: Input
Type: Integer

The offset within the clear_text parameter where the reformatted PIN block is
to be placed. The first byte of the clear_text field is offset 0.

PIN_offset_field_length

Direction: Input
Type: Integer

The length of the field within clear_text parameter at PIN_offset where the
recovered clear input_PIN_block value is to be placed. The PIN block might be
self-encrypted if requested by the rule_array. Length must be eight. The PIN
block must fit entirely within the clear_text.

Secure Messaging for PINs (CSNBSPN)

Chapter 12. Financial services 601

enciphered_text

Direction: Output
Type: String

The field where the ciphertext is returned. The length of this field must be at
least as long as the clear_text field.

output_chaining_vector

Direction: Output
Type: String

This field contains the last eight bytes of ciphertext and is used as the
initialization_vector for the next encryption call if data needs to be chained for
TDES-CBC mode. No data is returned for TDES-ECB.

Restrictions
The restrictions for CSNBSPN.

None.

Required commands
The required commands for CSNBSPN.

This verb requires the Secure Messaging for PINs command (offset X'0274') to be
enabled in the active role.

The following three commands at offsets X'0350', X'0351', and X'0352' affect how
PIN processing is performed as described below:
1. Enable the ANSI X9.8 PIN - Enforce PIN block restrictions command (offset

X'0350') in the active role to apply additional restrictions to PIN processing
implemented in CCA 4.1.0, as follows:
v Constrain use of ISO-2 PIN blocks to offline PIN verification and PIN change

operations in integrated circuit card environments only. Specifically, do not
allow ISO-2 input or output PIN blocks.

v Do not reformat a PIN-block format that includes a PAN into a PIN-block
format that does not include a PAN.

v Do not allow a change of PAN data. Specifically, when performing
translations between PIN block formats that both include PAN data, do not
allow the input_PAN_data and output_PAN_data variables to be different from
the PAN data enciphered in the input PIN block.

Note: A role with offset X'0350' enabled also affects access control of the Clear
PIN Generate Alternate and the Encrypted PIN Translate verbs.

2. Enable the ANSI X9.8 PIN - Allow modification of PAN command (offset
X'0351') in the active role to override the restriction to not allow a change of
PAN data. This override is applicable only when either the ANSI X9.8 PIN -
Enforce PIN block restrictions command (offset X'0350') or the ANSI X9.8
PIN - Allow only ANSI PIN blocks command (offset X'0352') or both are
enabled in the active role. This override is to support account number changes
in issuing environments. Offset X'0351' has no effect if neither offset X'0350' nor
offset X'0352' is enabled in the active role.

Secure Messaging for PINs (CSNBSPN)

602 Common Cryptographic Architecture Application Programmer's Guide

Note: A role with offset X'0351' enabled also affects access control of the
Encrypted PIN Translate verbs.

3. Enable the ANSI X9.8 PIN - Allow only ANSI PIN blocks command (offset
X'0352') in the active role to apply a more restrictive variation of the ANSI X9.8
PIN - Enforce PIN block restrictions command (offset X'0350'). In addition
to the previously described restrictions of offset X'0350', this command also
restricts the input_PIN_profile and the output_PIN_profile to contain only ISO-0,
ISO-1, and ISO-3 PIN block formats. Specifically, the IBM 3624 PIN-block
format is not allowed with this command. Offset X'0352' overrides offset
X'0350'.

Note: A role with offset X'0352' enabled also affects access control of the
Encrypted PIN Translate verbs.

For more information, see “ANSI X9.8 PIN restrictions” on page 495.

Usage notes
The usage notes for CSNBSPN.

Keys appear in the clear only within the secure boundary of the cryptographic
coprocessors, and never in host storage.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBSPNJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBSPNJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] input_PIN_block,
byte[] PIN_encrypting_key_identifier,
byte[] input_PIN_profile,
byte[] input_PAN_data,
byte[] secmsg_key_identifier,
byte[] output_PIN_profile,
byte[] output_PAN_data,
hikmNativeNumber text_length,
byte[] clear_text,
byte[] initialization_vector,
hikmNativeNumber PIN_offset,
hikmNativeNumber PIN_offset_field_length,
byte[] enciphered_text,
byte[] output_chaining_vector);

Transaction Validation (CSNBTRV)
The Transaction Validation verb supports the generation and validation of
American Express card security codes (CSC).

This verb generates and verifies transaction values based on information from the
transaction and a cryptographic key. You select the validation method, and either
the generate or verify mode, through rule_array keywords.

Secure Messaging for PINs (CSNBSPN)

Chapter 12. Financial services 603

For the American Express process, the control vector supplied with the
cryptographic key must indicate a MAC or MACVER class key. The key can be
single or double length. DATAM and DATAMV keys are not supported. The MAC
generate control vector bit must be on (bit 20) if you request CSC generation and
MAC verify bit (bit 21) must be on if you request verification.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

Format
The format of CSNBTRV.

CSNBTRV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
transaction_key_length,
transaction_key,
transaction_info_length,
transaction_info,
validation_values_length,
validation_values)

Parameters
The parameters for CSNBTRV.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1 or 2.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The keywords are
left-aligned in an 8-byte field and padded on the right with blanks. The
keywords must be in contiguous storage. The rule_array keywords are
described in Table 180.

Table 180. Keywords for Transaction Validation control information

Keyword Description

Card security code algorithm (One, optional)

CSC-V1 Specifies use of CSC version 1.0 algorithm for generating or verifying the validation values.

CSC-V2 Specifies use of CSC version 2.0 algorithm for generating or verifying the validation values.

American Express card security codes (One, required)

CSC-3 3-digit card security code (CSC) located on the signature panel. VERIFY implied. This is the default.

Transaction Validation (CSNBTRV)

604 Common Cryptographic Architecture Application Programmer's Guide

|

Table 180. Keywords for Transaction Validation control information (continued)

Keyword Description

CSC-4 4-digit card security code (CSC) located on the signature panel. VERIFY implied.

CSC-5 5-digit card security code (CSC) located on the signature panel. VERIFY implied.

CSC-345 Generate 5-byte, 4-byte, or 3-byte values when given an account number and an expiration date.
GENERATE implied.

Operation (One, optional)

VERIFY Specifies verification of the value presented in the validation values variable.

GENERATE Specifies generation of the value presented in the validation values variable.

transaction_key_length

Direction: Input
Type: Integer

The length of the transaction_key parameter.

transaction_key

Direction: Input
Type: String

The label name or internal token of a MAC or MACVER class key. The key
can be single or double length.

transaction_info_length

Direction: Input
Type: Integer

The length of the transaction_info parameter. For the American Express CSC
codes, the length must be 19.

transaction_info

Direction: Input
Type: String

For American Express, this is a 19-byte field containing the concatenation of
the 4-byte expiration data (in the format YYMM) and the 15-byte American
Express account number. Provide the information in character format.

validation_values_length

Direction: Input/Output
Type: Integer

The length of the validation_values parameter. Maximum value for this field is
64.

validation_values

Direction: Input
Type: String

This variable contains American Express CSC values. The data is output for
GENERATE and input for VERIFY. See Table 181 on page 606.

Transaction Validation (CSNBTRV)

Chapter 12. Financial services 605

Table 181. Values for Transaction Validation validation_values parameter

Operation Element description

GENERATE and
CSC-345

5555544444333 where:

55555 = CSC 5 value
4444 = CSC 4 value
333 = CSC 3 value

VERIFY and CSC-3 333 = CSC 3 value

VERIFY and CSC-4 4444 = CSC 4 value

VERIFY and CSC-5 55555 = CSC 5 value

Restrictions
The restrictions for CSNBTRV.

None.

Required commands
The required commands for CSNBTRV.

This verb requires the listed commands to be enabled in the active role, depending
on the operation and card security code specified:

Operation
keyword

Card security
code keyword Offset Command

GENERATE CSC-345 X'0291' Transaction Validation - Generate

VERIFY CSC-3 X'0292' Transaction Validation - Verify CSC-3

CSC-4 X'0293' Transaction Validation - Verify CSC-4

CSC-5 X'0294' Transaction Validation - Verify CSC-5

Usage notes
The usage notes for CSNBTRV.

There are additional access control points for this verb.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBTRVJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBTRVJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber transaction_key_length,
byte[] transaction_key,
hikmNativeNumber transaction_info_length,

Transaction Validation (CSNBTRV)

606 Common Cryptographic Architecture Application Programmer's Guide

byte[] transaction_info,
hikmNativeNumber validation_values_length,
byte[] validation_values);

Transaction Validation (CSNBTRV)

Chapter 12. Financial services 607

Transaction Validation (CSNBTRV)

608 Common Cryptographic Architecture Application Programmer's Guide

Chapter 13. Financial services for DK PIN methods

The German Banking Industry Committee, Deutsche Kreditwirtschaft (DK) specifies
PIN methods and requirements for financial services.

DK is an association of the German banking industry. The intellectual property
rights regarding the methods and specification belong to the German Banking
Industry Committee.

Note: All cryptographic coprocessors must be loaded with the same level of code.
There are several licensed internal code (LIC) releases in support of the DK PIN
methods. Ensure that all of the coprocessors have the same LIC level to support
the function you want to use.

The following financial services (verbs) are described in this topic:
v “DK Deterministic PIN Generate (CSNBDDPG)” on page 610
v “DK Migrate PIN (CSNBDMP)” on page 617
v “DK PAN Modify in Transaction (CSNBDPMT)” on page 623
v “DK PAN Translate (CSNBDPT)” on page 630
v “DK PIN Change (CSNBDPC)” on page 637
v “DK PIN Verify (CSNBDPV)” on page 649
v “DK PRW Card Number Update (CSNBDPNU)” on page 653
v “DK PRW CMAC Generate (CSNBDPCG)” on page 659
v “DK Random PIN Generate (CSNBDRPG)” on page 662
v “DK Regenerate PRW (CSNBDRP)” on page 668

Weak PIN table
The DK PIN methods support the use of a table of weak PINs.

Services that generate PINs compare the generated PIN against the table and if the
PIN is in the table, the service generates a different PIN. Services that change PINs
compare the new PIN against the table and if the new PIN is in the table, the
service fails.

Weak PIN tables can be stored in the cryptographic coprocessors for use by
callable services. Only tables that have been activated can be used. A TKE
Workstation is required to manage the tables in the coprocessors.

A Trusted Key Entry workstation (TKE) is required to administer the weak PIN
tables for each adapter. In the TKE documentation and user interface, each domain
has a restricted PIN table. The corresponding tab is called Domain Restricted
PINs. The user may activate, load, and remove PINs from the weak PIN tables on
a per-domain basis.

Note: All coprocessors must have installed the same table of weak PINs.

© Copyright IBM Corp. 2007, 2018 609

DK PIN methods
The DK PIN methods use a PIN reference value or word (PRW) to verify PINs
rather than regenerating the PIN from customer account data.

The PRW is generated by concatenating the customer PAN data, the issuer card
data, the PIN length, the PIN, and a 4-byte random number. It is encrypted using a
PRW key with the GENONLY key usage. The PRW and random number are the
output of the generation. The PIN is verified by generating the PRW using a PRW
key with the VERIFY key usage and comparing it against the supplied PRW and
random number.

DK Deterministic PIN Generate (CSNBDDPG)
Use the DK Deterministic PIN Generate service to generate a PIN and PIN
reference value or word (PRW) using an AES PIN calculation key. The PIN
reference value is used to verify the PIN in other services.

Note: The PIN generation process uses the account information to calculate the
PIN. If the process generates a PIN that appears in the weak PIN table, it rejects
that PIN, increments the rightmost byte of the account information by 1, and
generates another PIN. The PIN generation process continues to increment the byte
until an acceptable PIN is generated. For additional information, see “Weak PIN
table” on page 609.

You can use this service to perform the following tasks:
v Generate an encrypted PIN block in PBF-1 format with a PIN print key to be

printed on a PIN mailer.
v Generate a PRW which can be used to verify the PIN.
v Optionally, generate an encrypted PIN block in PBF-1 format to be stored for

later use in personalizing replacement cards.

Weak PINs: The PIN generation process uses the account information to calculate
the PIN. During the PIN generation process, if a generated PIN is found in the
weak PIN table, it is rejected; the process increments the rightmost byte of the
account information by 1 and generates another PIN. The process repeats itself
until a suitable PIN is generated.

610 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNBDDPG.

CSNBDDPG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
account_info_ER_length,
account_info_ER,
PAN_data_length,
PAN_data,
card_p_data_length,
card_p_data,
card_t_data_length,
card_t_data,
PIN_length,
PIN_generation_key_identifier_length,
PIN_generation_key_identifier,
PRW_key_identifier_length,
PRW_key_identifier,
PIN_print_key_identifier_length,
PIN_print_key_identifier,
OPIN_encryption_key_identifier_length,
OPIN_encryption_key_identifier,
OEPB_MAC_key_identifier_length,
OEPB_MAC_key_identifier,
PIN_reference_value_length,
PIN_reference_value,
PRW_random_number_length,
PRW_random_number,
PIN_print_block_length,
PIN_print_block,
encrypted_PIN_block_length,
encrypted_PIN_block,
PIN_block_MAC_length,
PIN_block_MAC)

Parameters
The parameters for CSNBDDPG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The keywords are
left-aligned in an 8-byte field and padded on the right with blanks. The

DK Deterministic PIN Generate (CSNBDDPG)

Chapter 13. DK PIN methods 611

keywords must be in contiguous storage. The rule_array keywords are
described in Table 182.

Table 182. Keywords for DK Deterministic PIN Generate control information

Keyword Description

PIN Block output selection keyword (One, optional)

EPB Return an encrypted PIN block (EPB) and a MAC of the encrypted PIN block.

NOEPB Do not return an encrypted PIN block. This is the default value.

account_info_ER_length

Direction: Input
Type: Integer

Specifies the length in bytes of the account_info_ER parameter. The value must
be 16.

account_info_ER

Direction: Input
Type: String

The 16-byte account information used to generate the PIN, right-aligned and
padded on the left with binary zeros.

PAN_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PAN_data parameter. The value must be in
the range 10 - 19.

PAN_data

Direction: Input
Type: String

The PAN data to which the PIN is associated. The full account number,
including check digit, should be included.

card_p_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_p_data parameter. The value must be
in the range 2 - 256.

card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp), determined by the card issuer, which is
used to differentiate between multiple cards for one account.

card_t_data_length

Direction: Input
Type: Integer

DK Deterministic PIN Generate (CSNBDDPG)

612 Common Cryptographic Architecture Application Programmer's Guide

Specifies the length in bytes of the card_t_data parameter. The value must be
in the range 2 - 256.

card_t_data

Direction: Input
Type: String

The time-sensitive card data, determined by the card issuer, which, together
with the account number and the card_p_data value, specifies an individual
card.

PIN_length

Direction: Input
Type: Integer

Specifies the length of the PIN to be generated. This value must be in the
range 4 - 12.

PIN_generation_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PIN_generation_key_identifier parameter.
If the PIN_generation_key_identifier contains a label, the value must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

PIN_generation_key_identifier

Direction: Input
Type: String

The identifier of the PIN generating key. The key identifier is an operational
token or the key label of an operational token in key storage. The key
algorithm of this key must be AES, the key type must be PINCALC, the key
usage fields must indicate GENONLY, CBC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If the
PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

PRW_key_identifier

Direction: Input/Output
Type: String

The identifier of the PRW generating key. The key identifier is an operational
token or the key label of an operational token in key storage. The key
algorithm of this key must be AES, the key type must be PINPRW, the key
usage fields must indicate GENONLY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PIN_print_key_identifier_length

DK Deterministic PIN Generate (CSNBDDPG)

Chapter 13. DK PIN methods 613

Direction: Input
Type: Integer

Specifies the length in bytes of the PIN_print_key_identifier parameter. If the
PIN_print_key_identifier contains a label, the value must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

PIN_print_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to wrap the PIN for printing. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be PINPROT, and
the key usage fields must indicate ENCRYPT, CBC, and DKPINOPP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OPIN_encryption_key_identifier parameter.
If the rule array indicates that no encrypted PIN block is to be returned, this
value must be 0. If the OPIN_encryption_key_identifier contains a label, the
length must be 64. Otherwise, the value must be at least the actual token
length, up to 725.

OPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to wrap the PIN block. The key identifier is an
operational token or the key label of an operational token in key storage. If the
rule array indicates that no encrypted PIN block is to be returned, this
parameter is ignored. The key algorithm of this key must be AES, the key type
must be PINPROT, and the key usage fields must indicate ENCRYPT, CBC,
and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OEPB_MAC_key_identifier parameter. If the
rule array indicates that no encrypted PIN block MAC is to be returned, this
value must be 0. If the OEPB_MAC_key_identifier contains a label, the length
must be 64. Otherwise, the value must be at least the actual token length, up to
725.

OEPB_MAC_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to generate the MAC of the PIN block. The key
identifier is an operational token or the key label of an operational token in

DK Deterministic PIN Generate (CSNBDDPG)

614 Common Cryptographic Architecture Application Programmer's Guide

key storage. If the rule array indicates that no encrypted PIN block is to be
returned, this parameter is ignored. The key algorithm of this key must be
AES, the key type must be MAC, and the key usage fields must indicate
CMAC, GENONLY, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PIN_reference_value_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_reference_value parameter. The value
must be at least 16. On output, it is set to 16.

PIN_reference_value

Direction: Output
Type: String

The 16-byte calculated PIN reference value.

PRW_random_number_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PRW_random_number parameter. The value
must be at least 4. On output, it is set to 4.

PRW_random_number

Direction: Output
Type: String

The 4-byte random number associated with the PIN reference value.

PIN_print_block_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_print_block parameter. The value must
be at least 32. On output, it is set to 32.

PIN_print_block

Direction: Output
Type: String

The 32-byte encrypted PIN block to be passed to the PIN mailer function.

encrypted_PIN_block_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the encrypted_PIN_block parameter. If the rule
array indicates that no encrypted PIN block should be returned, this value
must be 0. Otherwise, it should be at least 32.

encrypted_PIN_block

Direction: Output

DK Deterministic PIN Generate (CSNBDDPG)

Chapter 13. DK PIN methods 615

Type: String

The 32-byte encrypted PIN block in PBF-1 format. This parameter is ignored if
no encrypted PIN block is returned.

PIN_block_MAC_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_block_MAC parameter. If the rule_array
indicates that no PIN block MAC should be returned, this value must be 0.
Otherwise, it must be at least 8.

PIN_block_MAC

Direction: Output
Type: String

The 8-byte CMAC of the encrypted PIN block. This parameter is ignored if no
encrypted PIN block is returned.

Restrictions
The restrictions for CSNBDDPG.
v Use of the Visa PVV PIN-calculation method always produces a four-digit

output rather than padding the output with binary zeros to the length of the
PIN.

v A key identifier length must be 64 for a key label.

Required commands
The required commands for CSNBDDPG.

The DK Deterministic PIN Generate verb requires the DK Deterministic PIN
Generate command (offset X'02C6') to be enabled in the active role.

Usage notes
The usage notes for CSNBDDPG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDDPGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDDPGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber account_info_ER_length,
byte[] account_info_ER,
hikmNativeNumber PAN_data_length,
byte[] PAN_data,

DK Deterministic PIN Generate (CSNBDDPG)

616 Common Cryptographic Architecture Application Programmer's Guide

hikmNativeNumber card_p_data_length,
byte[] card_p_data,
hikmNativeNumber card_t_data_length,
byte[] card_t_data,
hikmNativeNumber PIN_length,
hikmNativeNumber PIN_generation_key_identifier_length,
byte[] PIN_generation_key_identifier,
hikmNativeNumber PRW_key_identifier_length,
byte[] PRW_key_identifier,
hikmNativeNumber PIN_print_key_identifier_length,
byte[] PIN_print_key_identifier,
hikmNativeNumber OPIN_encryption_key_identifier_length,
byte[] OPIN_encryption_key_identifier,
hikmNativeNumber OEPB_MAC_key_identifier_length,
byte[] OEPB_MAC_key_identifier,
hikmNativeNumber PIN_reference_value_length,
byte[] PIN_reference_value,
hikmNativeNumber PRW_random_number_length,
byte[] PRW_random_number,
hikmNativeNumber PIN_print_block_length,
byte[] PIN_print_block,
hikmNativeNumber encrypted_PIN_block_length,
byte[] encrypted_PIN_block,
hikmNativeNumber PIN_block_MAC_length,
byte[] PIN_block_MAC);

DK Migrate PIN (CSNBDMP)
Use the DK Migrate PIN verb to generate the PIN reference value (PRW) for a
specified user account. The PIN reference value is used to verify the PIN in other
services.

An ISO-1 formatted PIN block is input to determine the value of the PIN for the
account. The PIN is reformatted into a DK-defined PIN block and the PIN
reference value is calculated using a PRW random value and other account
information. The PIN reference value and associated PRW random value are
returned to be used as input by other PIN processes to verify the PIN.

If validation of the PIN is desired to personalize smart cards, specify the EPB
rule-array keyword. This keyword causes an output encrypted PIN block to be
returned along with a PIN block MAC. The MAC is calculated over the output
PIN block and additional card data using the block cipher-based MAC algorithm
called CMAC (NIST SP 800-38B).

Note: This service does not test for weak PINs.

DK Deterministic PIN Generate (CSNBDDPG)

Chapter 13. DK PIN methods 617

Format
The format of CSNBDMP.

CSNBDMP(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data_length,
PAN_data,
card_p_data_length,
card_p_data,
card_t_data_length,
card_t_data,
ISO1_PIN_block_length,
ISO1_PIN_block,
IPIN_encryption_key_identifier_length,
IPIN_encryption_key_identifier,
PRW_key_identifier_length,
PRW_key_identifier,
OPIN_encryption_key_identifier_length,
OPIN_encryption_key_identifier,
OEPB_MAC_key_identifier_length,
OEPB_MAC_key_identifier,
PIN_reference_value_length,
PIN_reference_value,
PRW_random_number_length,
PRW_random_number,
encrypted_PIN_block_length,
encrypted_PIN_block,
PIN_block_MAC_length,
PIN_block_MAC)

Parameters
The parameters for CSNBDMP.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the callable service. The
keywords must be in contiguous storage with each of the keywords
left-justified in its own 8-byte location and padded on the right with blanks.
The rule_array keywords are described in Table 183 on page 619.

DK Migrate PIN (CSNBDMP)

618 Common Cryptographic Architecture Application Programmer's Guide

Table 183. Keywords for DK Migrate PIN control information

Keyword Description

PIN Block output selection keyword (One, optional)

EPB Return an encrypted PIN block and a MAC of the encrypted PIN block.

NOEPB Do not return an encrypted PIN block (EPB). This is the default value.

PAN_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PAN_data parameter. The value must be in
the range 10 - 19.

PAN_data

Direction: Input
Type: String

The personal account number in character form which the PIN is associated.
The primary account number, including check digit, should be included.

card_p_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_p_data parameter. The value must be
in the range 2 - 256.

card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp), determined by the card issuer, which is
used to differentiate between multiple cards for one account.

card_t_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_t_data parameter. The value must be
in the range 2 - 256.

card_t_data

Direction: Input
Type: String

The time-sensitive card data, determined by the card issuer, which, together
with the account number and the card_p_data, specifies an individual card.

ISO1_PIN_block_length

Direction: Input
Type: Integer

Specifies the length in bytes of the ISO1_PIN_block parameter. This value must
be 8.

DK Migrate PIN (CSNBDMP)

Chapter 13. DK PIN methods 619

ISO1_PIN_block

Direction: Input
Type: String

The 8-byte encrypted PIN block with the current PIN in ISO-1 format with the
customer chosen PIN. This PIN is used to generate the PIN reference value.

IPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the IPIN_encryption_key_identifier parameter.
If the IPIN_encryption_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

IPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to decrypt the PIN block containing the IOS-1 PIN.
The key identifier is an operational token or the key label of an operational
token in key storage. The key algorithm of this key must be DES and the key
type must be IPINENC.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If
PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

PRW_key_identifier

Direction: Input/Output
Type: String

The identifier of the PRW generating key. The key identifier is an operational
token or the key label of an operational token in key storage. The key
algorithm of this key must be AES, the key type must be PINPRW, and the key
usage fields must indicate GENONLY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OPIN_encryption_key_identifier parameter.
If the rule array indicates that no encrypted PIN block is to be returned, this
value must be 0. If OPIN_encryption_key_identifier contains a label, the
length must be 64. Otherwise, the value must be at least the actual token
length, up to 725.

OPIN_encryption_key_identifier

DK Migrate PIN (CSNBDMP)

620 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input/Output
Type: String

The identifier of the key to wrap the PIN block. The key identifier is an
operational token or the key label of an operational token in key storage. If the
rule array indicates that no encrypted PIN block is to be returned, this
parameter is ignored. The key algorithm of this key must be AES, the key type
must be PINPROT, and the key usage fields must indicate ENCRYPT, CBC,
and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OEPB_MAC_key_identifier parameter. If the
rule array indicates that no encrypted PIN block MAC is to be returned, this
value must be 0. If OEPB_MAC_key_identifier contains a label, the length must
be 64. Otherwise, the value must be at least the actual token length, up to 725.

OEPB_MAC_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to generate the MAC of the PIN block. The key
identifier is an operational token or the key label of an operational token in
key storage. If the rule array indicates that no encrypted PIN block is to be
returned, this parameter is ignored. The key algorithm of this key must be
AES, the key type must be MAC, and the key usage fields must indicate
GENONLY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PIN_reference_value_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_reference_value parameter. This value
must be 16. On output, PIN_reference_value_length is set to 16.

PIN_reference_value

Direction: Output
Type: String

The 16-byte calculated PIN reference value.

PRW_random_number_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PRW_random_number parameter. The value
must be 4. On output, PRW_random_number_length is set to 4.

PRW_random_number

Direction: Output

DK Migrate PIN (CSNBDMP)

Chapter 13. DK PIN methods 621

Type: String

The 4-byte random number associated with the PIN reference value.

encrypted_PIN_block_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the encrypted_PIN_block parameter. If the rule
array indicates that no encrypted PIN block should be returned, this value
must be 0. Otherwise, it should be at least 32.

encrypted_PIN_block

Direction: Output
Type: String

The 32-byte encrypted PIN block in PBF-1 format. This parameter is ignored if
no encrypted PIN block is returned.

PIN_block_MAC_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_block_MAC parameter. If the
rule_array indicates that no PIN block MAC should be returned, this value
must be 0. Otherwise, it must be at least 8.

PIN_block_MAC

Direction: Output
Type: String

The 8-byte CMAC of the encrypted PIN block. This parameter is ignored if no
encrypted PIN block is returned.

Restrictions
The restrictions for CSNBDMP.

A key identifier length must be 64 for a key label.

Required commands
The required commands for CSNBDMP.

The DK Migrate PIN verb requires the DK Migrate PIN command (offset X'02CE')
to be enabled in the active role.

Usage notes
The usage notes for CSNBDMP.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDMPJ.

See “Building Java applications using the CCA JNI” on page 28.

DK Migrate PIN (CSNBDMP)

622 Common Cryptographic Architecture Application Programmer's Guide

Format
public native void CSNBDMPJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PAN_data_length,
byte[] PAN_data,
hikmNativeNumber card_p_data_length,
byte[] card_p_data,
hikmNativeNumber card_t_data_length,
byte[] card_t_data,
hikmNativeNumber ISO1_PIN_block_length,
byte[] ISO1_PIN_block,
hikmNativeNumber IPIN_encryption_key_identifier_length,
byte[] IPIN_encryption_key_identifier,
hikmNativeNumber PRW_key_identifier_length,
byte[] PRW_key_identifier,
hikmNativeNumber OPIN_encryption_key_identifier_length,
byte[] OPIN_encryption_key_identifier,
hikmNativeNumber OEPB_MAC_key_identifier_length,
byte[] OEPB_MAC_key_identifier,
hikmNativeNumber PIN_reference_value_length,
byte[] PIN_reference_value,
hikmNativeNumber PRW_random_number_length,
byte[] PRW_random_number,
hikmNativeNumber encrypted_PIN_block_length,
byte[] encrypted_PIN_block,
hikmNativeNumber PIN_block_MAC_length,
byte[] PIN_block_MAC);

DK PAN Modify in Transaction (CSNBDPMT)
Use the DK PAN Modify in Transaction verb to obtain a new PIN reference value
(PRW) for an existing PIN when a merger has occurred and the account
information has changed.

The input includes the current PIN, the account information (PAN and card data)
for the current, and the new account.

The DK PRW CMAC Generate service is called prior to this service to generate the
MAC of the changed account information. If the MAC associated with the account
information does not verify, the service fails.

DK Migrate PIN (CSNBDMP)

Chapter 13. DK PIN methods 623

Format
The format of CSNBDPMT.

CSNBDPMT(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
current_PAN_data_length,
current_PAN_data,
new_PAN_data_length,
new_PAN_data,
current_card_p_data_length,
current_card_p_data,
current_card_t_data_length,
current_card_t_data,
new_card_p_data_length,
new_card_p_data,
new_card_t_data_length,
new_card_t_data,
CMAC_FUS_length,
CMAC_FUS,
ISO_encrypted_PIN_block_length,
ISO_encrypted_PIN_block,
current_PIN_reference_value_length,
current_PIN_reference_value,
current_PRW_random_number_length,
current_PRW_random_number,
CMAC_FUS_key_identifier_length,
CMAC_FUS_key_identifier,
IPIN_encryption_key_identifier_length,
IPIN_encryption_key_identifier,
PRW_key_identifier_length,
PRW_key_identifier,
new_PRW_key_identifier_length,
new_PRW_key_identifier,
new_PIN_reference_value_length,
new_PIN_reference_value,
new_PRW_random_number_length,
new_PRW_random_number)

Parameters
The parameters for CSNBDPMT.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

There are no keywords for this service.

DK PAN Modify in Transaction (CSNBDPMT)

624 Common Cryptographic Architecture Application Programmer's Guide

current_PAN_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the current_PAN_data parameter. The value
must be in the range 10 - 19.

current_PAN_data

Direction: Input
Type: String

The current PAN data associated with the PIN. The full account number,
including check digit, should be included.

new_PAN_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_PAN_data parameter. The value must be
in the range 10 - 19.

new_PAN_data

Direction: Output
Type: Integer

The new PAN data to be associated with the PIN. The full account number,
including check digit, should be included.

current_card_p_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the current_card_p_data parameter. The value
must be in the range 2 - 256.

current_card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp) of the current account, determined by the
card issuer.

current_card_t_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the current_card_t_data parameter. The value
must be in the range 2 - 256.

current_card_t_data

Direction: Input
Type: String

The time-sensitive card data of the current account, determined by the card
issuer.

new_card_p_data_length

DK PAN Modify in Transaction (CSNBDPMT)

Chapter 13. DK PIN methods 625

Direction: Input
Type: Integer

Specifies the length in bytes of the new_card_p_data parameter. The value must
be in the range 2 - 256.

new_card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp) of the current account, determined by the
card issuer.

new_card_t_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_card_t_data parameter. The value must
be in the range 2 - 256.

new_card_t_data

Direction: Input
Type: String

The time-sensitive card data of the current account, determined by the card
issuer.

CMAC_FUS_length

Direction: Input
Type: Integer

Specifies the length in bytes of the CMAC_FUS parameter. The value must be in
the range 8 - 16.

CMAC_FUS

Direction: Input
Type: String

The 8-byte to 16-byte MAC that was generated from the current and new
PANs and card data strings and PIN reference values. The MAC is generated
using the DK PRW CMAC Generate service.

ISO_encrypted_PIN_block_length

Direction: Input
Type: Integer

Specifies the length in bytes of the ISO_encrypted_PIN_block parameter. The
value must be 8.

ISO_encrypted_PIN_block

Direction: Input
Type: String

The 8-byte encrypted PIN block with the PIN in ISO-1 format.

current_PIN_reference_value_length

DK PAN Modify in Transaction (CSNBDPMT)

626 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: Integer

Specifies the length in bytes of the current_PIN_reference_value parameter.
The value must be 16.

current_PIN_reference_value

Direction: Input
Type: String

The 16-byte PIN reference value for comparison to the calculated value.

current_PRW_random_number_length

Direction: Input
Type: Integer

Specifies the length in bytes of the current_PRW_random_number parameter. The
value must be 4.

current_PRW_random_number

Direction: Input
Type: String

The 4-byte random number associated with the PIN reference value.

CMAC_FUS_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the CMAC_FUS_key_identifier parameter. If
CMAC_FUS_key_identifier contains a label, the length must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

CMAC_FUS_key_identifier

Direction: Input
Type: String

The identifier of the key to verify the CMAC_FUS value. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be MAC, and the
key usage fields must indicate VERIFY, CMAC, and DKPINAD2.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

IPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the IPIN_encryption_key_identifier parameter.
If IPIN_encryption_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

IPIN_encryption_key_identifier

Direction: Input
Type: String

DK PAN Modify in Transaction (CSNBDPMT)

Chapter 13. DK PIN methods 627

The identifier of the key to decrypt the ISO_encrypted_PIN_block. The key
identifier is an operational token or the key label of an operational token in
key storage. The key algorithm of this key must be DES and the key type must
be IPINENC.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If
PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

PRW_key_identifier

Direction: Input
Type: String

The identifier of the key to verify the input PRW. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be PINPRW, and the
key usage fields must indicate VERIFY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

new_PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_PRW_key_identifier parameter. If
new_PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

new_PRW_key_identifier

Direction: Input
Type: String

The identifier of the key to generate the new PRW. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be PINPRW, and the
key usage fields must indicate GENONLY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

new_PIN_reference_value_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_PIN_reference_value parameter. The
value must be at least 16. On output, it is set to 16.

new_PIN_reference_value

Direction: Input
Type: String

DK PAN Modify in Transaction (CSNBDPMT)

628 Common Cryptographic Architecture Application Programmer's Guide

The 16-byte new PIN reference value.

new_PRW_random_number_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_PRW_random_number parameter. The
value must be at least 4. On output, it is set to 4.

new_PRW_random_number

Direction: Input
Type: String

The 4-byte random number associated with the new PIN reference value.

Restrictions
The restrictions for CSNBDPMT.

None.

Required commands
The required commands for CSNBDPMT.

The DK PAN Modify in Transaction verb requires the DK PAN Modify in
Transaction command (offset X'02C5') to be enabled in the active role.

Usage notes
The usage notes for CSNBDPMT.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDPMTJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDPMTJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber current_PAN_data_length,
byte[] current_PAN_data,
hikmNativeNumber new_PAN_data_length,
byte[] new_PAN_data,
hikmNativeNumber current_card_p_data_length,
byte[] current_card_p_data,
hikmNativeNumber current_card_t_data_length,
byte[] current_card_t_data,
hikmNativeNumber new_card_p_data_length,
byte[] new_card_p_data,
hikmNativeNumber new_card_t_data_length,
byte[] new_card_t_data,

DK PAN Modify in Transaction (CSNBDPMT)

Chapter 13. DK PIN methods 629

hikmNativeNumber CMAC_FUS_length,
byte[] CMAC_FUS,
hikmNativeNumber ISO_encrypted_PIN_block_length,
byte[] ISO_encrypted_PIN_block,
hikmNativeNumber current_PIN_reference_value_length,
byte[] current_PIN_reference_value,
hikmNativeNumber current_PRW_random_number_length,
byte[] current_PRW_random_number,
hikmNativeNumber CMAC_FUS_key_identifier_length,
byte[] CMAC_FUS_key_identifier,
hikmNativeNumber IPIN_encryption_key_identifier_length,
byte[] IPIN_encryption_key_identifier,
hikmNativeNumber PRW_key_identifier_length,
byte[] PRW_key_identifier,
hikmNativeNumber new_PRW_key_identifier_length,
byte[] new_PRW_key_identifier,
hikmNativeNumber new_PIN_reference_value_length,
byte[] new_PIN_reference_value,
hikmNativeNumber new_PRW_random_number_length,
byte[] new_PRW_random_number);

DK PAN Translate (CSNBDPT)
Use the DK PAN Translate verb to create an encrypted PIN block with the same
PIN and a different PAN. The account data may change, but changing the PIN is
to be avoided. This service creates a new encrypted PIN block and MAC on the
encrypted PIN block that is used to accept the PAN change at an authorization
node.

You can use this service to perform the following tasks:
v Generate an encrypted PIN block in PBF-1 format with a changed PAN to be

used at the authorization node to create a PIN reference value.
v Generate a CMAC over the encrypted PIN block for validation.

DK PAN Modify in Transaction (CSNBDPMT)

630 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNBDPT.

CSNBDPT(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
card_p_data_length,
card_p_data,
card_t_data_length,
card_t_data,
new_PAN_data_length,
new_PAN_data,
new_card_p_data_length,
new_card_p_data,
PIN_reference_value_length,
PIN_reference_value,
PRW_random_number_length,
PRW_random_number,
current_encrypted_PIN_block_length,
current_encrypted_PIN_block,
current_PIN_block_MAC_length,
current_PIN_block_MAC,
PRW_key_identifier_length,
PRW_key_identifier,
IPIN_encryption_key_identifier_length,
IPIN_encryption_key_identifier,
IEPB_MAC_key_identifier_length,
IEPB_MAC_key_identifier,
OPIN_encryption_key_identifier_length,
OPIN_encryption_key_identifier,
OEPB_MAC_key_identifier_length,
OEPB_MAC_key_identifier,
new_encrypted_PIN_block_length,
new_encrypted_PIN_block,
new_PIN_block_MAC_length,
new_PIN_block_MAC)

Parameters
The parameters for CSNBDPT.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

There are no keywords for this service.

card_p_data_length

DK PAN Translate (CSNBDPT)

Chapter 13. DK PIN methods 631

Direction: Input
Type: Integer

Specifies the length in bytes of the card_p_data parameter. The value must be
in the range 2 - 256.

card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp), determined by the card issuer, which is
used to differentiate between multiple cards for one account.

card_t_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_t_data parameter. The value must be
in the range 2 - 256.

card_t_data

Direction: Input
Type: String

The time-sensitive card data, determined by the card issuer, which, together
with the account number and the card_p_data, specifies an individual card.

new_PAN_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_PAN_data parameter. The value must be
in the range 10 - 19.

new_PAN_data

Direction: Input
Type: String

The new personal account number (in character string form) to which the PIN
is associated. The full account number, including check digit, should be
included.

new_card_p_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_card_p_data parameter. The value must
be in the range 2 - 256.

new_card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp), determined by the card issuer, which is
used to differentiate between multiple cards for one account.

PIN_reference_value_length

DK PAN Translate (CSNBDPT)

632 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: Integer

Specifies the length in bytes of the PIN_reference_value parameter. The value
must be 16.

PIN_reference_value

Direction: Input
Type: String

The 16-byte PIN reference value for comparison to the calculated value.

PRW_random_number_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_random_number parameter. The value
must be 4.

PRW_random_number

Direction: Input
Type: String

The 4-byte random number associated with the PIN reference value.

current_encrypted_PIN_block_length

Direction: Input
Type: Integer

Specifies the length in bytes of the current_encrypted_PIN_block parameter.
The value must be 32.

current_encrypted_PIN_block

Direction: Input
Type: Integer

The 32-byte encrypted PIN block in PBF-1 format of the current PIN.

current_PIN_block_MAC_length

Direction: Input
Type: Integer

Specifies the length in bytes of the current_PIN_block_MAC parameter. The
value must be 8.

current_PIN_block_MAC

Direction: Input
Type: String

The 8-byte MAC of the current encrypted PIN block and the card_p_data.

PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If

DK PAN Translate (CSNBDPT)

Chapter 13. DK PIN methods 633

PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must at least the actual token length, up to 725.

PRW_key_identifier

Direction: Input
Type: String

The identifier of the PRW verifying key. The key identifier is an operational
token or the key label of an operational token in key storage. The key
algorithm of this key must be AES, the key type must be PINPRW, the key
usage fields must indicate VERIFY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

IPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the IPIN_encryption_key_identifier parameter.
If the IPIN_encryption_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

IPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to decrypt the PIN block containing the current PIN.
The key identifier is an operational token or the key label of an operational
token in key storage. The key algorithm of this key must be AES, the key type
must be PINPROT, and the key usage fields must indicate DECRYPT, CBC,
and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

IEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the IEPB_MAC_key_identifier parameter. If the
IEPB_MAC_key_identifier contains a label, the length must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

IEPB_MAC_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to verify MAC of the inbound encrypted PIN block.
The key identifier is an operational token or the key label of an operational
token in key storage. The key algorithm of this key must be AES, the key type
must be MAC, and the key usage fields must indicate CMAC. VERIFY, and
DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OPIN_encryption_key_identifier_length

DK PAN Translate (CSNBDPT)

634 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: Integer

Specifies the length in bytes of the OPIN_encryption_key_identifier parameter.
If the OPIN_encryption_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

OPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to encrypt the new PIN block. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be PINPROT, and
the key usage fields must indicate ENCRYPT, CBC, and DKPINAD1.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OEPB_MAC_key_identifier parameter. If the
OEPB_MAC_key_identifier contains a label, the length must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

OEPB_MAC_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to generate the MAC of the new encrypted PIN block.
The key identifier is an operational token or the key label of an operational
token in key storage. The key algorithm of this key must be AES, the key type
must be MAC, and the key usage fields must indicate CMAC, GENONLY, and
DKPINAD1.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

new_encrypted_PIN_block_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the new_encrypted_PIN_block parameter. The
value must be at least 32. On output, it is set to 32.

new_encrypted_PIN_block

Direction: Output
Type: String

The 32-byte encrypted new PIN block.

new_PIN_block_MAC_length

Direction: Input/Output
Type: Integer

DK PAN Translate (CSNBDPT)

Chapter 13. DK PIN methods 635

Specifies the length in bytes of the new_PIN_block_MAC parameter. The value
must be at least 8.

new_PIN_block_MAC

Direction: Output
Type: String

The 8-byte MAC of the new encrypted PIN block.

Restrictions
The restrictions for CSNBDPT.

None.

Required commands
The required commands for CSNBDPT.

The DK PAN Translate verb requires the DK PAN Translate command (offset
X'02C7') to be enabled in the active role.

Usage notes
The usage notes for CSNBDPT.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDPTJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDPTJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count
byte[] rule_array,
hikmNativeNumber card_p_data_length,
byte[] card_p_data,
hikmNativeNumber card_t_data_length,
byte[] card_t_data,
hikmNativeNumber new_PAN_data_length,
byte[] new_PAN_data,
hikmNativeNumber new_card_p_data_length,
byte[] new_card_p_data,
hikmNativeNumber PIN_reference_value_length,
byte[] PIN_reference_value,
hikmNativeNumber PRW_random_number_length,
byte[] PRW_random_number,
hikmNativeNumber current_encrypted_PIN_block_length,
byte[] current_encrypted_PIN_block,
hikmNativeNumber current_PIN_block_MAC_length,
byte[] current_PIN_block_MAC,
hikmNativeNumber PRW_MAC_key_identifier_length,
byte[] PRW_MAC_key_identifier,
hikmNativeNumber IPIN_encryption_key_identifier_length,
byte[] IPIN_encryption_key_identifier,

DK PAN Translate (CSNBDPT)

636 Common Cryptographic Architecture Application Programmer's Guide

hikmNativeNumber IEPB_MAC_key_identifier_length,
byte[] IEPB_MAC_key_identifier,
hikmNativeNumber OPIN_encryption_key_identifier_length,
byte[] OPIN_encryption_key_identifier,
hikmNativeNumber OEPB_MAC_key_identifier_length,
byte[] OEPB_MAC_key_identifier,
hikmNativeNumber new_encrypted_PIN_block_length,
byte[] new_encrypted_PIN_block,
hikmNativeNumber new_PIN_block_MAC_length,
byte[] new_PIN_block_MAC);

DK PIN Change (CSNBDPC)
Use the DK PIN Change verb to update the personal identification number (PIN)
reference value or word (PRW) for a specified account when a cardholder uses a
bank or credit card at an ATM or point-of-sale (POS) terminal to update a card
with a new PIN, in other words, to change the current PIN to a customer-selected
PIN.

When cardholders use a terminal to update a card with a new PIN, they enter the
current PIN and the new PIN. At the terminal, the current PIN is formatted into an
8-byte ISO-1 PIN block and enciphered using a PIN encrypting key for the current
PIN. Likewise, the new PIN is formatted into an 8-byte ISO-1 PIN block and
enciphered using a PIN encrypting key for the new PIN.

The account of a cardholder is uniquely identified by a 10 - 19 digit primary
account number (PAN) of the bank or credit card. Additional information normally
available on the card is a time-sensitive card expiry date and a time-invariant
(permanent) card sequence number. The verb verifies the current PIN by
deciphering the current ISO-1 PIN block and uses the recovered PIN and other
additional information to verify the current PIN. If the current PIN does not verify,
the process is aborted and an error is returned. If it does verify, the new PIN is
recovered from the new ISO-1 PIN block and is reformatted into a DK-defined PIN
block that is used with a new PRW random value and other information to
calculate a new PRW. The new PRW and associated new PRW random value are
returned to be used as input later by other PIN processes for PIN verification.

A card script can be created and encrypted for use later to update a customer
smart (chip) card. To create a TDES-encrypted card script, specify either the
TDES-CBC or TDES-ECB script selection keyword in the rule array. Beginning with
Release 4.4, to create an AES-encrypted card script, specify AES-CBC.

If validation of the PIN is desired to personalize a smart card, specify the EPB PIN
block output selection rule-array keyword. This keyword causes an output
encrypted PIN block to be returned along with a PIN block MAC. The MAC is
calculated over the output PIN block and additional card data using the block
cipher-based MAC algorithm, called CMAC (refer to NIST SP 800-38B).

Note: If the PIN recovered from the new_ISO1_PIN_block variable is found in the
weak PIN table, it is rejected and an error is returned indicating that the selected
PIN was in the weak PIN table.

DK PAN Translate (CSNBDPT)

Chapter 13. DK PIN methods 637

Format
The format of CSNBDPC.

CSNBDPC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data_length,
PAN_data,
card_p_data_length,
card_p_data,
card_t_data_length,
card_t_data,
cur_ISO1_PIN_block_length,
cur_ISO1_PIN_block,
new_ISO1_PIN_block_length,
new_ISO1_PIN_block,
card_script_data_length,
card_script_data,
script_offset,
script_offset_field_length,
script_initialization_vector_length,
script_initialization_vector,
output_PIN_profile,
PIN_reference_value_length,
PIN_reference_value,
PRW_random_number_length,
PRW_random_number,
PRW_key_identifier_length,
PRW_key_identifier,
cur_IPIN_encryption_key_identifier_length,
cur_IPIN_encryption_key_identifier,
new_IPIN_encryption_key_identifier_length,
new_IPIN_encryption_key_identifier,
script_key_identifier_length,
script_key_identifier,
script_MAC_key_identifier_length,
script_MAC_key_identifier,
new_PRW_key_identifier_length,
new_PRW_key_identifier,
OPIN_encryption_key_identifier_length,
OPIN_encryption_key_identifier,
OEPB_MAC_key_identifier_length,
OEPB_MAC_key_identifier,
script_length,
script,
script_MAC_length,
script_MAC,
new_PIN_reference_value_length,
new_PIN_reference_value,
new_PRW_random_number_length,
new_PRW_random_number,
output_encrypted_PIN_block_length,
output_encrypted_PIN_block,
PIN_block_MAC_length,
PIN_block_MAC)

Parameters
The parameters for CSNBDPC.

DK PIN Change (CSNBDPC)

638 Common Cryptographic Architecture Application Programmer's Guide

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 0, 1, 2, 3, 4, or 5.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The keywords must be
in contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks. The rule_array keywords are
described in Table 184.

Table 184. Keywords for DK PIN Change control information

Keyword Description

PIN Block output selection keyword (One, optional)

EPB Return an encrypted PIN block and a MAC to verify the encrypted PIN block.

NOEPB Do not return an encrypted PIN block (EPB). This is the default value.

Script selection algorithm and method (One, optional)

AES-CBC Use CBC mode to AES encrypt the PIN block in the script.

NOSCRIPT Do not return an encrypted SMPIN message with a MAC. This is the default value.

TDES-CBC Use CBC mode to TDES encrypt the PIN block in the script.

TDES-ECB Use ECB mode to TDES encrypt the PIN block in the script.

PIN encryption keyword (One, optional)
Only valid if TDES-CBC or TDES-ECB is selected.

CLEARPIN Do not encrypt the PIN prior to inserting in the script block. This is the default value.

SELF-ENC Copy the PIN-block self-encrypted to the clear PIN block within the clear output message. Use this
rule array keyword to specify that the 8-byte PIN block shall be used as a DES key to encrypt the
PIN block. The service copies the self-encrypted PIN block to the clear PIN block in the output
message.

MAC Ciphering Method
(One required for AES-CBC, one optional for TDES-CBC or TDES-ECB,
otherwise not allowed.)

CMAC Specifies to use the cipher-based MAC algorithm block cipher mode of operation for authentication,
recommended in NIST SP 800-38B. Required for AES-CBC. Only valid with AES-CBC.

EMVMACD Specifies the EMV-related message-padding and calculation method.

TDES-MAC Specifies the ANS X9.9 Option 1 (binary data) procedure and a CBC Triple-DES encryption of the
data.

X9.19OPT Specifies the ANS X9.19 Optional Procedure. A double-length key is required. This is the default
value.

MAC Length and presentation
(one optional, with keyword AES-CBC, TDES-CBC or TDES-ECB,
otherwise not allowed.)

MACLEN8 Specifies an 8-byte MAC. This is the default for TDES-CBC and TDES-ECB.

MACLEN16 Specifies a 16-byte MAC. Only valid with CMAC. This is the default for AES-CBC.

DK PIN Change (CSNBDPC)

Chapter 13. DK PIN methods 639

PAN_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PAN_data parameter. The value must be in
the range 10 - 19.

PAN_data

Direction: Input
Type: String

The PAN data to which the PIN is associated. The full account number,
including check digit, should be included.

card_p_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_p_data parameter. The value must be
in the range 2 - 256.

card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp), determined by the card issuer, which is
used to differentiate between multiple cards for one account.

card_t_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_t_data parameter. The value must be
in the range 2 - 256.

card_t_data

Direction: Input
Type: String

The time-sensitive card data, determined by the card issuer, which, together
with the account number and the card_p_data, specifies an individual card.

cur_ISO1_PIN_block_length

Direction: Input
Type: Integer

Specifies the length in bytes of the cur_ISO1_PIN_block parameter. The value
must be 8.

cur_ISO1_PIN_block

Direction: Input
Type: String

The 8-byte encrypted PIN block with the current PIN in ISO-1 format.

DK PIN Change (CSNBDPC)

640 Common Cryptographic Architecture Application Programmer's Guide

new_ISO1_PIN_block_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_ISO1_PIN_block parameter. The value
must be 8.

new_ISO1_PIN_block

Direction: Input
Type: String

The new encrypted PIN block with the customer chosen PIN. The PIN block
must be in ISO-1 format.

card_script_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
card_script_data variable. If the script selection of the rule array specifies to
not return an encrypted SMPIN message with a PIN block MAC (that is,
AES-CBC, TDES-CBC, or TDES-ECB is not specified), the value must be 0.
Otherwise, set the value to a multiple of 16 and less than or equal to 4096 for
AES_CBC, and set the value to a multiple of 8 and less than or equal to 4096
for TDES-CBC or TDES-ECB.

card_script_data

Direction: Input
Type: String

The cleartext string to be updated with the clear PIN block and encrypted.

script_offset

Direction: Input
Type: Integer

The offset to the location for the PIN block in the script. Specify the first byte
of the cleartext as offset 0. This offset plus the value of the
script_offset_field_length must be less than or equal to the
card_script_data_length. If NOSCRIPT is specified in the rule array, this
parameter is ignored.

script_offset_field_length

Direction: Input
Type: Integer

The length of the field within the card_script_data parameter at
script_offset where the new PIN value is to be placed. Length must be 8.
The PIN block must fit entirely within the card_script_data. If NOSCRIPT is
specified in the rule array, this parameter is ignored.

script_initialization_vector_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
script_initialization_vector parameter. For script selection algorithm and

DK PIN Change (CSNBDPC)

Chapter 13. DK PIN methods 641

method keyword AES-CBC the value must be 16, and for TDES-CBC the value
must be 8. Otherwise, set the value to 0.

script_initialization_vector

Direction: Input
Type: String

a pointer to a string variable containing the initialization vector to use when
encrypting the script in CBC mode. If the
script_initialization_vector_length variable is 0 or if keyword TDES-ECB is
specified, this parameter is ignored but must be declared. Otherwise, this
parameter must point to a string of hexadecimal zeros.

output_PIN_profile

Direction: Input
Type: String

A 24-byte string containing the PIN profile, including the PIN block format for
the script. See “The PIN profile” on page 497 for additional information. You
can use PIN-block formats ISO-0, ISO-1, ISO-2, and ISO-3 with this service. If
NOSCRIPT is specified in the rule array, this parameter is ignored.

PIN_reference_value_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PIN_reference_value parameter. This value
must be 16.

PIN_reference_value

Direction: Input
Type: String

The 16-byte PIN reference value of the current PIN for comparison to the
calculated value.

PRW_random_number_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_random_number parameter. The value
must be 4.

PRW_random_number

Direction: Input
Type: String

The 4-byte random number associated with the PIN reference value of the
current PIN.

PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If the
PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

DK PIN Change (CSNBDPC)

642 Common Cryptographic Architecture Application Programmer's Guide

PRW_key_identifier

Direction: Input
Type: String

The identifier of the key to verify the PRW of the current PIN block. The key
identifier is an operational token or the key label of an operational token in
key storage. The key algorithm of this key must be AES, the key type must be
PINPRW, and the key usage fields must indicate VERIFY, CMAC, and
DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

cur_IPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the cur_IPIN_encryption_key_identifier
parameter. If the cur_IPIN_encryption_key_identifier contains a label, the
length must be 64. Otherwise, the value must be at least the actual token
length, up to 725.

cur_IPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to decrypt the PIN_block containing the current PIN.
The key identifier is an operational token or the key label of an operational
token in key storage. The key algorithm of this key must be DES and the key
type must be IPINENC.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

new_IPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_IPIN_encryption_key_identifier
parameter. If the new_IPIN_encryption_key_identifier contains a label, the
length must be 64. Otherwise, the value must be at least the actual token
length, up to 725.

new_IPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to decrypt the PIN_block containing the new PIN. The
key identifier is an operational token or the key label of an operational token
in key storage. The key algorithm of this key must be DES and the key type
must be IPINENC.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

script_key_identifier_length

Direction: Input
Type: Integer

DK PIN Change (CSNBDPC)

Chapter 13. DK PIN methods 643

A pointer to an integer variable containing the number of bytes of data in the
script_key_identifier variable. If the script_key_identifier parameter
identifies a key label, the length must be 64. Otherwise, for script selection
algorithm and method keyword NOSCRIPT or its default, set the length to 0 or
the length of a null key token, for AES-CBC set a maximum length of 725, and
for TDES-CBC or TDES-ECB set the length to 64.

script_key_identifier

Direction: Input/Output
Type: String

A pointer to a string variable containing an operational fixed-length DES
key-token or the key label of such a record in DES key-storage. Beginning with
Release 4.4, it can be a pointer to a string variable containing an operational
variable-length AES key-token or the key label of such a record in AES
key-storage. The type of key depends on the script selection algorithm and
method of the rule array:
v If AES-CBC is specified to return an AES-enciphered SMPIN message with a

PIN block MAC, the key must be contained in a variable-length symmetric
key-token. The key must have a token algorithm of AES and a key type of
SECMSG. In addition, the key usage fields must enable the encryption of
PINs in an EMV secure message (SMPIN), and must allow the key to be
used by the CSNBDPC verb (ANY-USE or DPC-ONLY).

v If TDES-ECB or TDES-CBC) is specified to return a DES-enciphered SMPIN
message with a PIN block MAC, the key must be contained in a fixed-length
DES key token and have a key type of SECMSG. In addition, the control
vector must enable the encryption of PINs (SMPIN bit 19 = B'1') .

v If NOSCRIPT or its default is specified to not return an enciphered SMPIN
message with a PIN block MAC, the script_key_identifier_length variable
should be set to 0. If the length is greater than 0, this parameter must
identify a valid DES or, beginning with release 4.4, a valid AES key-token
that is otherwise ignored.

script_MAC_key_identifier_length

Direction: Input
Type: Integer

The script_MAC_key_identifier_length parameter is a pointer to an integer
variable containing the number of bytes of data in the
script_MAC_key_identifier variable. If the script_MAC_key_identifier
parameter identifies a key label, the length must be 64. Otherwise, for script
selection algorithm and method keyword NOSCRIPT or its default, set the
value to 0 or the length of a null key token, for AES-CBC set a maximum
length of 725, and for TDES-CBC or TDES-ECB set the length to 64.

script_MAC_key_identifier

Direction: Input/Output
Type: String

A pointer to a string variable containing an operational fixed-length DES
key-token or the key label of such a record in DES key-storage. Beginning with
Release 4.4, it can be a pointer to a string variable containing an operational
variable-length AES key-token or the key label of such a record in AES
key-storage. The type of key depends on the script selection algorithm and
method of the rule array:

DK PIN Change (CSNBDPC)

644 Common Cryptographic Architecture Application Programmer's Guide

v If AES-CBC is specified to return an AES-enciphered SMPIN message with a
PIN block MAC, the key must be contained in a variable-length symmetric
key-token. The key must have a token algorithm of AES and a key type of
MAC. In addition, the key usage fields must have the MAC operation set so
that the key can be used for generate (GENERATE or GENONLY), and the
MAC mode must be CMAC.

v If TDES-ECB or TDES-CBC is specified to return a DES-enciphered SMPIN
message with a PIN block MAC, the key must be double length and have a
key type of MAC (generate is allowed). In addition, the control vector must
have a subtype of ANY-MAC (bits 0-3 = B'0000').

v If NOSCRIPT or its default is specified to not return an enciphered SMPIN
message with a PIN block MAC, the script_key_identifier_length variable
should be set to 0. If the length is greater than 0, this parameter must
identify a valid DES or, beginning with Release 4.4, a valid AES key-token
that is otherwise ignored.

new_PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the new_PRW_key_identifier parameter. If the
new_PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

new_PRW_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to verify the new PRW. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be PINPRW, and the
key usage fields must indicate GENONLY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OPIN_encryption_key_identifier parameter.
If the rule array indicates that no encrypted PIN block is to be returned, this
value must be 0. If the OPIN_encryption_key_identifier contains a label, the
length must be 64. Otherwise, the value must be at least the actual token
length, up to 725.

OPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to encrypt the new PIN block. The key identifier is an
operational token or the key label of an operational token in key storage. If the
OPIN_encryption_key_identifier_length is 0, this parameter is ignored. The key
algorithm of this key must be AES, the key type must be PINPROT, and the
key usage fields must indicate ENCRYPT, CBC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

DK PIN Change (CSNBDPC)

Chapter 13. DK PIN methods 645

OEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OEPB_MAC_key_identifier parameter. If the
rule array indicates that no encrypted PIN block is to be returned, this value
must be 0. If the OEPB_MAC_key_identifier contains a label, the length must be
64. Otherwise, the value must be at least the actual token length, up to 725.

OEPB_MAC_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to generate the MAC of new PIN block. The key
identifier is an operational token or the key label of an operational token in
key storage. If the OEPB_MAC_key_identifier_length is 0, this parameter is
ignored. The key algorithm of this key must be AES, the key type must be
MAC, and the key usage fields must indicate CMAC, GENONLY, and
DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

script_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
script variable. The value must be 0 if the script selection algorithm and
method of the rule array specifies NOSCRIPT or its default. Otherwise, the
value must be at least as long as the card_script_data_length.

script

Direction: Output
Type: String

The encrypted output script. The length of the field must be at least as long as
the input script.

script_MAC_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
script_MAC variable. Set to 0 if script selection algorithm and method of the
rule array specifies NOSCRIPT or its default. Otherwise, on input set the value
to at least 8 for MAC length and presentation keyword MACLEN8, or at least
16 for MACLEN16. On output, the value is updated with the length of data
returned in the script_MAC variable.

script_MAC

Direction: Output
Type: String

A pointer to a string variable containing the MAC calculated on the script
returned in the script variable. The value is left-aligned in the variable and is
truncated on the right as needed to the length specified by the MAC length
and presentation keyword.

DK PIN Change (CSNBDPC)

646 Common Cryptographic Architecture Application Programmer's Guide

new_PIN_reference_value_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the new_PIN_reference_value parameter. The
value must be at least 16. On output, it is set to 16.

new_PIN_reference_value

Direction: Output
Type: String

The 16-byte new PIN reference value of the new PIN block.

new_PRW_random_number_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the new_PRW_random_number parameter. The
value must be at least 4. On output, it is set to 4.

new_PRW_random_number

Direction: Output
Type: String

The 4-byte random number associated with the new PIN reference value.

output_encrypted_PIN_block_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the output_encrypted_PIN_block parameter. If
the rule array indicates that no encrypted PIN block should be returned, this
value must be 0. Otherwise, it should be at least 32. On output it is set to 32.

output_encrypted_PIN_block

Direction: Output
Type: String

The 32-byte encrypted new PIN block. If the
output_encrypted_PIN_block_length is 0, this parameter is ignored.

PIN_block_MAC_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_block_MAC parameter. If the rule_array
indicates that no PIN block MAC should be returned, this value must be 0.
Otherwise, it must be at least 8.

PIN_block_MAC

Direction: Output
Type: String

The 8-byte MAC of the new encrypted PIN block. If the
PIN_block_MAC_length is 0, this parameter is ignored.

DK PIN Change (CSNBDPC)

Chapter 13. DK PIN methods 647

Restrictions
The restrictions for CSNBDPC.

The following rule array keywords are not supported in releases before Release 4.4:
v Script selection algorithm and method keyword AES-CBC
v MAC ciphering method keyword CMAC
v MAC length and presentation keyword MACLEN16

The script_MAC_key_identifier parameter and the script_key_identifier
parameter cannot identify an AES variable-length symmetric key-token in releases
before Release 4.4.

Required commands
The required commands for CSNBDPC.

The DK PIN Change verb requires the DK PIN Change command (offset X'02C2') to
be enabled in the active role.

Usage notes
The usage notes for CSNBDPC.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDPCJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDPCJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PAN_data_length,
byte[] PAN_data,
hikmNativeNumber card_p_data_length,
byte[] card_p_data,
hikmNativeNumber card_t_data_length,
byte[] card_t_data,
hikmNativeNumber cur_ISO1_PIN_block_length,
byte[] cur_ISO1_PIN_block,
hikmNativeNumber new_ISO1_PIN_block_length,
byte[] new_ISO1_PIN_block,
hikmNativeNumber card_script_data_length,
byte[] card_script_data,
hikmNativeNumber script_offset,
hikmNativeNumber script_offset_field_length,
hikmNativeNumber script_initialization_vector_length,
byte[] script_initialization_vector,
byte[] output_PIN_profile,
hikmNativeNumber PIN_reference_value_length,
byte[] PIN_reference_value,
hikmNativeNumber PRW_random_number_length,
byte[] PRW_random_number,
hikmNativeNumber PRW_key_identifier_length,

DK PIN Change (CSNBDPC)

648 Common Cryptographic Architecture Application Programmer's Guide

byte[] PRW_key_identifier,
hikmNativeNumber current_IPIN_encryption_key_identifier_length,
byte[] current_IPIN_encryption_key_identifier,
hikmNativeNumber new_IPIN_encryption_key_identifier_length,
byte[] new_IPIN_encryption_key_identifier,
hikmNativeNumber script_key_identifier_length,
byte[] script_key_identifier,
hikmNativeNumber script_MAC_key_identifier_length,
byte[] script_MAC_key_identifier,
hikmNativeNumber new_PRW_key_identifier_length,
byte[] new_PRW_key_identifier,
hikmNativeNumber OPIN_encryption_key_identifier_length,
byte[] OPIN_encryption_key_identifier,
hikmNativeNumber OEPB_MAC_key_identifier_length,
byte[] OEPB_MAC_key_identifier,
hikmNativeNumber script_length,
byte[] script,
hikmNativeNumber script_MAC_length,
byte[] script_MAC,
hikmNativeNumber new_PIN_reference_value_length,
byte[] new_PIN_reference_value,
hikmNativeNumber new_PRW_random_number_length,
byte[] new_PRW_random_number,
hikmNativeNumber output_encrypted_PIN_block_length,
byte[] output_encrypted_PIN_block,
hikmNativeNumber PIN_block_MAC_length,
byte[] PIN_block_MAC);

DK PIN Verify (CSNBDPV)
Use the DK PIN Verify verb to verify an ISO-1 format PIN in a transaction. The
account, the card data, and the PRW are used to verify the PIN.

The input PIN is converted to PBF-0 format. A test PIN reference value (PRW) is
created and that value is compared bit by bit to the input PRW.

Format
The format of CSNBDPV.

CSNBDPV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data_length,
PAN_data,
card_data_length,
card_data,
PIN_reference_value_length,
PIN_reference_value,
PRW_random_number_length,
PRW_random_number,
ISO_encrypted_PIN_block_length,
ISO_encrypted_PIN_block,
PRW_key_identifier_length,
PRW_key_identifier,
IPIN_encryption_key_identifier_length,
IPIN_encryption_key_identifier)

DK PIN Change (CSNBDPC)

Chapter 13. DK PIN methods 649

Parameters
The parameters for CSNBDPV.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

There are no keywords for this service.

PAN_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PAN_data parameter. The value must be in
the range 10 - 19.

PAN_data

Direction: Input
Type: String

The PAN data which the PIN is associated. The full account number, including
check digit, should be included.

card_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_data parameter. The value must be in
the range 4 - 512.

card_data

Direction: Input
Type: String

The time-invariant card data (CDp) and the time-sensitive card data (CDt)
which, together with the account number, specifies an individual card.

PIN_reference_value_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PIN_reference_value parameter. This value
must be 16.

PIN_reference_value

DK PIN Verify (CSNBDPV)

650 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: String

The 16-byte PIN reference value for comparison to the calculated value.

PRW_random_number_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_random_number parameter. The value
must be 4.

PRW_random_number

Direction: Input
Type: String

The 4-byte random number associated with the PIN reference value.

ISO_encrypted_PIN_block_length

Direction: Input
Type: Integer

Specifies the length in bytes of the ISO_encrypted_PIN_block parameter. This
value must be 8.

ISO_encrypted_PIN_block

Direction: Input
Type: String

The 8-byte encrypted PIN block in ISO-1 format.

PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If the
PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

PRW_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to verify the PIN reference value. The key identifier is
an operational token or the key label of an operational token in key storage.
The key algorithm of this key must be AES, the key type must be PINPRW,
and the key usage fields must indicate VERIFY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is be
returned encrypted under the current master key.

IPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the IPIN_encryption_key_identifier parameter.
If the IPIN_encryption_key_identifier contains a label, the length must be 64.

DK PIN Verify (CSNBDPV)

Chapter 13. DK PIN methods 651

Otherwise, the value must be at least the actual token length, up to 725.

IPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to decrypt the PIN_block. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be DES and the key type must be IPINENC.

If the token supplied was encrypted under the old master key, the token is be
returned encrypted under the current master key.

Restrictions
The restrictions for CSNBDPV.

None.

Required commands
The required commands for CSNBDPV.

The DK PIN Verify verb requires the DK PIN Verify command (offset X'02C1') to
be enabled in the active role.

Usage notes
The usage notes for CSNBDPV.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDPVJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDPVJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PAN_data_length,
byte[] PAN_data,
hikmNativeNumber card_data_length,
byte[] card_data,
hikmNativeNumber PIN_reference_value_length,
byte[] PIN_reference_value,
hikmNativeNumber PRW_random_number_length,
byte[] PRW_random_number,
hikmNativeNumber ISO_encrypted_PIN_block_length,
byte[] ISO_encrypted_PIN_block,
hikmNativeNumber PRW_key_identifier_length,
byte[] PRW_key_identifier,
hikmNativeNumber IPIN_encryption_key_identifier_length,
byte[] IPIN_encryption_key_identifier);

DK PIN Verify (CSNBDPV)

652 Common Cryptographic Architecture Application Programmer's Guide

DK PRW Card Number Update (CSNBDPNU)
Use the DK PRW Card Number Update verb to generate a PIN reference value
(PRW) when a replacement card is being issued. The original primary account
number (PAN) and PIN are used with new time-sensitive card data to generate the
new PRW.

You can use this service to perform the following tasks:
v Generate a PRW that can be used to verify the PIN.
v Optionally, generate an encrypted PIN block in PBF-1 format to be stored for

later use in personalizing replacement cards.

Format
The format of CSNBDPNU.

CSNBDPNU(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
card_p_data_length,
card_p_data,
card_t_data_length,
card_t_data,
encrypted_PIN_block_length,
encrypted_PIN_block,
PIN_block_MAC_length,
PIN_block_MAC,
PRW_key_identifier_length,
PRW_key_identifier,
IPIN_encryption_key_identifier_length,
IPIN_encryption_key_identifier,
IEPB_MAC_key_identifier_length,
IEPB_MAC_key_identifier,
OPIN_encryption_key_identifier_length,
OPIN_encryption_key_identifier,
OEPB_MAC_key_identifier_length,
OEPB_MAC_key_identifier,
PIN_reference_value_length,
PIN_reference_value,
PRW_random_number_length,
PRW_random_number,
new_encrypted_PIN_block_length,
new_encrypted_PIN_block,
new_PIN_block_MAC_length,
new_PIN_block_MAC)

Parameters
The parameters for CSNBDPNU.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

DK PRW Card Number Update (CSNBDPNU)

Chapter 13. DK PIN methods 653

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The keywords are
left-aligned in an 8-byte field and padded on the right with blanks. The
keywords must be in contiguous storage. The rule_array keywords are
described in Table 185.

Table 185. Keywords for DK PRW Card Number Update control information

Keyword Description

PIN Block output selection keyword (One, optional)

EPB Return an encrypted PIN block.

NOEPB Do not return an encrypted PIN block (EPB). This is the default.

card_p_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_p_data parameter. The value must be
in the range 2 - 256.

card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp), determined by the card issuer, which is
used to differentiate between multiple cards for one account.

card_t_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_t_data parameter. The value must be
in the range 2 - 256.

card_t_data

Direction: Input
Type: String

The time-sensitive card data, determined by the card issuer, which, together
with the account number and the card_p_data, specifies an individual card.

encrypted_PIN_block_length

Direction: Input
Type: Integer

Specifies the length in bytes of the encrypted_PIN_block parameter. The value
must be 32.

encrypted_PIN_block

DK PRW Card Number Update (CSNBDPNU)

654 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: String

The 32-byte input encrypted PIN block in PBF-1 format.

PIN_block_MAC_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PIN_block_MAC parameter. The value must
be 8.

PIN_block_MAC

Direction: Input
Type: String

The 8-byte CMAC of the encrypted PIN block.

PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If the
PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

PRW_key_identifier

Direction: Input/Output
Type: String

The identifier of the PRW generating key. The key identifier is an operational
token or the key label of an operational token in key storage. The key
algorithm of this key must be AES, the key type must be PINPRW, the key
usage fields must indicate GENONLY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

IPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the IPIN_encryption_key_identifier parameter.
If the IPIN_encryption_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

IPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key that encrypts the input PIN block. The key identifier
is an operational token or the key label of an operational token in key storage.
The key algorithm of this key must be AES, the key type must be PINPROT,
and the key usage fields must indicate DECRYPT, CBC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

DK PRW Card Number Update (CSNBDPNU)

Chapter 13. DK PIN methods 655

IEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the IEPB_MAC_key_identifier parameter. If the
IEPB_MAC_key_identifier contains a label, the length must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

IEPB_MAC_key_identifier

Direction: Input
Type: String

The identifier of the CMAC verification key. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be MAC, and the
key usage fields must indicate CMAC, VERIFY, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OPIN_encryption_key_identifier parameter.
If the OPIN_encryption_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

OPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to wrap the new PIN block. The key identifier is an
operational token or the key label of an operational token in key storage. If the
rule array indicates that no encrypted PIN block is to be returned, this value is
ignored. The key algorithm of this key must be AES, the key type must be
PINPROT, and the key usage fields must indicate ENCRYPT, CBC, and
DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OEPB_MAC_key_identifier parameter. If the
rule array indicates that no encrypted PIN block MAC is to be returned, this
value must be 0.

If the OEPB_MAC_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

OEPB_MAC_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to generate the CMAC of the new PRW. The key

DK PRW Card Number Update (CSNBDPNU)

656 Common Cryptographic Architecture Application Programmer's Guide

identifier is an operational token or the key label of an operational token in
key storage. If the rule array indicates that no encrypted PIN block MAC is to
be returned, this parameter is ignored. The key algorithm of this key must be
AES, the key type must be MAC, and the key usage fields must indicate
GENONLY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PIN_reference_value_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_reference_value parameter. This value
must be 16. On output, it is set to 16.

PIN_reference_value

Direction: Output
Type: String

The calculated 16-byte PIN reference value.

PRW_random_number_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PRW_random_number parameter. The value
must be 4. On output, it is set to 4.

PRW_random_number

Direction: Output
Type: String

The 4-byte random number associated with the PIN reference value.

new_encrypted_PIN_block_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the new_encrypted_PIN_block parameter. If the
rule array indicates that no new encrypted PIN block should be returned, this
parameter must be zero. Otherwise, the parameter should be at least 32.

new_encrypted_PIN_block

Direction: Output
Type: String

The new 32-byte encrypted PIN block. If the rule array indicates that no new
encrypted PIN block should be returned, this parameter is ignored.

new_PIN_block_MAC_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the new_PIN_block_MAC parameter. If the
rule_array indicates that no new_PIN_block_MAC should be returned, this
value must be zero. Otherwise, it must be at least 8.

DK PRW Card Number Update (CSNBDPNU)

Chapter 13. DK PIN methods 657

new_PIN_block_MAC

Direction: Output
Type: String

The new 8-byte encrypted MAC of the new PIN block. If the rule array
indicates that no new encrypted PIN block should be returned, this parameter
is ignored.

Restrictions
The restrictions for CSNBDPNU.

None.

Required commands
The required commands for CSNBDPNU.

The DK PRW Card Number Update verb requires the DK PRW Card Number Update
command (offset X'02C3') to be enabled in the active role.

Usage notes
The usage notes for CSNBDPNU.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDPNUJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDPNUJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber card_p_data_length,
byte[] card_p_data,
hikmNativeNumber card_t_data_length,
byte[] card_t_data,
hikmNativeNumber encrypted_PIN_block_length,
byte[] encrypted_PIN_block,
hikmNativeNumber PIN_block_MAC_length,
byte[] PIN_block_MAC,
hikmNativeNumber PRW_key_identifier_length,
byte[] PRW_key_identifier,
hikmNativeNumber IPIN_encryption_key_identifier_length,
byte[] IPIN_encryption_key_identifier,
hikmNativeNumber IEPB_MAC_key_identifier_length,
byte[] IEPB_MAC_key_identifier,
hikmNativeNumber OPIN_encryption_key_identifier_length,
byte[] OPIN_encryption_key_identifier,
hikmNativeNumber OEPB_MAC_key_identifier_length,
byte[] OEPB_MAC_key_identifier,
hikmNativeNumber PIN_reference_value_length,
byte[] PIN_reference_value,
hikmNativeNumber PRW_random_number_length,

DK PRW Card Number Update (CSNBDPNU)

658 Common Cryptographic Architecture Application Programmer's Guide

byte[] PRW_random_number,
hikmNativeNumber new_encrypted_PIN_block_length,
byte[] new_encrypted_PIN_block,
hikmNativeNumber new_PIN_block_MAC_length,
byte[] new_PIN_block_MAC);

DK PRW CMAC Generate (CSNBDPCG)
Use the DK PRW CMAC Generate verb to generate a message authentication code
(MAC) over specific values involved in an account number change transaction. The
input includes the current and new PAN and card data and the PIN reference
value.

The output of this service is used as input to the DK PAN Modify in Transaction
callable service, which will create the new PIN reference value (PRW) to be used to
verify the PIN.

Format
The format of CSNBDPCG.

CSNBDPCG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
current_PAN_data_length,
current_PAN_data,
new_PAN_data_length,
new_PAN_data,
current_card_data_length,
current_card_data,
new_card_data_length,
new_card_data,
PIN_reference_value_length,
PIN_reference_value,
CMAC_FUS_key_identifier_length,
CMAC_FUS_key_identifier,
CMAC_FUS_length,
CMAC_FUS)

Parameters
The parameters for CSNBDPCG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

DK PRW Card Number Update (CSNBDPNU)

Chapter 13. DK PIN methods 659

There are no keywords for this service.

current_PAN_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the
current_PAN_data variable. This value must be in the range 10 - 19.

current_PAN_data

Direction: Input
Type: String

The current PAN data. The full account number, including check digit, should
be included.

new_PAN_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the
new_PAN_data variable. This value must be in the range 10 - 19.

new_PAN_data

Direction: Input
Type: String

The new PAN data. The full account number, including check digit, should be
included.

current_card_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the
current_card_data variable. This value must be in the range 4 - 512.

current_card_data

Direction: Input/Output
Type: String

The current card data, determined by the card issuer.

new_card_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the
new_card_data variable. This value must be in the range 4 - 512.

new_card_data

Direction: Input/Output
Type: String

The new card data, determined by the card issuer.

DK PRW CMAC Generate (CSNBDPCG)

660 Common Cryptographic Architecture Application Programmer's Guide

PIN_reference_value_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PIN_reference_value parameter. This value
must be 16. On output, PIN_reference_value_length is set to 16.

PIN_reference_value

Direction: Input
Type: String

The 16-byte PIN reference value of the current PIN.

CMAC_FUS_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the CMAC_FUS_key_identifier variable. If the
CMAC_FUS_key_identifier contains a label, the length must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

CMAC_FUS_key_identifier

Direction: Input
Type: String

The identifier of the key to generate the MAC. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be MAC, and the
key usage fields must indicate GENONLY, CMAC, and DKPINAD2.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

CMAC_FUS_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable that specifies the length in bytes of the
CMAC_FUS variable. This value must be in the range 8 - 16.

CMAC_FUS

Direction: Output
Type: String

The MAC of the current and new PANs and card data strings.

Restrictions
The restrictions for CSNBDPCG.

None.

Required commands
The required commands for CSNBDPCG.

The DK PRW CMAC Generate verb requires the DK PRW CMAC Generate command
(offset X'02C4') to be enabled in the active role.

DK PRW CMAC Generate (CSNBDPCG)

Chapter 13. DK PIN methods 661

Usage notes
The usage notes for CSNBDPCG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDPCGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDPCGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber current_PAN_data_length,
byte[] current_PAN_data,
hikmNativeNumber new_PAN_data_length,
byte[] new_PAN_data,
hikmNativeNumber current_card_data_length,
byte[] current_card_data,
hikmNativeNumber new_card_data_length,
byte[] new_card_data,
hikmNativeNumber PIN_reference_value_length,
byte[] PIN_reference_value,
hikmNativeNumber CMAC_FUS_key_identifier_length,
byte[] CMAC_FUS_key_identifier,
hikmNativeNumber CMAC_FUS_length,
byte[] CMAC_FUS);

DK Random PIN Generate (CSNBDRPG)
Use the DK Random PIN Generate verb to generate a PIN and a PIN reference
value using the random process. After the PIN is generated, a PIN reference value
(PRW) is created. The PIN reference value is used to verify the PIN in other
processes. An optional encrypted PIN block is generated for printing.

Note: If the generated PIN appears in the weak PIN table, the generation process
is modified and re-tried until a valid PIN is generated.

You can use this service to perform the following tasks:
v Generate an encrypted PIN block in PBF-1 format with a PIN print key to be

printed on a PIN mailer.
v Generate a PIN reference value which can be used to verify the PIN.
v Optionally, generate an encrypted PIN block in PBF-1 format to be stored for

later use in personalizing replacement cards, along with a verifying CMAC over
the encrypted block and additional card data.

DK PRW CMAC Generate (CSNBDPCG)

662 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNBDRPG.

CSNBDRPG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data_length,
PAN_data,
card_p_data_length,
card_p_data,
card_t_data_length,
card_t_data,
PIN_length,
PRW_key_identifier_length,
PRW_key_identifier,
PIN_print_key_identifier_length,
PIN_print_key_identifier,
OPIN_encryption_key_identifier_length,
OPIN_encryption_key_identifier,
OEPB_MAC_key_identifier_length,
OEPB_MAC_key_identifier,
PIN_reference_value_length,
PIN_reference_value,
PRW_random_number_length,
PRW_random_number,
PIN_print_block_length,
PIN_print_block,
encrypted_PIN_block_length,
encrypted_PIN_block,
PIN_block_MAC_length,
PIN_block_MAC)

Parameters
The parameters for CSNBDRPG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. The keywords are
left-aligned in an 8-byte field and padded on the right with blanks. The
keywords must be in contiguous storage. The rule_array keywords are
described in Table 186 on page 664.

DK Random PIN Generate (CSNBDRPG)

Chapter 13. DK PIN methods 663

Table 186. Keywords for DK Random PIN Generate control information

Keyword Description

PIN Block output selection keyword (One, optional)

EPB Return an encrypted PIN block.

NOEPB Do not return an encrypted PIN block (EPB). This is the default.

PAN_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PAN_data parameter. The value must be in
the range 10 - 19.

PAN_data

Direction: Input
Type: String

The personal account number in character form to which the PIN is associated.
The primary account number, including check digit, should be included.

card_p_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_p_data parameter. The value must be
in the range 2 - 256.

card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp), determined by the card issuer, which is
used to differentiate between multiple cards for one account.

card_t_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_t_data parameter. The value must be
in the range 2 - 256.

card_t_data

Direction: Input
Type: String

The time-sensitive card data, determined by the card issuer, which, together
with the account number and the card_p_data, specifies an individual card.

PIN_length

Direction: Input
Type: Integer

Specifies the length of the PIN to be generated. This value must be in the
range 4 - 12.

DK Random PIN Generate (CSNBDRPG)

664 Common Cryptographic Architecture Application Programmer's Guide

PRW_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If the
PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

PRW_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to verify the PRW of the current PIN block. The key
identifier is an operational token or the key label of an operational token in
key storage. The key algorithm of this key must be AES, the key type must be
PINPRW, and the key usage fields must indicate VERIFY, CMAC, and
DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PIN_print_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PIN_print_key_identifier parameter. If the
PIN_print_key_identifier contains a label, the value must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

PIN_print_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to wrap the PIN for printing. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be PINPROT, and
the key usage fields must indicate ENCRYPT, CBC, and DKPINOPP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OPIN_encryption_key_identifier parameter.
If the OPIN_encryption_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

OPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to wrap the new PIN block. The key identifier is an
operational token or the key label of an operational token in key storage. If the
rule array indicates that no encrypted PIN block is to be returned, this value is
ignored. The key algorithm of this key must be AES, the key type must be

DK Random PIN Generate (CSNBDRPG)

Chapter 13. DK PIN methods 665

PINPROT, and the key usage fields must indicate ENCRYPT, CBC, and
DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OEPB_MAC_key_identifier parameter. If the
rule array indicates that no encrypted PIN block MAC is to be returned, this
value must be 0.

If the OEPB_MAC_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

OEPB_MAC_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to generate the CMAC of the new PRW. The key
identifier is an operational token or the key label of an operational token in
key storage. If the rule array indicates that no encrypted PIN block MAC is to
be returned, this parameter is ignored. The key algorithm of this key must be
AES, the key type must be MAC, and the key usage fields must indicate
GENONLY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PIN_reference_value_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_reference_value parameter. This value
must be 16. On output, it is set to 16.

PIN_reference_value

Direction: Output
Type: String

The calculated 16-byte PIN reference value.

PRW_random_number_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PRW_random_number parameter. The value
must be 4. On output, it is set to 4.

PRW_random_number

Direction: Output
Type: String

The 4-byte random number associated with the PIN reference value.

PIN_print_block_length

DK Random PIN Generate (CSNBDRPG)

666 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_print_block parameter. The value must
be at least 32. On output, it is set to 32.

PIN_print_block

Direction: Output
Type: String

The 32-byte encrypted PIN block to be passed to the PIN mailer function.

encrypted_PIN_block_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the encrypted_PIN_block parameter. If the rule
array indicates that no encrypted PIN block should be returned, this value
must be 0. Otherwise, it should be at least 32.

encrypted_PIN_block

Direction: Output
Type: String

The 32-byte encrypted PIN block in PBF-1 format. This parameter is ignored if
no encrypted PIN block is returned.

PIN_block_MAC_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_block_MAC parameter. If the rule_array
indicates that no PIN block MAC should be returned, this value must be 0.
Otherwise, it must be at least 8.

PIN_block_MAC

Direction: Output
Type: String

The 8-byte CMAC of the encrypted PIN block. This parameter is ignored if no
encrypted PIN block is returned.

Restrictions
The restrictions for CSNBDRPG.

None.

Required commands
The required commands for CSNBDRPG.

The DK Random PIN Generate verb requires the DK Random PIN Generate
command (offset X'02C0') to be enabled in the active role.

DK Random PIN Generate (CSNBDRPG)

Chapter 13. DK PIN methods 667

Usage notes
The usage notes for CSNBDRPG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDRPGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDRPGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PAN_data_length,
byte[] PAN_data,
hikmNativeNumber card_p_data_length,
byte[] card_p_data,
hikmNativeNumber card_t_data_length,
byte[] card_t_data,
hikmNativeNumber PIN_length,
hikmNativeNumber PRW_key_identifier_length,
byte[] PRW_key_identifier,
hikmNativeNumber PIN_print_key_identifier_length,
byte[] PIN_print_key_identifier,
hikmNativeNumber OPIN_encryption_key_identifier_length,
byte[] OPIN_encryption_key_identifier,
hikmNativeNumber OEPB_MAC_key_identifier_length,
byte[] OEPB_MAC_key_identifier,
hikmNativeNumber PIN_reference_value_length,
byte[] PIN_reference_value,
hikmNativeNumber PRW_random_number_length,
byte[] PRW_random_number,
hikmNativeNumber PIN_print_block_length,
byte[] PIN_print_block,
hikmNativeNumber encrypted_PIN_block_length,
byte[] encrypted_PIN_block,
hikmNativeNumber PIN_block_MAC_length,
byte[] PIN_block_MAC);

DK Regenerate PRW (CSNBDRP)
The DK Regenerate PRW verb generates a new PIN reference value for a changed
account number.

You can use this service to perform the following tasks:
v Generate a PIN reference value over the existing PIN and new PAN, which can

be used to verify transactions.
v Generate an encrypted PIN block in PBF-1 format to be stored for later use in

personalization of smart cards.

DK Random PIN Generate (CSNBDRPG)

668 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNBDRP.

CSNBDRP(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
card_p_data_length,
card_p_data,
card_t_data_length,
card_t_data,
encrypted_PIN_block_length,
encrypted_PIN_block,
PIN_block_MAC_length,
PIN_block_MAC,
PRW_key_identifier_length,
PRW_key_identifier,
IPIN_encryption_key_identifier_length,
IPIN_encryption_key_identifier,
IEPB_MAC_key_identifier_length,
IEPB_MAC_key_identifier,
OPIN_encryption_key_identifier_length,
OPIN_encryption_key_identifier,
OEPB_MAC_key_identifier_length,
OEPB_MAC_key_identifier,
PIN_reference_value_length,
PIN_reference_value,
PRW_random_number_length,
PRW_random_number,
new_encrypted_PIN_block_length,
new_encrypted_PIN_block,
new_PIN_block_MAC_length,
new_PIN_block_MAC)

Parameters
The parameters for CSNBDRP.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: String array

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

There are no keywords for this service.

card_p_data_length

Direction: Input
Type: Integer

DK Regenerate PRW (CSNBDRP)

Chapter 13. DK PIN methods 669

Specifies the length in bytes of the card_p_data parameter. The value must be
in the range 2 - 256.

card_p_data

Direction: Input
Type: String

The time-invariant card data (CDp), determined by the card issuer, which is
used to differentiate between multiple cards for one account.

card_t_data_length

Direction: Input
Type: Integer

Specifies the length in bytes of the card_t_data parameter. The value must be
in the range 2 - 256.

card_t_data

Direction: Input
Type: String

The time-sensitive card data, determined by the card issuer, which, together
with the account number and the card_p_data, specifies an individual card.

encrypted_PIN_block_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the encrypted_PIN_block parameter. If the rule
array indicates that no encrypted PIN block should be returned, this value
must be 0. Otherwise, it should be at least 32.

encrypted_PIN_block

Direction: Input
Type: String

The 32-byte encrypted PIN block in PBF-1 format. This parameter is ignored if
no encrypted PIN block is returned.

PIN_block_MAC_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the PIN_block_MAC parameter. If the rule array
indicates that no PIN block MAC should be returned, this value must be 0.
Otherwise, it must be at least 8.

PIN_block_MAC

Direction: Input
Type: String

The 8-byte CMAC of the encrypted PIN block. This parameter is ignored if no
encrypted PIN block is returned.

PRW_key_identifier_length

Direction: Input

DK Regenerate PRW (CSNBDRP)

670 Common Cryptographic Architecture Application Programmer's Guide

Type: Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If
PRW_key_identifier contains a label, the length must be 64. Otherwise, the
value must be at least the actual token length, up to 725.

PRW_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to verify the PRW of the current PIN block. The key
identifier is an operational token or the key label of an operational token in
key storage. The key algorithm of this key must be AES, the key type must be
PINPRW, and the key usage fields must indicate VERIFY, CMAC, and
DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

IPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the IPIN_encryption_key_identifier parameter.
If IPIN_encryption_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

IPIN_encryption_key_identifier

Direction: Input
Type: String

The identifier of the key to decrypt the PIN block containing the current PIN.
The key identifier is an operational token or the key label of an operational
token in key storage. The key algorithm of this key must be AES, the key type
must be PINPROT, and the key usage fields must indicate DECRYPT, CBC,
and DKPINAD1.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

IEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the IEPB_MAC_key_identifier parameter. If
IEPB_MAC_key_identifier contains a label, the length must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

IEPB_MAC_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to verify MAC of the inbound encrypted PIN block.
The key identifier is an operational token or the key label of an operational
token in key storage. The key algorithm of this key must be AES, the key type
must be MAC, and the key usage fields must indicate CMAC. VERIFY, and
DKPINAD1.

DK Regenerate PRW (CSNBDRP)

Chapter 13. DK PIN methods 671

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OPIN_encryption_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OPIN_encryption_key_identifier parameter.
If OPIN_encryption_key_identifier contains a label, the length must be 64.
Otherwise, the value must be at least the actual token length, up to 725.

OPIN_encryption_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to encrypt the new PIN block. The key identifier is an
operational token or the key label of an operational token in key storage. The
key algorithm of this key must be AES, the key type must be PINPROT, and
the key usage fields must indicate ENCRYPT, CBC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

OEPB_MAC_key_identifier_length

Direction: Input
Type: Integer

Specifies the length in bytes of the OEPB_MAC_key_identifier parameter. If
OEPB_MAC_key_identifier contains a label, the length must be 64. Otherwise,
the value must be at least the actual token length, up to 725.

OEPB_MAC_key_identifier

Direction: Input/Output
Type: String

The identifier of the key to generate the MAC of the new encrypted PIN block.
The key identifier is an operational token or the key label of an operational
token in key storage. The key algorithm of this key must be AES, the key type
must be MAC, and the key usage fields must indicate CMAC, GENONLY, and
DKPINOP.

If the token supplied was encrypted under the old master key, the token is
returned encrypted under the current master key.

PIN_reference_value_length

Direction: Input
Type: Integer

Specifies the length in bytes of the PIN_reference_value parameter. The value
must be 16. On output, it is set to 16.

PIN_reference_value

Direction: Input
Type: String

The 16-byte PIN reference value for comparison to the calculated value.

PRW_random_number_length

DK Regenerate PRW (CSNBDRP)

672 Common Cryptographic Architecture Application Programmer's Guide

Direction: Input
Type: Integer

Specifies the length in bytes of the PRW_random_number parameter. The value
must be 4. On output, it is set to 4.

PRW_random_number

Direction: Input
Type: String

The 4-byte random number associated with the PIN reference value.

new_encrypted_PIN_block_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the new_encrypted_PIN_block parameter. The
value must be at least 32. On output, it is set to 32.

new_encrypted_PIN_block

Direction: Output
Type: String

The 32-byte encrypted new PIN block.

new_PIN_block_MAC_length

Direction: Input/Output
Type: Integer

Specifies the length in bytes of the new_PIN_block_MAC parameter. The value
must be at least 8.

new_PIN_block_MAC

Direction: Output
Type: String

The 8-byte MAC of the new encrypted PIN block.

Restrictions
The restrictions for CSNBDRP.

None.

Required commands
The required commands for CSNBDRP.

The DK Regenerate PRW verb requires the DK Regenerate PRW command (offset
X'02C8') to be enabled in the active role.

Usage notes
The usage notes for CSNBDRP.

None.

DK Regenerate PRW (CSNBDRP)

Chapter 13. DK PIN methods 673

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBDRPJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBDRPJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber card_p_data_length,
byte[] card_p_data,
hikmNativeNumber card_t_data_length,
byte[] card_t_data,
hikmNativeNumber encrypted_PIN_block_length,
byte[] encrypted_PIN_block,
hikmNativeNumber PIN_block_MAC_length,
byte[] PIN_block_MAC,
hikmNativeNumber PRW_key_identifier_length,
byte[] PRW_key_identifier,
hikmNativeNumber IPIN_encryption_key_identifier_length,
byte[] IPIN_encryption_key_identifier,
hikmNativeNumber IEPB_MAC_key_identifier_length,
byte[] IEPB_MAC_key_identifier,
hikmNativeNumber OPIN_encryption_key_identifier_length,
byte[] OPIN_encryption_key_identifier,
hikmNativeNumber OEPB_MAC_key_identifier_length,
byte[] OEPB_MAC_key_identifier,
hikmNativeNumber PIN_reference_value_length,
byte[] PIN_reference_value,
hikmNativeNumber PRW_random_number_length,
byte[] PRW_random_number,
hikmNativeNumber new_encrypted_PIN_block_length,
byte[] new_encrypted_PIN_block,
hikmNativeNumber new_PIN_block_MAC_length,
byte[] new_PIN_block_MAC);

DK Regenerate PRW (CSNBDRP)

674 Common Cryptographic Architecture Application Programmer's Guide

Chapter 14. Using digital signatures

Use the CCA verbs described in this topic to support digital signatures to
authenticate messages.
v “Digital Signature Generate (CSNDDSG)”
v “Digital Signature Verify (CSNDDSV)” on page 680

Digital Signature Generate (CSNDDSG)
This verb generates a digital signature from hashed input data using an RSA or
ECC private key.

This verb supports the following signature formatting methods:
v ANSI X9.62 (ECDSA)
v ANSI X9.31 (RSA)
v ISO 9796-1 (RSA)
v RSA DSI PKCS 1.0 and 1.1 (RSA)
v RSA PKCS-PSS (RSA)
v Padding on the left with zeros (RSA)

Note: The maximum signature length is 512 bytes (4096 bits).

The input text should have been previously hashed using either the One-Way Hash
verb or the MDC Generate verb. If the signature formatting algorithm specifies
ANSI X9.31, you must specify the hash algorithm used to hash the text (SHA-1 or
RPMD-160). See “Formatting hashes and keys in public-key cryptography” on
page 1044.

You select the method of formatting the text through the rule_array parameter.

If the PKA_private_key_identifier specifies an RSA private key, you select the method
of formatting the text through the rule_array parameter. If the
PKA_private_key_identifier specifies an ECC private key, the ECC signature
generated is according to ANSI X9.30.

Note: For PKCS the message digest and the message-digest algorithm identifier
are combined into an ASN.1 value of type DigestInfo, which is BER-encoded to
give an octet string D (see Table 187 on page 676). D is the text string supplied in
the hash variable.

© Copyright IBM Corp. 2007, 2018 675

|

|

Format
The format of CSNDDSG.

CSNDDSG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_private_key_identifier_length,
PKA_private_key_identifier,
hash_length,
hash,
signature_field_length,
signature_bit_length,
signature_field)

Parameters
The parameter definitions for CSNDDSG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, 2, or 3.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. A keyword specifies
the method for calculating the digital signature. Each keyword is left-aligned in
an 8-byte field and padded on the right with blanks. All keywords must be in
contiguous storage. The rule_array keywords are described in Table 187.

Table 187. Keywords for Digital Signature Generate control information

Keyword Description

Digital signature formatting method (One, optional and not valid with ECDSA keyword.)

ISO-9796 Calculate the digital signature on the hash according to ISO-9796-1. Any hash method is allowed.
This is the default.

PKCS-1.0 Calculate the digital signature on the BER-encoded ASN.1 value of the type DigestInfo containing
the hash according to the RSA Data Security, Inc. Public Key Cryptography Standards #1 block
type 00. The text must have been hashed and BER-encoded before input to this service.

PKCS-1.1 Calculate the digital signature on the BER-encoded ASN.1 value of the type DigestInfo containing
the hash according to the RSA Data Security, Inc. Public Key Cryptography Standards #1 block
type 01. The text must have been hashed and BER-encoded before input to this service.

PKCS-PSS Specifies to format the digital signature on the string supplied in the hash variable as defined in
the RSA PKCS #1 v2.2 standard for the RSASSA-PSS signature scheme.

ZERO-PAD Format the hash by padding it on the left with binary zeros to the length of the RSA key
modulus. Any supported hash function is allowed.

Digital Signature Generate (CSNDDSG)

676 Common Cryptographic Architecture Application Programmer's Guide

||
|

Table 187. Keywords for Digital Signature Generate control information (continued)

Keyword Description

X9.31 Format according to the ANSI X9.31 standard. The input text must have been previously hashed
with one of the hash algorithms specified below.

Data input type (One, optional.)

HASH Process the text supplied in the hash variable as a hash digest that is to be digitally signed by the
verb. This is the default.

MESSAGE Process the text supplied in the hash variable as a message that is to be hashed using the specified
hashing-method to produce a hash digest, then use the resultant hash digest to produce a digital
signature. The text to be hashed must be a multiple of eight bits and byte-aligned.

Hash method specification (One required, if any of the X9.31, MESSAGE, or PKCS-PSS keywords are specified.
Otherwise such a specification is not allowed.)

RPMD-160 Hash the input text from the hash parameter using the RIPEMD-160 hash method.

SHA-1 Hash the input text from the hash parameter using the SHA-1 hash method.

SHA-224 Hash the input text from the hash parameter using the SHA-224 hash method. Not valid with
X9.31.

SHA-256 Hash the input text from the hash parameter using the SHA-256 hash method.

SHA-384 Hash the input text from the hash parameter using the SHA-384 hash method.

SHA-512 Hash the input text from the hash parameter using the SHA-512 hash method.

Token algorithm (One, optional)

ECDSA Generate an ECC digital signature. This keyword was introduced with CCA 4.1.0. When specified,
this is the only keyword permitted in the rule_array.

RSA Generate an RSA digital signature. This is the default.

PKA_private_key_identifier_length

Direction: Input
Type: Integer

The length of the PKA_private_key_identifier field. The maximum size is 3500
bytes.

PKA_private_key_identifier

Direction: Input
Type: String

An internal token or label of the RSA private key or retained key. If the
signature format is X9.31, the modulus of the RSA key must have a minimum
length of 1024 bits or greater. If the signature algorithm is ECDSA, this
parameter must be a token or label of an ECC private key.

If the digital-signature hash formatting method is PKCS-PSS, the RSA
key-token must have a private key section ID of X'30' or X'31'. Refer to “PKA
Key Translate (CSNDPKT)” on page 713 to translate an RSA key-token as
needed to the format desired.

hash_length

Direction: Input
Type: Integer

The length of the hash parameter in bytes. It must be the exact length of the
text to sign. The maximum size is 512 bytes. If you specify ZERO-PAD in the
rule_array parameter, the length is restricted to 36 bytes unless the RSA key is a

Digital Signature Generate (CSNDDSG)

Chapter 14. Using digital signatures 677

|

||
|

||
|
|

|
|

||
|

|
|
|

signature-only key. In this case, the maximum length is 512 bytes.

The hash length limit is controlled by an access control point. Only RSA key
management keys are affected by this access control point. The limit for RSA
signature-only keys is 512 bytes. This access control point is always disabled in
the default role. You must have a TKE workstation to enable it.

If you specify PKCS-PSS, the first four bytes must contain the salt length. The
remaining bytes of the parameter must contain the hash or message. The value
will be 4 + length of the hash or message.

If MESSAGE is not specified, the maximum length is 68 bytes. If MESSAGE is
specified, the value is the length of the message to be hashed. The maximum
length is in the range 64 bytes - 32 MB.

hash

Direction: Input
Type: String

A pointer to a string variable containing the application-supplied text on which
to generate the signature.

The parameter can identify the hash to be signed or the message to be hashed
and signed, depending on the specified rule-array keyword. If the MESSAGE
keyword is specified, the input data is treated as data that must be hashed by
the verb and then signed. Otherwise, if HASH is specified, the input data is
treated as hash digest that is to be signed.

For PKCS formatting, it must be BER-encoded as previously described. For
X9.31, the hash algorithms must have been either SHA-1 or RPMD-160. See
the rule_array parameter for more information.

If PKCS-PSS is specified, the data variable includes an additional 4 byte field
that contains the salt length in big endian format. This length must be
prepended to the hash or message. To allow use of a salt length less than the
hash length, but not zero, enable the Allow Small Salt command (offset
X'033C') in the active role. A salt length value can be either 0, or be in the
range from 20 through the size allowed by the RSA modulus in bytes. The size
of the data to be signed is still governed by the size of the RSA modulus. The
salt length cannot exceed 490 bytes. The modulus size and hash length affect
the maximum salt length for a given key modulus size and specified hash. The
maximum salt length equals modulus_size/8 – hash_length - 2. For example,
with a 4096 bit modulus key and SHA-1 hash, the maximum salt length
becomes (4096/8) – 20 - 2 = 490.

Also, if PKCS-PSS is specified, you must specify the hashing method
specification keyword indicating the hash algorithm used for the hash data
identified by the data parameter.

signature_field_length

Direction: Input/Output
Type: Integer

The length in bytes of the signature_field to contain the generated digital
signature. The maximum size is 512 bytes.

For RSA, this must be at least the RSA modulus size (rounded up to a multiple
of 32 bytes for the X9.31 signature format, or one byte for all other signature
formats).

Digital Signature Generate (CSNDDSG)

678 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

For RSA, this field is updated with the minimum byte length of the digital
signature.

For the ECDSA signature algorithm, R concatenated with S is the digital
signature. The maximum output value will be 1042 bits (131 bytes). The size of
the signature is determined by the size of P. Both R and S will have size P. For
prime curves, the maximum size is 2 * 521 bits. For Brainpool curves, the
maximum size is 2 * 512 bits.

signature_bit_length

Direction: Output
Type: Integer

The bit length of the digital signature generated. For ISO-9796 this is 1 less
than the modulus length. For other RSA processing methods, this is the
modulus length.

signature_field

Direction: Output
Type: String

The digital signature generated is returned in this field. The digital signature is
in the low-order bits (right-aligned) of a string whose length is the minimum
number of bytes that can contain the digital signature. This string is
left-aligned within the signature_field. Any unused bytes to the right are
undefined.

Restrictions
The restrictions for CSNDDSG.

Although ISO-9796 does not require the input hash to be an integral number of
bytes in length, this verb requires you to specify the hash_length in bytes.

X9.31 requires the RSA token to have a minimum modulus bit length of 1024 bits,
and the length must also be a multiple of 256 bits (or 32 bytes).

The length of the hash parameter in bytes must be the exact length of the text to
sign. The maximum size is 256 bytes. If you specify ZERO-PAD in the rule_array
parameter, the length is restricted to 36 bytes unless the RSA key is a signature
only key, then the maximum length is 256 bytes.

The hash length limit is controlled by an access control point. If OFF (disabled), the
maximum hash length limit for ZERO-PAD is the modulus length of the PKA
private key. If ON (enabled), the maximum hash length limit for ZERO-PAD is 36
bytes. Only RSA key management keys are affected by this access control point.
The limit for RSA signature use only keys is 256 bytes. This new access control
point is always disabled in the default role. You must have a TKE workstation to
enable it.

Required commands
The required commands for CSNDDSG.

This verb requires the Digital Signature Generate command (offset X'0100') to be
enabled in the active role.

Digital Signature Generate (CSNDDSG)

Chapter 14. Using digital signatures 679

With the use of the DSG ZERO-PAD unrestricted hash length command (offset
X'030C'), the hash-length restriction does not apply when using ZERO-PAD
formatting.

Usage notes
The usage notes for CSNDDSG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDDSGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDDSGJ)

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PKA_private_key_identifier_length,
byte[] PKA_private_key_identifier,
hikmNativeNumber hash_length,
byte[] hash,
hikmNativeNumber signature_field_length,
hikmNativeNumber signature_bit_length,
byte[] signature_field);

Digital Signature Verify (CSNDDSV)

This verb verifies a digital signature using an RSA or ECC public key in a CCA
key token or in an X.509 certificate.

This verb verifies digital signatures generated with these methods:
v ANSI X9.62 (ECDSA)
v ANSI X9.31 (RSA)
v ISO 9796-1 (RSA)
v RSA DSI PKCS 1.0 and 1.1 (RSA)
v RSA PKCS-PSS (RSA)
v Padding on the left with zeros (RSA)

This verb can use the RSA or ECC public key, depending on the digital signature
algorithm used to generate the signature.

This verb can also use the public keys that are contained in trusted blocks,
regardless of whether the block also contains rules to govern its use when
generating or exporting keys with the Remote Key Export verb. The format of the
trusted block enables Digital Signature Verify to distinguish it from other RSA key
tokens, and therefore no special rule array keyword or other parameters are
required in order to indicate that the trusted block is being used. However, if the
Digital Signature Generate verb is used with the TPK-ONLY keyword in the
rule_array, an error will occur if the PKA_public_key_identifier does not contain a
trusted block.

Digital Signature Generate (CSNDDSG)

680 Common Cryptographic Architecture Application Programmer's Guide

|
|

|

|

If the input text is specified to be a hash, then it should have been previously
hashed. You can use the One-Way Hash verb. See also “Formatting hashes and
keys in public-key cryptography” on page 1044.

An X.509 certificate couples an identity to a PKA (RSA or ECC) public key. As of
CCA 6.0, such an X.509 certificate can be used by the CSNDDSV verb instead of a
PKA (RSA or ECC) public key token. Because X.509 certificates require
authentication against a PKI, the TKE workstation must be used to install the trust
roots that will be used to validate your operational X.509 certificates at run-time.

If the input text is specified to be a message (by the MESSAGE key word), or if
PKCS-PSS is specified, then apply a required hashing-method specification
keyword. If the PKCS-PSS keyword is specified, optionally specify a signature
checking rule to indicate whether the derived salt length is an exact match to the
input salt length (the default), or is not an exact match (requires special
authorization).

See also “Formatting hashes and keys in public-key cryptography” on page 1044.

Note: The maximum signature length is 256 bytes (2048 bits).

EC signature verification update

Beginning with CCA Release 5.0 of CSNDDSV for the CEX5C, checking of EC
signatures is strengthened with new hardware support. For most invalid signatures
the typical response of return code 4, reason code 429 is still returned. However,
for some cases where the signature value r or value s is mathematically off the
curve described by the q value from the EC key, that is, when r > (q-1) or s >
(q-1), then return code 12 with reason code 769 is returned, indicating a rejection
from the EC hardware layer. The decision to return the different error for the more
serious case is reached when the host library loads (at application startup) by the
value of a new environment variable: CSU_EC_CHECKCURVE

For appropriate failure cases, if the value of CSU_EC_CHECKCURVE is 1, then the new
return/reason code 12/769 is returned. Otherwise, 4/429 is returned. The default
value of CSU_EC_CHECKCURVE is 0, to maintain compatibility with prior releases. IBM
recommends that customers prepare their applications and set the new
environment variable to 1. Use the following command to set the variable (also to
set it in a profile):
export CSU_EC_CHECKCURVE=1

Some error path test cases with pre-figured values may need to be updated, and
the new return/reason code handling may need to be added to your application as
a different type of signature verification failure. The adapter is functioning
normally and no service action is required. Note that this change does not narrow
valid verification cases or add restrictions. All valid signatures when passed to
CSNDDSV with the correct key still verify with return code of 0, reason code of 0.

Advantages of the new verification granularity

The new use of return code/reason code 12/769 can help you with problem
determination for the following practical cases:
v Check the bytes of the ECDSA signature. The r value is mathematically

determined from the order of G of the curve and a random number. If the value
of r or the value of s equals or exceeds the order of G of the curve, then the
signature has been corrupted. No value or range of values can be statically ruled

Digital Signature Verify (CSNDDSV)

Chapter 14. Using digital signatures 681

|
|
|

|
|
|
|
|

|
|
|
|
|
|

out for any bytes of r or s because of the random components. However you
may be able to detect a corruption pattern by inspection. The s value is the same
byte length as r (which is the same length as the curve order of G). The s value
immediately follows r in the signature.

v Certain types of key corruption may also cause this error - forcing the key to be
off the curve. Since public keys are passed in the clear, this is hard to detect
until the public key is actually used, but again inspection of the key data may
help.

v While using the wrong key type on the same curve size (example: substituting a
P384 key for a BP384 key) will probably not generate 12/769 instead of 4/429,
using a key for a smaller curve may generate 12/769 (example: substituting a
P224 key for a P256 key).

Format
The format of CSNDDSV.

CSNDDSV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_public_key_identifier_length,
PKA_public_key_identifier,
hash_length,
hash,
signature_field_length,
signature_field)

Parameters
The parameters for CSNDDSV.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0, 1, 2, or 3.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. A keyword specifies
the method to use to verify the digital signature. Each keyword is left-aligned
in an 8-byte field and padded on the right with blanks. All keywords must be
in contiguous storage. The rule_array keywords are described in Table 188.

Table 188. Keywords for Digital Signature Verify control information

Keyword Description

Digital signature formatting method (Optional and not valid with ECDSA keyword.)

Digital Signature Verify (CSNDDSV)

682 Common Cryptographic Architecture Application Programmer's Guide

Table 188. Keywords for Digital Signature Verify control information (continued)

Keyword Description

ISO-9796 Verify the digital signature on the hash according to ISO-9796-1. Any hash method is allowed.
This is the default.

PKCS-1.0 Verify the digital signature on the BER-encoded ASN.1 value of the type DigestInfo as specified in
the RSA Data Security, Inc. Public Key Cryptography Standards #1 block type 00. The text must
specify BER encoded hash text.

PKCS-1.1 Verify the digital signature on the BER-encoded ASN.1 value of the type DigestInfo as specified in
the RSA Data Security, Inc. Public Key Cryptography Standards #1 block type 01. The text must
specify BER encoded hash text.

PKCS-PSS Verify the digital signature on the string supplied in the hash variable as defined in the RSA PKCS
#1 v2.2 standard for the RSASSA-PSS signature scheme.

ZERO-PAD Format the hash by padding it on the left with binary zeros to the length of the PKA key
modulus. Any supported hash function is allowed.

X9.31 Format according to ANSI X9.31 standard.

Data input type (One, optional).

HASH Process the text supplied in the hash variable as a hash digest that is to be digitally signed by the
verb. This is the default.

MESSAGE Process the text supplied in the hash variable as a message. This means, that the text is first
hashed using the specified hashing-method to produce a hash digest. Then the resulting hash
digest is used to produce a digital signature. The text to be hashed, identified by the hash
parameter, must be a multiple of eight bits and byte-aligned.

Hash method specification (One required when the MESSAGE keyword is specified or one required when the
HASH keyword is specified and the hash formatting method is PKCS-PSS).

RPMD-160 The input value supplied in the hash parameter is generated using the RIPEMD-160 hash method.
Not valid with the PKCS-1.0, PKCS-1.1, or PKCS-PSS signature methods.

SHA-1 The input value supplied in the hash parameter is generated using the SHA-1 hash method.

224 The input value supplied in the hash parameter is generated using the 224 hash method. Not
valid with the X9.31 signature method.

SHA-256 The input value supplied in the hash parameter is generated using the SHA-256 hash method.

SHA-384 The input value supplied in the hasha parameter is generated using the SHA-384 hash method.

SHA-512 The input value supplied in the hash parameter is generated using the SHA-512 hash method.

Signature checking rule (One optional. Valid only with the PKCS-PSS digital signature hash formatting method.)

EXMATCH Specifies that the 4-byte salt length prepended to the data identified by the hash parameter must
be an exact match to the salt length derived from the signature. This is the default.

NEXMATCH Specifies that the 4-byte salt length prepended to the data identified by the hash parameter does
not have to be an exact match to the salt length derived from the signature.
Note: The derived salt length cannot be less than the prepended length.

Trusted public key restriction (Optional. Not valid with ECDSA keyword. Valid only with trusted blocks. See
“Trusted blocks” on page 968.)

TPK-ONLY Permits the use of only public keys contained in trusted blocks. By specifying this keyword, the
use of regular CCA RSA key tokens is rejected and only the use of a (trusted) public key supplied
by the PKA_public_key_identifier parameter can be used to verify the digital signature, thus
assuring a sensitive signature verification operation is limited to trusted public keys.

If TPK-ONLY is specified, the PKA_public_key_identifier parameter must identify a trusted block
that contains two sections after the trusted block token header: (1) trusted block trusted RSA
public key (section X'11'), and (2) trusted block information (section X'14'). Section X'14' is required
for all trusted blocks. Section X'11' contains the trusted public key, and its usage rules must
indicate it can be used in digital signature operations.

Digital Signature Verify (CSNDDSV)

Chapter 14. Using digital signatures 683

|

|

||
|

||
|
|
|

|
|

||
|

||

||
|

||

||

||

|

||
|

||
|
|

Table 188. Keywords for Digital Signature Verify control information (continued)

Keyword Description

Token algorithm (One, optional)

ECDSA Verify an ECC digital signature. When specified, this is the only keyword permitted in the
rule_array.

RSA Verify an RSA digital signature. This is the default.

Certificate validation method (One required if the token or label in PKA_public_key_identifier is a certificate.
Otherwise, a validation method must not be specified.)

RFC-2459 Validate the certificate using the semantics of RFC-2459.

RFC-3280 Validate the certificate using the semantics of RFC-3280.

RFC-5280 Validate the certificate using the semantics of RFC-5280.

RFC-ANY Attempt to validate the certificate by first using the semantics of RFC-2459, then the semantics of
RFC-3280, and finally, the semantics of RFC-5280.

Tip:

v Use the SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512 hashing method
to create the hash digest for PKCS-1.0 or PKCS-1.1.
Also, use one of these hashing methods to create the hash digest for ECDSA
and PKCS-PSS.

v Use any hashing method to create the hash digest for ISO-9796 and
ZERO-PAD.

v Use RIPEMD-160, SHA-1, SHA-256, SHA-384, or SHA-512 hashing method
to create the hash digest for X9.31.

v Refer to “Formatting hashes and keys in public-key cryptography” on page
1044 for a discussion of hash formatting methods.

PKA_public_key_identifier_length

Direction: Input
Type: Integer

The length of the PKA_public_key_identifier field containing the public key
token or label. The maximum size is 3500 bytes.

PKA_public_key_identifier

Direction: Input
Type: String

A token or label of the RSA public key or internal trusted block. If this
parameter contains a token or the label of an internal trusted block, the
rule_array parameter must specify TPK-ONLY. If the signature algorithm is
ECDSA, this must be a token label or an ECC public key.

hash_length

Direction: Input
Type: Integer

The length of the hash parameter in bytes. It must be the exact length of the
text to sign. The maximum size is 512 bytes. If you specify ZERO-PAD in the
rule_array parameter, the length is restricted to 36 bytes unless the RSA key is a
signature-only key. In this case, the maximum length is 512 bytes.

Digital Signature Verify (CSNDDSV)

684 Common Cryptographic Architecture Application Programmer's Guide

|
|

||

||

||

||
|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|

The hash length limit is controlled by an access control point. Only RSA key
management keys are affected by this access control point. The limit for RSA
signature-only keys is 512 bytes. This access control point is always disabled in
the default role. You must have a TKE workstation to enable it.

If you specify PKCS-PSS, the first four bytes must contain the salt length. The
remaining bytes of the parameter must contain the hash or message. The value
will be 4 + length of the hash or message.

If MESSAGE is not specified, the maximum length is 68 bytes. If MESSAGE is
specified, the value is the length of the message to be hashed. The maximum
length is in the range 64 bytes - 32 MB.

hash

Direction: Input
Type: String

The data parameter is a pointer to a string variable containing the hash to be
signed. This verb can identify the hash to be verified or the message to be
hashed and verified, depending on whether the HASH or MESSAGE input
type keyword specified. If MESSAGE is specified, the input data is treated as
data that must be hashed by the verb and then verified, otherwise the input
data is treated as hash information that is to be signed.

If PKCS-PSS is specified (Release 5.3 or later), the data variable includes an
additional 4 byte field that contains the salt length in big endian format. This
length must be prepended to the hash or message. To allow use of a salt length
less than the hash length, but not zero, enable the Allow Small Salt command
(offset X'033C') in the active role. A salt length value can be 0 and 20 through
the size allowed by the RSA modulus in bytes. Please note that the size of the
data to be signed is still governed by the size of the RSA modulus. Currently,
the salt length cannot exceed 490 bytes. The modulus size and hash length
affect the maximum salt length for a given key modulus size and specified
hash. The maximum salt length equals modulus_size/8 – hash_length - 2. For
example, with a 4096 bit modulus key and SHA-1 hash, the maximum salt
length becomes (4096/8) – 20 - 2 = 490.

If PKCS-PSS is specified for verification with normal processing, the salt length
derived from the signature must be an exact match (keyword EXMATCH, the
default) for the 4-byte salt length that is prepended in big endian format to the
beginning of this parameter. With the Allow Not Exact Salt Length command
(offset X'033B') enabled in the active role, keyword NEXMATCH can be
specified to allow signature verification when the salt length derived from the
signature is not an exact match for the salt length specified with the data
parameter. Salt lengths derived from the signature are not allowed to be less
than the value specified with the data parameter. Specifying the keyword and
enabling the access control point in the active role will allow an additional
level of checking. Currently, the salt length cannot exceed 490 bytes.

signature_field_length

Direction: Input
Type: Integer

The length in bytes of the signature_field parameter. The maximum size is 512
bytes.

signature_field

Digital Signature Verify (CSNDDSV)

Chapter 14. Using digital signatures 685

|
|
|
|

|
|
|

|
|
|

Direction: Input
Type: String

This field contains the digital signature to verify. The digital signature is in the
low-order bits (right-aligned) of a string whose length is the minimum number
of bytes that can contain the digital signature. This string is left-aligned within
the signature_field.

Restrictions
The restrictions for CSNDDSV.

The ability to recover a message from a signature (which ISO-9796 allows but does
not require) is not supported.

The exponent of the RSA public key must be odd.

Although ISO-9796 does not require the input hash to be an integral number of
bytes in length, this service requires you to specify the hash_length in bytes.

X9.31 requires the RSA token to have a minimum modulus bit length of 1024, and
the length must also be a multiple of 256 bits (or 32 bytes).

Required commands
The required commands for CSNDDSV.

This verb requires the Digital Signature Verify command (offset X'0101') to be
enabled in the active role.

Usage notes
The usage notes for CSNDDSV.

None.

Related information
Additional information for CSNDDSV.

Trusted Block Create (CSNDTBC), Remote Key Export (CSNDRKX)

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDDSVJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDDSVJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber PKA_public_key_identifier_length,
byte[] PKA_public_key_identifier,
hikmNativeNumber hash_length,

Digital Signature Verify (CSNDDSV)

686 Common Cryptographic Architecture Application Programmer's Guide

byte[] hash,
hikmNativeNumber signature_field_length,
byte[] signature_field);

Digital Signature Verify (CSNDDSV)

Chapter 14. Using digital signatures 687

Digital Signature Verify (CSNDDSV)

688 Common Cryptographic Architecture Application Programmer's Guide

Chapter 15. Managing PKA cryptographic keys

Use these verbs to generate and manage PKA keys.
v “PKA Key Generate (CSNDPKG)”
v “PKA Key Import (CSNDPKI)” on page 696
v “PKA Key Token Build (CSNDPKB)” on page 699
v “PKA Key Token Change (CSNDKTC)” on page 710
v “PKA Key Translate (CSNDPKT)” on page 713
v “PKA Public Key Extract (CSNDPKX)” on page 720
v “Remote Key Export (CSNDRKX)” on page 722
v “Trusted Block Create (CSNDTBC)” on page 734
v “Public Infrastructure Certificate (CSNDPIC)” on page 738
v “Public Infrastructure Manage (CSNDPIM)” on page 744

PKA Key Generate (CSNDPKG)
Use the PKA Key Generate verb to generate an RSA public-private key-pair for use
with the RSA algorithm. You can also use the verb to generate an ECC
public-private key pair for use with the ECC algorithm..

Input to the PKA Key Generate verb is either a skeleton key token that has been
built by the PKA Key Token Build verb, or a valid internal token. In the case of a
valid internal token, the verb will generate a key with the same modulus length
and the same exponent. In the case of a valid internal ECC token, PKA Key
Generate generates a key based on the curve type and size. Internal tokens with a
X'09' section are not supported.

The PKA input skeleton determines the following characteristics of the generated
key-pair:
v the key type: RSA or ECC
v the RSA key length (modulus size) or ECC Brainpool or Prime curve size of p in

bits: 192, 224, 256, 384 or 521 for Prime curves and 160, 192, 224, 256, 320, 384, or
512 for Brainpool curves

v The RSA public exponent: valued to 3, 65537, or random. Beginning with
Release 5.2, a value of 5, 17, or 257 is valid. See “Restrictions” on page 694.

Note: The value 3, 5, 17, 257, and 65537 are the first Fermat numbers. Fermat
numbers take the form Fn = 2(2n) + 1, where n is a non-negative integer. The first
five Fermat numbers are known to be prime.

v any RSA private-key optimization (Modulus-Exponent versus
Chinese-Remainder Theorem format)

v any signatures and signature-information that should be associated with the
public key.

v for EXX key generation: Key usage information and optionally, application
associated data

An ECC key is always randomly generated by this verb. Normally an RSA key is
randomly generated. However, an RSA key can be derived using regeneration data.
By providing regeneration data for an RSA key, a seed can be supplied so that the

© Copyright IBM Corp. 2007, 2018 689

|

|

same value of the generated key can be obtained in multiple instances. This can be
useful in testing situations or where the regeneration data can be securely held for
key generation. The process for generating a particular key pair from regeneration
data might vary between products. Therefore, do not expect to obtain the same key
pair for a given regeneration data string between products.

The generated private-key can be returned in one of three forms for RSA and ECC:

Unenciphered
When rule-array keyword CLEAR is specified, the PKA private key is
returned in cleartext form. The clear key is returned in an external PKA
key-token.

Enciphered using a master key
When rule-array keyword MASTER is specified, a master key is used to
protect the private key or its OPK if the private key has one. The
enciphered key is returned in an internal PKA key-token. ECC keys
(section X'20') and RSA keys in section X'30' and X'31' have an OPK that is
enciphered by the APKA master key. All other RSA keys are enciphered by
the PKA master key.

Enciphered using a transport key
When rule-array keyword XPORT is specified, a transport key
(key-encrypting key) is used to protect the private key or its object
protection key (OPK) if the private key has one. The enciphered key is
returned in an external PKA key-token. By definition, an ECC private-key
section always has an OPK, while an RSA private-key section either has an
OPK or it does not, depending on the section identifier. v The OPK of an
external ECC private-key is enciphered under a variable-length AES
EXPORTER or IMPORTER key-encrypting key after the OPK is used to
encipher the private key. v Beginning with Release 4.4, there are two new
private key sections defined, X'30' and X'31'. When the key token is
external, the OPK data contained in either private-key section X'30' or X'31'
is enciphered under a variable-length AES EXPORTER or IMPORTER
key-encrypting key after it is used to encipher the private key. An external
RSA private-key that does not have a private-key section of X'30' or X'31' is
enciphered under a fixed-length DES EXPORTER or IMPORTER
key-encrypting key.

Note: A private key enciphered by an EXPORTER key can be imported
onto a node where the corresponding IMPORTER key is installed. In
contrast, a private key enciphered by an IMPORTER key can be imported
onto the generating node.

With the exception of RSA private key sections X'30' and X'31', use the RETAIN
rule-array keyword to cause an RSA private key to be retained within the
coprocessor. Incorporate the key label to be used later to reference the newly
generated key in the key name section of the skeleton key-token. Later, use this
label to employ the key in verbs such asDigital Signature Generate,Symmetric Key
Import, SET Block Decompose, and PKA Decrypt.

On output, the verb returns an external key-token containing the public key in the
generated_key_identifier variable. This variable returned by the verb does not
contain the private key.

PKA Key Generate (CSNDPKG)

690 Common Cryptographic Architecture Application Programmer's Guide

Note: When using the RETAIN private-key encryption option, the key label
supplied in the skeleton key-token references the key storage within the
coprocessor, and, in this case, must not reference a record in the host-system PKA
key-storage.

The rule array keyword CLONE flags a generated and retained RSA private-key as
usable in an engine cloning process. Cloning is a technique for copying sensitive
coprocessor information from one coprocessor to another (see Chapter 6,
“Understanding and managing master keys,” on page 83). ECC private keys and
RSA keys in private key sections X'30' or X'31' are not usable in an engine cloning
process.

If you include an RSA public-key certificate section within the PKA skeleton
key-token, the cryptographic engine signs a certificate with the key that is
designated in the RSA public-key certificate signature subsection. This technique
causes the cryptographic engine to sign the newly generated RSA public key using
another key that has been retained within the engine, including the newly
generated key (producing a self-signature). You can obtain more than one signature
on the public key when you include multiple signature subsections in the skeleton
key token. See “PKA public-key certificate section” on page 885.

Tip: The verb returns a section X'06' RSA private-key token 1024-bit
Modulus-Exponent with OPK format when you request a Modulus Exponent
internal key even though you have specified a type X'02' RSA private-key 1024-bit
Modulus Exponent skeleton key token.

Format
The format of CSNDPKG.

CSNDPKG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
regeneration_data_length,
regeneration_data,
skeleton_key_identifier_length,
skeleton_key_identifier,
transport_key_identifier,
generated_key_identifier_length,
generated_key_identifier)

Parameters
The parameter definitions for CSNDPKG.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

PKA Key Generate (CSNDPKG)

Chapter 15. Managing PKA cryptographic keys 691

rule_array

Direction: Input
Type: String array

A keyword that provides control information to the verb. A keyword is
left-aligned in an 8-byte field and padded on the right with blanks. The
rule_array keywords are described in Table 189.

Table 189. Keywords for PKA Key Generate control information

Keyword Description

Private key encryption (One, required)

CLEAR Return the private key in cleartext. The private key in cleartext is an external token. This
keyword is valid only for RSA and ECC keys.

MASTER Encipher the private key or OPK using the PKA master-key for an RSA key, or the OPK using
the APKA master-key for an ECC key. The transport_key_identifier parameter should specify a
null key-token. The keyword is not supported if a skeleton token with a 09 section is provided.

RETAIN Retains the private key within the cryptographic engine and returns the public key. This is only
valid for RSA signature keys. Because of this, the RETAIN keyword is not supported for:
v A skeleton token with a X'09' section provided.
v An ECC token.

Before using this keyword, see the information about retained keys in “Using retained keys” on
page 485.
Note: Take special notice on the types of skeleton key tokens that can be passed. The PKA Key
Token Build verb will, of course, let you create many more types of skeleton key tokens than
can be used to generate retained keys, because this is the minority of supported function.

XPORT Enciphers the private key under the IMPORTER or EXPORTER key-encrypting-key identified
by the transport_key_identifier parameter. For an RSA key, this is an EXPORTER or IMPORTER
transport key in a fixed-length operational DES key-token. For an ECC key, this is an
EXPORTER or IMPORTER transport key in an operational variable-length AES key-token. This
keyword is valid only for RSA and ECC keys.

RETAIN option (one, optional). Valid only with the RETAIN keyword.

CLONE Mark a generated and retained private key as usable in cryptographic engine cloning process.
This keyword is supported only if RETAIN is also specified. Only valid for RSA keys. The
keyword is not supported for:
v A skeleton token with a X'09' section provided
v An ECC token

Regeneration data option (One, optional)

ITER-38 Force 38 iterations of tests for primality, as required by ANSI X9.31 for the Miller-Rabin
primality tests. This option produces a more secure key, but it is labor intensive. This keyword
is invalid for ECC key generation. This keyword was introduced with CCA 4.1.0.

Transport key-type (one, optional; one required if transport_key_identifier is a label). If this keyword is specified, it
must match the type of key to be transported, whether the identifier is a label or not.

OKEK-AES The outbound key-encrypting key represents an AES key-token.

OKEK-DES The outbound key-encrypting key represents a DES key-token. This is the default.

regeneration_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
regeneration_data variable. This parameter must be 0 for ECC tokens. For
RSA tokens, the value must be 8 - 512.

PKA Key Generate (CSNDPKG)

692 Common Cryptographic Architecture Application Programmer's Guide

If the value is 0, the generated keys are based on a random-seed value. If this
value is between 8 - 256, the regeneration data is hashed to form a seed value
used in the key generation process to provide a means for recreating a
public-private key pair.

regeneration_data

Direction: Input
Type: String

This field points to a string variable containing a string used as the basis for
creating a particular public-private key pair in a repeatable manner. The
regeneration data is hashed to form a seed value used in the key generation
process and provides a means for recreating a public-private key pair.

skeleton_key_identifier_length

Direction: Input
Type: Integer

The length of the skeleton_key_identifier parameter in bytes. The maximum
allowed value is 3500 bytes.

skeleton_key_identifier

Direction: Input
Type: String

A pointer to the application-supplied skeleton key token generated by PKA
Key Token Build, or the label of the token that contains the required modulus
length and public exponent for RSA key generation, or the required curve type
and bit length for ECC key generation.

If RETAIN was specified and the skeleton_key_identifier is a label, the label must
match the private key name of the key. For RSA keys, the skeleton_key_identifier
parameter must contain a token that specifies a modulus length in the range
512 - 4096 bits.

transport_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an operational AES or DES
key-encrypting-key token, a null key-token, or a key label of such a key. Use
an IMPORTER key to encipher a private key to be used at this node. Use an
EXPORTER key to encipher a private key to be used at another node. Choose
one of the following:
v When generating an ECC key with the XPORT rule-array keyword, provide

the variable-length symmetric IMPORTER or EXPORTER key-token to be
used to wrap the generated ECC key. Key bit lengths of 128, 192, and 256
are supported. If this parameter points to a key label, specify rule-array
keyword OKEK-AES to indicate that the AES key-storage dataset contains
the key token.

v When generating an RSA key with the XPORT rule-array keyword, provide
the fixed-length DES IMPORTER or EXPORTER key-token to be used to
wrap the generated RSA key. If this parameter points to a key label, specify
rule-array keyword OKEK-DES to indicate that the DES key-storage dataset
contains the key token.

PKA Key Generate (CSNDPKG)

Chapter 15. Managing PKA cryptographic keys 693

v If the XPORT rule-array keyword is not specified, specify a null key-token.
If this parameter points to a key label, specify keyword OKEK-AES for an
ECC key or keyword OKEK-DES for an RSA key.

generated_key_identifier_length

Direction: Input/Output
Type: Integer

The length of the generated key token. The field is checked to ensure that it is
at least equal to the size of the token being returned. The maximum size is
3500 bytes. On output, this field is updated with the actual token length.

generated_key_identifier

Direction: Input/Output
Type: String

The internal key token or key label of the generated RSA or ECC key. When
generating an RSA retained key, on output the verb returns the public token in
this variable.

If the key label identifies a key record in PKA key-storage:
v A record must already exist in the PKA key storage file with this same label

or the verb will fail
v The generated key token replaces any key token associated with the label.
v the generated_key_token_length returned to the application will be the same as

the input length.

If the first byte of the identified string does not indicate a key label (that is, not
in the range X'20' - X'FE'), and the variable is of sufficient length to receive the
result, then the generated key token is returned in the identified variable.

Restrictions
The restrictions for CSNDPKG.
v The maximum public exponent is 17 bits for any key that has a modulus greater

than 2048 bits.
v Not all IBM implementations of CCA support a CRT form of the RSA private

key; check the product-specific literature. The IBM implementations support an
optimized RSA private key (a key in Chinese Remainder Theorem format). The
formats vary between versions.

v See “PKA key tokens” on page 880 for the formats used when generating the
various forms of key tokens.

v When generating a key for use with ANSI X9.31 digital signatures, the modulus
length must be: 1024, 1280, 1536, 1792, 2048, or 4096 bits.

v The key label used for a retained key must not exist in the external PKA
key-storage held on the hard disk drive.

v Due to potential loss of a retained private key within the cryptographic engine,
retained keys should be avoided for key management purposes.

v 2048-bit RSA keys may have a public exponent in the range of 1 - 256 bytes.
v 4096-bit RSA key public exponents are restricted to the values 3 and 65537.

RSA key generation has the following restrictions:
v For Modulus-Exponent, there are restrictions on the modulus, public exponent,

and private exponent.
v For CRT, there are restrictions on dp, dq, U, and the public exponent.

PKA Key Generate (CSNDPKG)

694 Common Cryptographic Architecture Application Programmer's Guide

See the Key value structure in “PKA Key Token Build (CSNDPKB)” on page 699
for a summary of restrictions.

Required commands
The required commands for CSNDPKG.
v This verb requires the PKA Key Generate command (offset X'0103') to be enabled

in the active role.
v With the CLONE rule-array keyword, enable the PKA Key Generate - Clone

command (offset X'0204').
v With the CLEAR rule-array keyword, enable the PKA Key Generate - Clear RSA

Key command (offset X'0205') in the hardware.
v To generate ECC keys with the CLEAR rule-array keyword, this verb requires

the PKA Key Generate - Clear ECC keys command (offset X'0326') to be enabled
in the active role.

v To generate keys based on the value supplied in the regeneration_data variable,
you must enable one of these commands:
– When not using the RETAIN keyword, enable the PKA Key Generate - Permit

Regeneration Data command (offset X'027D').
– When using the RETAIN keyword, enable the PKA Key Generate - Permit

Regeneration Data Retain command (offset X'027E').
v To disallow the wrapping of a key with a weaker key-encrypting key, enable the

Prohibit weak wrapping - Transport keys command (offset X'0328') in the
active role. This command affects multiple verbs. See Chapter 24, “Access control
points and verbs,” on page 1047.

v To receive a warning when wrapping a key with a weaker key-encrypting key,
enable the Warn when weak wrap - Transport keys command (offset X'032C') in
the active role. The Prohibit weak wrapping - Transport keys command (offset
X'0328') overrides this command.

Usage notes
Usage notes for CSNDPKG.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDPKGJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDPKGJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber regeneration_data_length,
byte[] regeneration_data,
hikmNativeNumber skeleton_key_identifier_length,
byte[] skeleton_key_identifier,
byte[] transport_key_identifier,
hikmNativeNumber generated_key_identifier_length,
byte[] generated_key_identifier);

PKA Key Generate (CSNDPKG)

Chapter 15. Managing PKA cryptographic keys 695

PKA Key Import (CSNDPKI)
This verb imports an external PKA or ECC private key token. (This consists of a
PKA or ECC private key and public key.)

The secret values of the key can be:
v Clear
v Encrypted under a limited-authority DES importer key if the source_key_identifier

is an RSA token
v Encrypted under an AES Key Encryption Key if the source_key_identifier is an

ECC token

This verb can also import a clear PKA key. The PKA Key Token Build verb creates
a clear PKA key token.

This verb can also import an external trusted block token for use with the Remote
Key Export verb.

Output of this verb is a CCA internal token of the RSA or ECC private key or
trusted block.

Format
The format of CSNDPKI.

CSNDPKI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
importer_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
The parameter definitions for CSNDPKI.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0 or 1.

rule_array

Direction: Input
Type: String array

The rule_array parameter is a pointer to a string variable containing a

PKA Key Import (CSNDPKI)

696 Common Cryptographic Architecture Application Programmer's Guide

keyword. The keyword is 8 bytes in length and must be left-aligned and
padded on the right with space characters. The rule_array keywords are
described in Table 190.

Table 190. Keywords for PKA Key Import control information

Keyword Description

Token type (One, optional)

ECC Specifies that the key being imported is an ECC key.

RSA Specifies that the key being imported is an RSA key or a trusted block. This is the default.

Transport key type (optional)

IKEK-AES The importer_key_identifier is an AES key.

IKEK-DES The importer_key_identifier is a DES key. This is the default.

source_key_identifier_length

Direction: Input
Type: Integer

The length of the source_key_identifier parameter. The maximum size is 3500
bytes.

source_key_identifier

Direction: Input
Type: String

Contains an external key token or key label of a PKA private key, without
section identifier X'14' (Trusted Block Information), or the trusted block in
external form as produced by the Trusted Block Create verb with the
ACTIVATE keyword.

If a PKA private key without the section identifier X'14' is passed in:
v There are no qualifiers. A retained key can not be used.
v The key token must contain both public-key and private-key information.

The private key can be in cleartext or it can be enciphered. ECC tokens must
contain a private key in cleartext.

v This is the output of the PKA Key Generate (CSNDPKG) verb or the PKA
Key Token Build (CSNDPKB) verb.

v If encrypted, the key was created on another platform.

If a PKA private key with the section identifier X'14' is passed in:
v This verb is used to encipher the MAC key within the trusted block under

the PKA master key instead of the IMP-PKA key-encrypting key.
v The importer_key_identifier must contain an IMP-PKA KEK.

importer_key_identifier

Direction: Input/Output
Type: String

A variable-length field containing an AES or DES key identifier used to wrap
the imported key. For RSA keys and trusted blocks, this must be a DES limited
authority transport key (IMP-PKA). For ECC keys, this must be an AES
transport key.

This parameter contains one of the following:
v 64-byte label of a key storage record that contains the transport key.

PKA Key Import (CSNDPKI)

Chapter 15. Managing PKA cryptographic keys 697

v 64-byte DES internal key token containing the transport key.
v A variable-length AES internal key token containing the transport key.

This parameter is ignored for clear tokens.

target_key_identifier_length

Direction: Input/Output
Type: Integer

The length of the target_key_identifier parameter. The maximum size is 3500
bytes. On output, and if the size is of sufficient length, the variable is updated
with the actual length of the target_key_identifier field.

target_key_identifier

Direction: Input/Output
Type: String

This field contains the internal token or label of the imported PKA private key
or a trusted block. If a label is specified on input, a PKA key storage record
with this label must exist. The PKA key storage record with this label will be
overwritten with the imported key unless the existing record is a retained key.
If the record is a retained key, the import will fail. A retained key record
cannot be overwritten. If no label is specified on input, this field is ignored and
should be set to binary zeros on input.

Restrictions
The restrictions for CSNDPKI.

This verb imports RSA keys of up to 4096 bits. However, the hardware
configuration sets the limits on the modulus size of keys for digital signatures and
key management; thus, the key can be successfully imported but fail when used if
the limits are exceeded.

The importer_key_identifier parameter is a limited-authority key-encrypting key.

CRT form tokens with a private section ID of X'05' cannot be imported.

Required commands
The required commands for CSNDPKI.

This verb requires the PKA Key Import command (offset X'0104') to be enabled in
the active role. If the source_key_token parameter points to a trusted block, also
enable the PKA Key Import - Import an external trusted block command (offset
X'0311').

To disable the wrapping of a key with a weaker master key, the Prohibit weak
wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

To receive a warning when wrapping a key with a weaker master key, enable the
Warn when weak wrap - Master keys command (offset X'0332') in the active role.
The Prohibit weak wrapping - Master keys command overrides this command.

Usage notes
The usage notes for CSNDPKI.

PKA Key Import (CSNDPKI)

698 Common Cryptographic Architecture Application Programmer's Guide

This verb imports keys of any modulus size up to 2048 bits. However, the
hardware configuration sets the limits on the modulus size of keys for digital
signatures and key management; thus, the key can be successfully imported but
fail when used if the limits are exceeded.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDPKIJ.

This verb has a Java Native Interface (JNI) version, which is named CSNDPKIJ. See
“Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDPKIJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber source_key_identifier_length,
byte[] source_key_identifier,
byte[] transport_key_identifier,
hikmNativeNumber target_key_identifier_length,
byte[] target_key_identifier);

PKA Key Token Build (CSNDPKB)
Use this verb to build external PKA key tokens containing unenciphered private
RSA or ECC keys.

You can use this token as input to the PKA Key Import verb to obtain an
operational internal token containing an enciphered private key. This verb builds a
skeleton token that you can use as input to the PKA Key Generate verb (see
Table 189 on page 692). You can also input to this verb a clear unenciphered public
RSA or ECC key and return the public key in a token format that other PKA verbs
can use directly.

This verb is used to create the following:
v A skeleton_key_token for use with the PKA Key Generate verb.
v A key token with a public key that has been obtained from another source.
v A key token with a clear private-key and the associated public key.
v A key token for an RSA private key in optimized Chinese Remainder Theorem

(CRT) format.
v An RSA token with X'09' section identifier using the RSAMEVAR keyword to

obtain a token for a key in Modulus-Exponent format that is variable length.

ECC key generation requires this information in the skeleton token:
v The key type: ECC

v The type of curve: Prime or Brainpool
v The size of p in bits: 192, 224, 256, 384 or 521 for Prime curves and 160, 192, 224,

256, 320, 384, or 521 for Brainpool curves
v Key usage information
v Optionally, application associated data

PKA Key Import (CSNDPKI)

Chapter 15. Managing PKA cryptographic keys 699

Format
The format of CSNDPKB.

CSNDPKB(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_value_structure_length,
key_value_structure,
private_key_name_length,
private_key_name,
user_definable_associated_data_length,
user_definable_associated_data,
reserved_2_length,
reserved_2,
reserved_3_length,
reserved_3,
reserved_4_length,
reserved_4,
reserved_5_length,
reserved_5,
key_token_length,
key_token)

Parameters
The parameters for CSNDPKB.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1, 2, or 3.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords for the verb.
The keywords must be in contiguous storage with each of the keywords
left-aligned in its own 8-byte location and padded on the right with blanks.
The rule_array keywords are described in Table 191.

Table 191. Keywords for PKA Key Token Build control information

Keyword Description

Token type (One, required)

ECC-PAIR This keyword indicates building a token containing both public and private ECC key information.
The parameter key_value_structure identifies the input key values, if supplied.

ECC-PUBL This keyword indicates building a token containing public ECC key information. The parameter
key_value_structure identifies the input values, if supplied.

PKA Key Token Build (CSNDPKB)

700 Common Cryptographic Architecture Application Programmer's Guide

Table 191. Keywords for PKA Key Token Build control information (continued)

Keyword Description

RSA-AESC Create a key token for an RSA public key and an RSA private key in Chinese-Remainder Theorem
(CRT) format with an AES-encrypted OPK.

Starting with CCA 6.0, specify a format restriction keyword to restrict the private key to a
particular digital-signature hash formatting method, or none (the default, see Format restriction
section later in this table).

RSA-AESM Create a key token for an RSA public key and an RSA private key in Modulus-Exponent format
with an AES-encrypted OPK.

Starting with CCA 6.0, specify a format restriction keyword to restrict the private key to a
particular digital-signature hash formatting method, or none (the default, see Format restriction
section later in this table).

RSA-CRT This keyword indicates building a token containing an RSA private key in the optimized Chinese
Remainder Theorem (CRT) format. The parameter key_value_structure identifies the input key
values, if supplied.

RSA-PRIV This keyword indicates building a token containing both public and private RSA key information.
The parameter key_value_structure identifies the input key values, if supplied.

RSA-PUBL This keyword indicates building a token containing public RSA key information. The parameter
key_value_structure identifies the input values, if supplied.

RSAMEVAR This keyword indicates RSA-Modulus Exponent-Variant (RSAMEVAR), a type X'09' key token for
RSA, named VAR_OPK.
Note: Key tokens created with this key type cannot be passed to the PKA Key Generate verb for
creating RETAIN (retained) keys.

Key usage control (One, optional)

KEY-MGMT Indicates that an RSA or ECC private key can be used in both the Symmetric Key Import and the
Digital Signature Generate verbs.
Note: Key tokens created with this key usage cannot be passed to the PKA Key Generate verb for
creating RETAIN (retained) keys.

KM-ONLY Indicates that an RSA or ECC private key can be used only in symmetric key distribution.
Note: Key tokens created with this key usage cannot be passed to the PKA Key Generate verb for
creating RETAIN (retained) keys.

SIG-ONLY Indicates that an RSA or ECC private key cannot be used in symmetric key distribution. This is
the default.
Note: Only a skeleton key-token created from PKA Key Token Build with this key usage type can
be passed to PKA Key Generate to create a RETAIN (retained) key.

Translate control (One, optional)

NO-XLATE The RSA or ECC key cannot be used as a key-encrypting-key for “PKA Key Translate
(CSNDPKT)” on page 713.
Note: Use of this keyword does not matter when creating a skeleton key-token for a later retained
key generation operation. It is redundant to the necessary SIG-ONLY keyword.

XLATE-OK The RSA or ECC key can be used as a key-encrypting-key for “PKA Key Translate (CSNDPKT)”
on page 713.
Note: Key tokens created with this keyword cannot be passed to the PKA Key Generate verb for
creating RETAIN (retained) keys.

Format restriction (One, optional). As of release 6.0, only valid with token type keyword RSA-AESC or
RSA-AESM.

FR-NONE Specifies to not restrict the private key to be used by a particular digital-signature hash formatting
method. The key is usable for any method. This is the default.

FR-I9796 Specifies to render the private key usable only with the digital-signature hash formatting method
ISO-9796.

PKA Key Token Build (CSNDPKB)

Chapter 15. Managing PKA cryptographic keys 701

|
|
|

|
|
|

|
|

||
|

||
|

Table 191. Keywords for PKA Key Token Build control information (continued)

Keyword Description

FR-X9.31 Specifies to render the private key usable only with the digital-signature hash formatting method
X9.31.

FR-ZPAD Specifies to render the private key usable only with the digital-signature hash formatting method
ZERO-PAD.

FR-PK10 Specifies to render the private key usable only with the digital-signature hash formatting method
PKCS-1.0.

FR-PK11 Specifies to render the private key usable only with the digital-signature hash formatting method
PKCS-1.1.

FR-PSS Specifies to render the private key usable only with the digital-signature hash formatting method
PKCS-PSS.

ECC token version (One, optional). Release 5.2 or later. Only valid with token type ECC-PAIR.

ECC-VER0 Build an ECC private-key section (X'20') using the format section version number X'00'. This is the
default.
Note: Use of this option is provided for backward compatibility and its use is discouraged. The
preferred format is Version X'01'.

ECC-VER1 Build an ECC private-key section (X'20') using the format section version number X'01'. This
keyword is required if key derivation data is provided.

Version X'01' key token enhancements include a pedigree field, a section hash tag-length-value
(TLV) object (X'60') that gets included in the IBM extended associated data (IEAD) with a hash
digest of all optional sections up to the IEAD. The Version 1 key token also supports the ECC
key-derivation information section (X'23') that is required by the Elliptic Curve Diffie-Hellman
verb to derive one element of any key pair using the ANSI-X963-KDF key derivation function.

key_value_structure_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_value_structure variable. The length depends on the key type parameter
in the rule_array and on the actual values input. The length is in bytes. For
maximum values, see Table 192.

Table 192. PKA Key Token Build - Key value structure length maximum values

Key type Key value structure maximum value

ECC-PAIR 207

ECC-PUBL 139

RSA-CRT, RSAMEVAR 3500

RSA-PRIV 648

RSA-PUBL 520

key_value_structure

Direction: Input
Type: String

This is a segment of contiguous storage containing a variable number of input
clear key values and the lengths of these values in bits or bytes, as specified.
The structure elements are ordered, of variable length, and the input key
values must be right-aligned within their respective structure elements and
padded on the left with binary zeros. If the leading bits of the modulus are

PKA Key Token Build (CSNDPKB)

702 Common Cryptographic Architecture Application Programmer's Guide

||
|

||
|

||
|

||
|

||
|

zeros, do not count them in the length. Table 193 and Table 194 on page 705
define the structure and contents as a function of key type.

Table 193. PKA Key Token Build - Key value structure elements, ECC keys

Offset
Length
(bytes) Description

Key value structure (ECC-PAIR)

000 001 Curve type:
X'00' Prime curve
X'01' Brainpool curve

001 001 Reserved X'00'

002 002 Length of p in bits
X'00A0' Brainpool P-160
X'00C0' Prime P-192, Brainpool P-192
X'00E0' Prime P-224, Brainpool P-224
X'0100' Prime P-256, Brainpool P-256
X'0140' Brainpool P-320
X'0180' Prime P-384, Brainpool P-384
X'0200' Brainpool P-512
X'0209' Prime P-521

004 002 ddd - this field is the length of the private key d in bytes. This value can be zero if the key
token is used as a skeleton key-token in the PKA Key Generate verb. The maximum value
is 66 bytes.

006 002 xxx - this field is the length of the public key Q in bytes. This value can be zero if the key
token is used as a skeleton key-token in the PKA Key Generate verb. The maximum value
is 133 bytes, which includes one byte to indicate if the value is compressed.

008 ddd Private key, d

008 + ddd xxx Public key, Q

Key value structure (ECC-PUBL)

000 001 Curve type:
X'00' Prime curve
X'01' Brainpool curve

001 001 Reserved X'00'

002 002 Length of p in bits
X'00A0' Brainpool p-160
X'00C0' Prime P-192, Brainpool P-192
X'00E0' Prime P-224, Brainpool P-224
X'0100' Prime P-256, Brainpool P-256
X'0140' Brainpool P-320
X'0180' Prime P-384, Brainpool P-384
X'0200' Brainpool P-512
X'0209' Prime P-521

004 002 xxx - this field is the length of the public key Q in bytes. This value can be zero if the key
token is used as a skeleton key-token in the PKA Key Generate verb. The maximum value
is 133 bytes, which includes one byte to indicate if the value is compressed.

006 xxx Public key, Q

Key value structure (Optimized RSA, Chinese Remainder Theorem format, RSA-CRT)

000 002 Modulus length in bits (512 - 2048). This is required.

002 002 Modulus field length in bytes, nnn. This value can be zero if the key token is used as a
skeleton key-token in the PKA Key Generate verb. This value must not exceed 256.

004 002 Public exponent field length in bytes, eee. This value can be zero if the key token is used
as a skeleton key-token in the PKA Key Generate verb.

PKA Key Token Build (CSNDPKB)

Chapter 15. Managing PKA cryptographic keys 703

Table 193. PKA Key Token Build - Key value structure elements, ECC keys (continued)

Offset
Length
(bytes) Description

006 002 Reserved, binary zero.

008 002 Length of the prime number p, in bytes, ppp. This value can be zero if the key token is
used as a skeleton key-token in the PKA Key Generate verb. Maximum size of p + q is 256
bytes.

010 002 Length of the prime number q, in bytes, qqq. This value can be zero if the key token is
used as a skeleton key-token in the PKA Key Generate verb. Maximum size of p + q is 256
bytes.

012 002 Length of dp, in bytes, rrr. This value can be zero if the key token is used as a skeleton
key-token in the PKA Key Generate verb. Maximum size of dp + dq is 256 bytes.

014 002 Length of dq, in bytes, sss. This value can be zero if the key token is used as a skeleton
key-token in the PKA Key Generate verb. Maximum size of dp + dq is 256 bytes.

016 002 Length of U, in bytes, uuu. This value can be zero if the key token is used as a
skeleton_key_token in the PKA Key Generate verb. Maximum size of U is 256 bytes.

018 nnn Modulus, n.

018 + nnn eee Public exponent, e. This is an integer such that 1 < e < n. e must be odd. When you are
building a skeleton key-token to control the generation of an RSA key pair, the public key
exponent can be one of the following values: 3, 65537 (216 + 1), or 0 to indicate that a full
random exponent should be generated. The exponent field can be a null-length field if the
exponent value is 0.

018 + nnn +
eee

ppp Prime number p.

018 + nnn +
eee + ppp

qqq Prime number q.

018 + nnn +
eee + ppp + qqq

rrr dp = d mod(p-1).

018 + nnn +
eee + ppp + qqq
+ rrr

sss dq = d mod(q-1).

018 + nnn +
eee + ppp + qqq
+ rrr + sss

uuu U = q-1mod(p).

Key value structure (RSA private, RSA private variable, or RSA public)

000 002 Modulus length in bits. This is required. When building a skeleton key-token, the modulus
length in bits must be greater than or equal to 512 bits.

002 002 Modulus field length in bytes, XXX. This value can be zero if you are using the key token
as a skeleton in the PKA Key Generate verb. This value must not exceed 256 when the
RSA-PUBL keyword is used and must not exceed 128 when the RSA-PRIV keyword is
used.

This verb can build a key token for a public RSA key with a 2048-bit modulus length or it
can build a key token for a 1024-bit modulus length private key.

004 002 Public exponent field length in bytes, YYY. This value must not exceed 256 when the
RSA-PUBL keyword is used and must not exceed 128 when the RSA-PRIV keyword is
used. This value can be zero if you are using the key token as a skeleton key-token in the
PKA Key Generate verb. In this case, a random exponent is generated. To obtain a fixed,
predetermined public key exponent, you can supply this field and the public exponent as
input to the PKA Key Generate verb.

PKA Key Token Build (CSNDPKB)

704 Common Cryptographic Architecture Application Programmer's Guide

Table 193. PKA Key Token Build - Key value structure elements, ECC keys (continued)

Offset
Length
(bytes) Description

006 002 Private exponent field length in bytes, ZZZ. This field can be zero, indicating that private
key information is not provided. This value must not exceed 128 bytes. This value can be
zero if you are using the key token as a skeleton in the PKA Key Generate verb.

008 XXX Modulus, n. This is an integer such that 1 < n < 22048. The n is the product of p and q for
primes p and q.

008 + XXX YYY RSA public exponent, e. This is an integer such that 1 < e < n. e must be odd. When you
are building a skeleton_key_token to control the generation of an RSA key pair, the public
key exponent can be one of the following values: 3, 65537 (216 + 1), or 0 to indicate that a
full random exponent should be generated. The exponent field can be a null-length field if
the exponent value is 0.

008 + XXX +
YYY

ZZZ RSA secret exponent d. This is an integer such that 1 < d < n. The value of d is e-1

mod(p-1)(q-1). You need not specify this value if you specify RSA-PUBL in the rule_array
parameter.

Table 194. PKA Key Token Build - Key value structure elements, RSA keys

Offset
Length
(bytes) Description

000 002 Length of the modulus in bits
RSA-AESM (section X'30')

512 - 4096
RSA-PRIV (section X'02')

512 - 1024
RSA-PUBL (section X'04')

512 - 4096
RSAMEVAR (section X'09')

512 - 4096

002 002 Length of the modulus field n, in bytes: nnn. This value must not exceed 512 for a
4096-bit-length key.

This value should be zero when preparing a skeleton key-token for use with the PKA Key
Generate verb.

004 002 Length of the public exponent field e, in bytes: eee.

This value should be zero when preparing a skeleton key-token to generate a
random-exponent public key in the PKA Key Generate verb. This value must not exceed
512.

006 002 Private exponent field length in bytes, ddd. This value can be zero indicating that private
key information is not provided. This value must not exceed 512.

008 nnn Modulus n, integer value, 1 < n < 24096; n = pq for prime p and prime q.

8 + nnn eee Public exponent field e, integer value, 1 < e < n, e must be odd. When you are building a
skeleton_key_token to control the generation of an RSA key pair, the public key exponent
must be one of the following values: 0 (full-random), 3, or 65537. Beginning with Release
5.2, you can also specify a value of 5, 17, or 257. The exponent field can be a null-length
field when preparing a skeleton_key_token.

8 + nnn + eee ddd Private exponent d, integer value, 1 < d < n, d = e-1mod(p-1)(q-1).

RSA key-values structure, Chinese-Remainder Theorem format (RSA-AESC or RSA-CRT)

PKA Key Token Build (CSNDPKB)

Chapter 15. Managing PKA cryptographic keys 705

Table 194. PKA Key Token Build - Key value structure elements, RSA keys (continued)

Offset
Length
(bytes) Description

000 002 Length of the modulus in bits:
RSA-AESC (section X'31')

512 - 4096
RSA-CRT (section X'30')

512 - 4096

002 002 Length of the modulus field n, in bytes: nnn. This value must not exceed 4096/8 = 512.

This value should be zero when preparing a skeleton_key_token for use with the PKA Key
Generate verb.

004 002 Length of the public exponent field e, in bytes: eee.

This value should be zero when preparing a skeleton key-token to generate a
random-exponent public key in the PKA Key Generate verb. This value must not exceed
512.

006 002 Reserved, binary zero.

008 002 Length of the prime number field p, in bytes: ppp. Should be zero in a skeleton key-token.
The maximum value of ppp+qqq is 512 bytes.

010 002 Length of the prime number field q, in bytes: qqq. Should be zero in a skeleton key-token.
The maximum value of ppp+qqq is 512 bytes.

012 002 Length of the dp field, in bytes: rrr. Should be zero in a skeleton key-token. The maximum
value of rrr + sss is 512 bytes.

014 002 Length of the dq field, in bytes: sss. Should be zero in a skeleton key-token. The maximum
value of rrr + sss is 512 bytes.

016 002 Length of the U field, in bytes: uuu. Should be zero in a skeleton key-token. The
maximum length of U is 256 bytes.

018 nnn Modulus n.

018 + nnn eee Public exponent field e, integer value, 1 < e < n, e must be odd. When you are building a
skeleton key-token to control the generation of an RSA key pair, the public key exponent
must be one of the following values: 0 (full-random), 3, or 65537. Beginning with Release
5.2, you can also specify a value of 5, 17, or 257. The exponent field can be a null-length
field when preparing a skeleton key-token.

018 + nnn +
eee

ppp Prime number p.

018 + nnn +
eee + ppp

qqq Prime number q.

018 + nnn +
eee + ppp + qqq

rrr dp = d mod(p-1).

018 + nnn +
eee + ppp + qqq
+ rrr

sss dq = d mod(q-1).

018 + nnn +
eee + ppp + qqq
+ rrr + sss

uuu U = q-1 mod(p).

Note: All length fields are in binary, and all binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (big-endian format).

Note:

1. All length fields are in binary.

PKA Key Token Build (CSNDPKB)

706 Common Cryptographic Architecture Application Programmer's Guide

2. All binary fields (exponent, lengths, modulus, and so on) are stored with
the high-order byte field first. This integer number is right-aligned within
the key structure element field.

3. You must supply all values in the structure to create a token containing an
RSA or ECC private key for input to the PKA Key Import verb.

private_key_name_length

Direction: Input
Type: Integer

The length can be 0 or 64.

private_key_name

Direction: Input
Type: String

This field contains the name of a private key. The name must conform to CCA
key label syntax rules. That is, allowed characters are alphanumeric, national
(@, #, $) or period (.). The first character must be alphabetic or national. The
name is folded to upper case and converted to ASCII characters. ASCII is the
permanent form of the name because the name should be independent of the
platform. The name is then cryptographically coupled with clear private key
data before encryption of the private key. Because of this coupling, the name
can never change after the key token is imported. The parameter is valid only
with key type RSA-CRT.

user_definable_associated_data_length

Direction: Input
Type: Integer

Length in bytes of the user_definable_associated_data parameter. This parameter
is valid only for a key type of ECC-PAIR, and must be set to 0 for all other
key types. The maximum value is 100.

user_definable_associated_data

Direction: Input
Type: String

The user_definable_associated_data parameter identifies a string variable
containing the associated data that will be placed following the IBM associated
data in the token. The associated data is data whose integrity, but not whose
confidentiality, is protected by a key wrap mechanism. The
user_definable_associated_data can be used to bind usage control
information.

This parameter is valid only for a key type of ECC-PAIR.

reserved_2_length

Direction: Input
Type: Integer

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_2

Direction: Input
Type: String

PKA Key Token Build (CSNDPKB)

Chapter 15. Managing PKA cryptographic keys 707

The reserved_2 parameter identifies a string that is reserved. The verb ignores
it.

reserved_3_length

Direction: Input
Type: Integer

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_3

Direction: Input
Type: String

The reserved_3 parameter identifies a string that is reserved. The verb ignores
it.

reserved_4_length

Direction: Input
Type: Integer

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_4

Direction: Input
Type: String

The reserved_4 parameter identifies a string that is reserved. The verb ignores
it.

reserved_5_length

Direction: Input
Type: Integer

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_5

Direction: Input
Type: String

The reserved_5 parameter identifies a string that is reserved. The verb ignores
it.

key_token_length

Direction: Input/Output
Type: Integer

Length of the returned key token. The verb checks the field to ensure that it is
at least equal to the size of the token to return. On return from this verb, this
field is updated with the exact length of the key_token created. On input, a
size of 3500 bytes is sufficient to contain the largest key_token created.

key_token

Direction: Output
Type: String

The returned key token containing an unenciphered private or public key. The
private key is in an external form that can be exchanged with different CCA

PKA Key Token Build (CSNDPKB)

708 Common Cryptographic Architecture Application Programmer's Guide

PKA systems. You can use the public key token directly in appropriate CCA
signature verification or key management services.

Restrictions
The restrictions for CSNDPKB.
v The RSA key length is limited to the range of 512 - 4096 bits, with specific

formats restricted to a maximum of 1024 or 2048 bits.
v When generating a key for use with ANSI X9.31 digital signatures, the key

length must be 1024, 1280, 1536, 1792, 2048, or 4096 bits.
v Allowable ECC key bit lengths are based on curve type. For Brainpool, the key

length must be 160, 192, 224, 256, 320, 384, or 512. For Prime, it must be 192, 224,
256, 384, or 521.

v Rule array keywords ECC-VER0 and ECC-VER1 are not supported in releases
before Release 5.2.

v Optional ECC key-derivation information section (X'23') for an ECC private-key
is not supported in releases before Release 5.2.

v RSA public exponent value of 5, 17, and 257 are not supported in releases before
Release 5.2.

Required commands
The required commands for CSNDPKB.

None.

Usage notes
The usage notes for CSNDPKB.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDPKBJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDPKBJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_values_structure_length,
byte[] key_values_structure,
hikmNativeNumber private_key_name_length,
byte[] private_key_name,
hikmNativeNumber user_definable_associated_data_length,
byte[] user_definable_associated_data,
hikmNativeNumber reserved_2_length,
byte[] reserved_2,
hikmNativeNumber reserved_3_length,
byte[] reserved_3,
hikmNativeNumber reserved_4_length,
byte[] reserved_4,

PKA Key Token Build (CSNDPKB)

Chapter 15. Managing PKA cryptographic keys 709

hikmNativeNumber reserved_5_length,
byte[] reserved_5,
hikmNativeNumber key_token_length,
byte[] key_token);

PKA Key Token Change (CSNDKTC)
The PKA Key Token Change verb changes PKA key tokens (RSA or ECC) or
trusted block key tokens, from encipherment under old ASYM-MK or APKA-MK,
to encipherment under the current ASYM-MK or APKA-MK master key.

IMPORTANT

Two problems have been discovered with the CCA microcode related to the reenciphering
of master keys. Although similar, the two problems are slightly different and exist in
different levels of the microcode. These problems could lead to a loss of operational private
keys after a master key change. Symmetric keys are not affected. Although it is expected
few customers will be impacted this document describes the problems and how to recover.

For details, see http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/
FLASH10764.

The PKA Key Token Change (CSNDKTC) verb has been changed to not permit the use of
the RTNMK keyword for processor firmware levels that have this problem.

v For RSA key tokens - Key tokens must be private internal PKA key tokens in
order to be changed by this verb. PKA private keys encrypted under the Key
Management Master Key (KMMK) cannot be reenciphered using this services
unless the KMMK has the same value as the Signature Master Key (SMK).

v For trusted block key tokens - Trusted block key tokens must be internal.
v For ECC key tokens - Key tokens must be private internal ECC key tokens

encrypted under the APKA-MK.

Format
The format of CSNDKTC.

CSNDKTC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier)

Parameters
The parameters for CSNDKTC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the

PKA Key Token Build (CSNDPKB)

710 Common Cryptographic Architecture Application Programmer's Guide

rule_array variable. This value must be 1 or 2.

rule_array

Direction: Input
Type: String array

The process rule for the verb. The keyword must be in eight bytes of
contiguous storage, left-aligned, and padded on the right with blanks. The
rule_array keywords are described in Table 195.

Table 195. Keywords for PKA Key Token Change control information

Keyword Description

Token type (One, optional)

ECC Specifies that the key being changed is an ECC key. This keyword was introduced with CCA 4.1.0.

RSA Specifies that the key being changed is an RSA key or a trusted block. This is the default. This
keyword was introduced with CCA 4.1.0.

Reencipherment method (One, required)

RTCMK If the key_identifier is an RSA key token, the verb will change an RSA private key from encipherment
with the old ASYM-MK to encipherment with the current ASYM-MK.

If the key_identifier is a trusted block token, the verb will change the trusted block's embedded MAC
key from encipherment with the old ASYM-MK to encipherment with the current ASYM-MK.

If the key_identifier is an ECC key token, the verb will change an ECC private key from encipherment
with the old APKA-MK to encipherment with the current APKA-MK.

RTNMK Re-enciphers a private (internal) RSA or ECC key to the new master key.

A key enciphered under the new master key is not usable. It is expected that the user will use this
keyword (RTNMK) to take a preparatory step in re-enciphering an external key store that they
manage themselves to a new master-key, before the set operation has occurred. Note also that the
new master-key register must be full; it must have had the last key part loaded and therefore not be
empty or partially full (partially full means that one or more key parts have been loaded but not the
last key part).

The 'SET' operation makes the new master-key operational, moving it to the current master-key
register, and the current master-key is displaced into the old master-key register. When this happens,
all the keys that were re-enciphered to the new master-key are now usable, because the new
master-key is not 'new' any more, it is 'current'.

Because the RTNMK keyword is added primarily for support of externally managed key storage (see
“Key Storage on z/OS (RTNMK-focused)” on page 453, it is not valid to pass a key_identifer when the
RTNMK keyword is used. Only a full internal key token (encrypted under the current master-key)
can be passed for re-encipherment with the RTNMK keyword. When a key LABEL is passed along
with the RTNMK keyword, the error return code 8 with reason code 63 will be returned.

For more information, see “Key storage with Linux on Z, in contrast to z/OS” on page 451.

VALIDATE Validate an internal PKA key token which is under the current master key (same processing as
RTNMK without checking the new master key or actually re-enciphering the token).

key_identifier_length

Direction: Input
Type: Integer

The length of the key_identifier parameter. The maximum size is 3500 bytes.

key_identifier

PKA Key Token Change (CSNDKTC)

Chapter 15. Managing PKA cryptographic keys 711

Direction: Input/Output
Type: String

Contains an internal RSA key-token, 134 CCA Basic Services November, 2016
ECC key-token, or an active trusted block, or a key label identifying such a
key-record in PKA key-storage. The master-key enciphered data within the
RSA key-token or trusted block is securely reenciphered under the current PKA
master key, and any such key token records are stored in PKA key-storage.
Beginning with Release 4.4, the master-key enciphered OPK contained in an
RSA private-key section with section identifier of X'30' or X'31' is securely
reenciphered under the current APKA master key, and any such key token
records are stored in AES key-storage. The enciphered OPK of an ECC private
key-token is securely reenciphered under the current APKA master key. ECC
key token records are stored in PKA key-storage.

Restrictions
The restrictions for CSNDKTC.

None.

Required commands
The required commands for CSNDKTC.

This verb requires the PKA Key Token Change RTCMK command (offset X'0102') to be
enabled in the active role.

To disable the wrapping of a key with a weaker master key, the Prohibit weak
wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

To receive a warning when wrapping a key with a weaker master key, enable the
Warn when weak wrap - Master keys command (offset X'0332') in the active role.
The Prohibit weak wrapping - Master keys command overrides this command.

Usage notes
The usage notes for CSNDKTC.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDKTCJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDKTCJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber key_identifier_length,
byte[] key_identifier);

PKA Key Token Change (CSNDKTC)

712 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|
|
|
|
|
|
|

PKA Key Translate (CSNDPKT)
Use the PKA Key Translate verb to translate an RSA key in a PKA key-token using
an output format specified by the input rule array. The RSA key to be translated is
provided in a source PKA key-token that contains a private-key section, and the
translated key is returned in the buffer identified by the target_key_token
parameter. If the source key is in an external key-token, the source transport key
must be in an operational fixed-length DES key-token.

This verb changes only Private Internal PKA Key Tokens.

The source CCA RSA key token must be wrapped with a transport key encrypting
key (KEK). The XLATE bit must also be turned on in the key usage byte of the
source token. The source token is unwrapped using the specified source transport
KEK. The target key token will be wrapped with the specified target transport
KEK. Existing information in the target token is overwritten.

There are three types of output formatting available described in the subsequent
sections. The first type is an external-to-external translation of an RSA key to one
of three smart card formats. The second is an external-to-external or
internal-to-internal translation of an RSA key to a target PKA key-token that is
protected by an AES transport key or an APKA master key. The third is an
external-to-external translation of an RSA key to one of three EMV formats.

Target smart card formats

To use this verb to translate an RSA key into a smart-card format, do the following:
v Specify one of the following rule-array keywords for the smart-card format to

apply to the target key:

SCVISA
Specifies translation of an RSA private-key to the Visa proprietary
format. This format is defined in Visa Smart Debit/Credit Technical Guide to
Visa Applets for GlobalPlatform Cards and Visa Smart Debit Credit
Personalization Guide for GlobalPlatform Cards.

SCCOMME
Specifies translation of an RSA private-key to the common
Modulus-Exponent (M-E) format. This format is defined in Visa Smart
Debit/Credit Technical Guide to Visa Applets for GlobalPlatform Cards.

SCCOMCRT
Specifies translation of an RSA private-key to the common
Chinese-Remainder Theorem (CRT) format. This format is defined in
Visa Smart Debit/Credit Technical Guide to Visa Applets for GlobalPlatform
Cards.

Note:

1. Translation from an M-E format to a CRT format is not supported.
2. Translation from a CRT format to an M-E format is not supported.

v Specify the source key identifier of an external PKA key-token that has been
protected by a fixed-length DES transport key to be translated. The RSA private
key for smart card output formats SCVISA, SCCOMME, and SCCOMCRT must
have translation control of XLATE-OK (offset 50 in the private-key section).

v Specify the source transport key identifier of an operational fixed-length DES
transport key (EXPORTER or IMPORTER) to be used to unwrap the source key.

PKA Key Translate (CSNDPKT)

Chapter 15. Managing PKA cryptographic keys 713

v Specify the target transport key identifier of an operational fixed-length DES
transport key to be used to wrap the unwrapped source key. The control vector
of the target transport key must have CV bit 22 = B'1' (XLATE).

Note: Translation using an EXPORTER source transport key and an IMPORTER
target transport key is not allowed.

v Specify the buffer of the target key token, to receive the returned external
TDES-wrapped PKA key-token.

The verb builds the target external key-token using the chosen smart card format
as follows:
1. The external RSA source key-token is unwrapped using the operational

fixed-length DES source transport key.
2. The unwrapped key material is formatted into the specified target smart-card

format.
3. The formatted key-material is TDES encrypted in ECB mode using the

operational fixed-length DES target transport key.
4. The formatted and encrypted key material is written to the buffer identified by

the target_key_token parameter, and the target key token length is updated.

Target AES-protected formats

To use this verb to translate an RSA key into an AES-protected format, specify:
v One of the following rule-array keywords for the AES-protected format to apply

to the target key:

EXTDWAKW
specifies translation of an RSA key in an external TDES-wrapped (DES
transport key) RSA key-token into an external AESKW-wrapped RSA
key-token

INTDWAKW
specifies translation of an RSA key in an internal TDES-wrapped (PKA
master key) RSA key-token into an internal AESKW-wrapped (APKA
master key) PKA key-token.

Note: An AESKW-wrapped key is protected at a higher level than a
TDES-wrapped key.

v The source key identifier of a PKA key-token to be translated, either in an
external key-token that has been protected by a fixed-length DES transport key
to be translated, or an internal key-token that has been protected by a PKA
master key.

v Source key is in an external PKA key-token:
The source transport key identifier of an operational fixed-length DES transport
key (EXPORTER or IMPORTER) to be used to unwrap the source key. The
control vector of the source transport key does not require the XLATE bit on.
The target transport key identifier of an operational variable-length AES
transport key to be used to wrap the OPK data of the target key-token. In
addition, the key usage fields must have the algorithm wrap control set so that
the key can wrap or unwrap RSA keys (WR-RSA).
The buffer of the target key-token, to receive the external RSA key-token with
AES-wrapped OPK.

v Source key is in an internal PKA key-token:

PKA Key Translate (CSNDPKT)

714 Common Cryptographic Architecture Application Programmer's Guide

Set the source transport key identifier length to 0 or identify a null key-token as
the source transport key.
Set the target transport key identifier length to 0 or identify a null key-token as
the target transport key.
The buffer of the target key-token, to receive the internal PKA key-token with
APKA-wrapped OPK.

The verb builds the target external key-token using the chosen AES-protected
format as follows:
1. The source key-token is unwrapped using the source transport key or a PKA

master-key, as appropriate.
2. The unwrapped key material is wrapped using the AES OPK of the target

key-token. The OPK in turn is wrapped by the AES key from the target
transport key if the target key is external, or the APKA master key if the target
key is internal.

3. The completed external or internal key-token is written to the key token buffer
identified by the target_key_token parameter, and the target key token length
is updated.

Target EMV formats

To use this verb to translate an RSA key into an EMV format, specify one of the
following rule_array keywords for the EMV format to apply to the target key:

EMVCRT
specifies the translation of an RSA CRT private-key to an EMV CRT format
and wrapped using TDES-ECB

EMVDDA
specifies the translation of an RSA CRT private-key to an EMV DDA
format and wrapped using TDES-CBC

EMVDDAE
specifies the translation of an RSA CRT private-key to an EMV DDA
format and wrapped using TDES-ECB.

Note: The PKA source key-token must have a private key section of X'08', and the
bit length of the modulus must be 512 - 2040.

Format
The format of CSNDPKT.

CSNDPKT(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
source_transport_key_identifier_length,
source_transport_key_identifier,
target_transport_key_identifier_length,
target_transport_key_identifier,
target_key_token_length,
target_key_token)

PKA Key Translate (CSNDPKT)

Chapter 15. Managing PKA cryptographic keys 715

Parameters
The parameters for CSNDPKT.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Direction: Input
Type: String array

The process rule for the verb. The keyword must be in eight bytes of
contiguous storage, left-aligned, and padded on the right with blanks. The
rule_array keywords are described in Table 196.

Table 196. Keywords for PKA Key Translate control information

Keyword Description

Output format (One, required)

EXTDWAKW Specifies that the source key is an external DES wrapped token to be converted to an AESKW
wrapped token.

INTDWAKW Specifies that the source key is an internal DES wrapped token to be converted to an AESKW
wrapped token.

EMVDDA This keyword indicates translating an external RSA CRT key into EMV DDA format and wrapping
with TDES-CBC.

The XLATE bit (bit 22) must be set in the target_transport_key control vector.

EMVDDAE This keyword indicates translating an external RSA CRT key into EMV DDAE format and wrapping
with TDES-ECB.

The XLATE bit (bit 22) must be set in the target_transport_key control vector.

EMVCRT This keyword indicates translating an external RSA CRT key into EMV CRT format and wrapping
with TDES-ECB.

The XLATE bit (bit 22) must be set in the target_transport_key control vector.

SCCOMCRT This keyword indicates translating the key into the smart card Chinese Remainder Theorem format.

SCCOMME This keyword indicates translating the key into the smart card Modulus-Exponent format.

SCVISA This keyword indicates translating the key into the smart card Visa proprietary format.

Format restriction (One, optional). As of release 6.0 or later, only valid with token type keyword EXTDWAKW or
INTDWAKW.

FR-NONE Specifies to not restrict the private key to be used by a particular digital-signature hash formatting
method. The key is usable for any method. This is the default.

FR-I9796 Specifies to render the private key usable only with the digital-signature hash formatting method
ISO-9796.

FR-X9.31 Specifies to render the private key usable only with the digital-signature hash formatting method
X9.31.

FR-ZPAD Specifies to render the private key usable only with the digital-signature hash formatting method
ZERO-PAD.

PKA Key Translate (CSNDPKT)

716 Common Cryptographic Architecture Application Programmer's Guide

|
|

||
|

||
|

||
|

||
|

Table 196. Keywords for PKA Key Translate control information (continued)

Keyword Description

FR-PK10 Specifies to render the private key usable only with the digital-signature hash formatting method
PKCS-1.0.

FR-PK11 Specifies to render the private key usable only with the digital-signature hash formatting method
PKCS-1.1.

FR-PSS Specifies to render the private key usable only with the digital-signature hash formatting method
PKCS-PSS.

source_key_length

Direction: Input
Type: Integer

The length of the source_key parameter. The maximum size is 3500 bytes.

source_key

Direction: Input
Type: String

This field contains either a key label identifying an RSA private key, or an
external public-private key token. The private key must be wrapped with a key
encrypting key.

source_transport_key_length

Direction: Input
Type: Integer

Length in bytes of the source_transport_key parameter. This value must be 64.

source_transport_key

Direction: Input/Output
Type: String

This field contains an internal token or label of a DES key-encrypting key. This
key is used to unwrap the input RSA key token specified with parameter
source_key. See “Usage notes” on page 719 for details on the type of transport
key that can be used.

target_transport_key_length

Direction: Input
Type: Integer

Length in bytes of the target_transport_key parameter. This value must be 64.

target_transport_key

Direction: Input/Output
Type: String

This field contains an internal token or label of a DES key-encrypting key. This
key is used to wrap the output RSA key returned with the target_key_token
parameter. See “Usage notes” on page 719 for details on the type of transport
key that can be used.

target_key_token_length

PKA Key Translate (CSNDPKT)

Chapter 15. Managing PKA cryptographic keys 717

||
|

||
|

||
|

Direction: Input
Type: Integer

Length in bytes of the target_key_token parameter. On output, the value in
this variable is updated to contain the actual length of the target_key_token
produced by the verb. The maximum length is 3500 bytes.

target_key_token

Direction: Output
Type: String

This field contains the RSA key in the smartcard format specified in the
rule_array parameter, and is protected by the key-encrypting key specified in
the target_transport_key parameter. This is not a CCA token, and cannot be
stored in the key storage.

Restrictions
The restrictions for CSNDPKT.

CCA RSA Modulus-Exponent tokens will not be translated to the SCCOMCRT
format. CCA RSA Chinese Remainder Theorem tokens will not be translated to the
SCCOMME format. SCVISA supports only Modulus-Exponent (ME) keys.

Required commands
The required commands for CSNDPKT.

This verb requires the following commands to be enabled in the active role based
on the keyword:

Rule-array
keyword Offset Command

EMVCRT X'033A' PKA Key Translate - from CCA RSA CRT to EMV CRT format

EMVDDA X'0338' PKA Key Translate - from CCA RSA CRT to EMV DDA format

EMVDDAE X'0339' PKA Key Translate - from CCA RSA CRT to EMV DDAE format

EXTDWAKW X'00FF' PKA Key Translate - Translate external key token

INTDWAKW X'00FE' PKA Key Translate - Translate internal key token

SCVISA X'0318' PKA Key Translate - from CCA RSA to SC Visa Format

SCCOMME X'0319' PKA Key Translate - from CCA RSA to SC ME Format

SCCOMCRT X'031A' PKA Key Translate - from CCA RSA to SC CRT Format

These commands must also be enabled to allow the key type combinations shown
in this table:

Source
transport key
type

Target
transport key
type Offset Command

EXPORTER EXPORTER X'031B' PKA Key Translate - from source EXP KEK to
target EXP KEK

IMPORTER EXPORTER X'031C' PKA Key Translate - from source IMP KEK to
target EXP KEK

PKA Key Translate (CSNDPKT)

718 Common Cryptographic Architecture Application Programmer's Guide

Source
transport key
type

Target
transport key
type Offset Command

IMPORTER IMPORTER X'031D' PKA Key Translate - from source IMP KEK to
target IMP KEK

EXPORTER IMPORTER N/A This key type combination is not allowed.

The following access control points control the use of weak transport keys:
v To disable the wrapping of a key with a weaker transport key, the Prohibit

weak wrapping - Transport keys command (offset X'0328') must be enabled in
the active role.

v To receive an informational message when wrapping a key with a weaker
key-encrypting key, enable the Warn when weak wrap - Transport keys
command (offset X'032C') in the active role. The Prohibit weak wrapping -
Transport keys command overrides this command.

The following access control points control the use of weak master keys:
v To disable the wrapping of a key with a weaker master key, the Prohibit weak

wrapping - Master keys command (offset X'0333') must be enabled in the active
role.

v To receive a warning when wrapping a key with a weaker master key, enable
the Warn when weak wrap - Master keys command (offset X'0332') in the active
role. The Prohibit weak wrapping - Master keys command overrides this
command.

Usage notes
The usage notes for CSNDPKT.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDPKTJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDPKTJ (

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber source_key_identifier_length,
byte[] source_key_identifier,
hikmNativeNumber source_transport_key_identifier_length,
byte[] source_transport_key_identifier,
hikmNativeNumber target_transport_key_identifier_length,
byte[] target_transport_key_identifier,
hikmNativeNumber target_key_token_length,
byte[] target_key_token);

PKA Key Translate (CSNDPKT)

Chapter 15. Managing PKA cryptographic keys 719

PKA Public Key Extract (CSNDPKX)
Use the PKA Public Key Extract verb to extract a PKA public key token from a
supplied PKA internal or external private key token.

This verb performs no cryptographic verification of the PKA private token. You can
verify the private token by using it in a verb such as Digital Signature Generate.

Format
The format of CSNDPKX.

CSNDPKX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_indentifier_length,
source_key_identifier,
target_public_key_identifier_length,
target_public_key_identifier)

Parameters
The parameters for CSNDPKX.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 0.

rule_array

Direction: Input
Type: String array

This parameter is ignored.

source_key_identifier_length

Direction: Input
Type: Integer

The length of the source_key_identifier parameter. The maximum size is 3500
bytes. When the source_key_identifier parameter is a key label, this field specifies
the length of the label.

source_key_identifier

Direction: Input/Output
Type: String

The internal or external token of a PKA private key or the label of a PKA
private key. This can be the input or output from the PKA Key Import or PKA

PKA Public Key Extract (CSNDPKX)

720 Common Cryptographic Architecture Application Programmer's Guide

Key Generate verbs. This verb supports:
v RSA private key token formats supported on the CEX*C. If the

source_key_identifier specifies a label for a private key that has been retained
within a CEX*C, this verb extracts only the public key section of the token.

v ECC private key token formats supported starting with CEX3C.

target_public_key_identifier_length

Direction: Input/Output
Type: Integer

The length of the target_public_key_identifier parameter. The maximum size is
2500 bytes. On output, this field will be updated with the actual byte length of
the target_public_key_token.

target_public_key_identifier

Direction: Output
Type: String

This field contains the token of the extracted PKA public key.

Restrictions
The restrictions for CSNDPKX.

None.

Required commands
The required commands for CSNDPKX.

None.

Usage notes
The usage notes for CSNDPKX.

This verb extracts the public key from the internal or external form of a private
key. However, it does not check the cryptographic validity of the private token.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDPKXJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDPKXJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber source_key_identifier_length,
byte[] source_key_identifier,
hikmNativeNumber target_public_key_identifier_length,
byte[] target_public_key_identifier);

PKA Public Key Extract (CSNDPKX)

Chapter 15. Managing PKA cryptographic keys 721

|

Remote Key Export (CSNDRKX)
This verb is used as a method of secured transport of DES keys using asymmetric
techniques from a security module (for example, the CEX3C) to a remote device
such as an Automated Teller Machine (ATM).

The DES keys to be transported are either key encrypting keys that are generated
within the coprocessor or, alternately, operational keys or replacement KEKs
enciphered under a KEK currently installed in a remote device.

Generating and exporting DES keys
This verb uses a trusted block to generate or export DES keys.

To create a trusted block, see “Trusted Block Create (CSNDTBC)” on page 734.
Remote Key Export accepts as input parameters a trusted block, a public-key
certificate and certificate parameters, a transport key, a rule ID to identify the
appropriate rule section to be used within a trusted block, an importer key, a
source key, optional extra data that can be used as part of the OAEP key-wrapping
process, and key-check parameters used to calculate an optional key-check value.

This verb validates all input parameters for generate and export operations. After
the verb performs the input parameter validation, the remaining steps depend on
whether the generate option or the export option is specified in the selected rule of
the trusted block.

This is a high-level description of the remaining processing steps for generate and
export.

Processing for generate operation

The verb performs these steps for the generate operation:
1. Generates a random value for the generated key, K. The generated key length

specified by the selected rule determines the key length.
2. XORs the output key variant with the randomly generated key K from the

previous step, if the selected rule contains a common export key parameters
subsection and the output key variant length is greater than zero. Adjusts the
result to have valid DES key parity.

3. Continues with “Final processing common to generate and export operations”
on page 723.

Processing for export operation

The verb performs these steps for the export operation:
1. If the selected rule contains a transport key rule reference subsection, verifies

that the rule ID in the transport key rule reference subsection matches the rule
ID in the token identified by the transport_key_identifier parameter,
provided that the token is an RKX key-token. For more information on RKX
key tokens, see “External RKX DES key tokens” on page 851.

2. Verifies that the length of the transport key variant in the transport key variant
subsection of the selected rule is greater than or equal to the length of the key
identified by the transport_key_identifier parameter.

3. Verifies that the key token identified by the importer_key_identifier
parameter is of key type IMPORTER, if the source_key_identifier parameter
identifies an external CCA DES key-token.

Remote Key Export (CSNDRKX)

722 Common Cryptographic Architecture Application Programmer's Guide

4. Recovers the clear value of the source key, K, identified by the
source_key_identifier parameter.

5. Verifies that the length of key K is between the export key minimum length
and export key maximum length specified in the common export key
parameters subsection of the selected rule.

6. XORs the output key variant with the randomly generated key K from the
previous step, if the selected rule contains a common export key parameters
subsection and the output key variant length is greater than zero. Adjusts the
result to have valid DES key parity.

7. Uses the public key in the trusted block to verify the digital signature
embedded in the certificate variable if the certificate_length variable is
greater than zero. Any necessary certificate objects are located with information
from the certificate_parms variable. Returns an error if the signature
verification fails.

8. XORs the transport key variant with the clear value of the transport key
(recovered in the previous step) if the selected rule contains a transport key
variant subsection and the output key variant length is greater than zero.
Adjusts the result to have valid DES key parity.

9. Continues with “Final processing common to generate and export operations.”

Final processing common to generate and export operations
1. Based on the symmetric encrypted output key format flag of the selected rule,

returns the encrypted result in the token identified by the
sym_encrypted_key_identifier parameter:
v of “Processing for generate operation” on page 722, step 2, or of “Processing

for export operation” on page 722, step 6, into an RKX key-token, if the flag
indicates to return an RKX key-token.

v using the resulting key from “Processing for export operation” on page 722,
step 6 into a CCA DES key-token and returns it in the token identified by the
sym_encrypted_key_identifier parameter, if the flag indicates to return a CCA
DES key-token.

2. Encrypts the key result from “Processing for generate operation” on page 722,
step 2 or from “Processing for export operation” on page 722, step 6, with the
format specified, if the asymmetric encrypted output key format flag of the
selected rule indicates to output an asymmetric encrypted key and return it to
the asym_encrypted_key parameter.

3. Returns the computed key-check value as determined by the key-check
algorithm identifier if the key-check algorithm identifier in the specified rule
indicates to compute a key-check value. The value is returned in the
key_check_value variable.

Remote Key Export (CSNDRKX)

Chapter 15. Managing PKA cryptographic keys 723

Format
The format of CSNDRKX.

CSNDRKX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
trusted_block_identifier_length,
trusted_block_identifier,
certificate_length,
certificate,
certificate_parms_length,
certificate_parms,
transport_key_identifier_length,
transport_key_identifier,
rule_id_length,
rule_id,
importer_key_identifier_length,
importer_key_identifier,
source_key_identifier_length,
source_key_identifier,
asym_encrypted_key_length,
asym_encrypted_key,
sym_encrypted_key_identifier_length,
sym_encrypted_key_identifier,
extra_data_length,
extra_data,
key_check_parameters_length,
key_check_parameters,
key_check_value_length,
key_check_value)

Parameters
The parameters for CSNDRKX.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of keywords in the
rule_array variable. This number must be 0, 1 or 2.

rule_array

Direction: Output
Type: String array

The rule_array is an array of keywords. The keywords must be 8 bytes of
contiguous storage with the keyword left-justified in its 8-byte location and
padded on the right with blanks. The rule_array keywords are described in
Table 197 on page 725.

Remote Key Export (CSNDRKX)

724 Common Cryptographic Architecture Application Programmer's Guide

Table 197. Keywords for Remote Key Export control information

Keyword Description

Key wrapping method (Optional)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the
default wrapping method. The default wrapping method configuration setting may be
changed using the TKE. This keyword is ignored for AES keys.

WRAP-ENH Specifies that the new enhanced wrapping method is to be used to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation control (Optional, valid only for enhanced wrapping)

ENH-ONLY Specify this keyword to indicate that the key once wrapped with the enhanced
method cannot be wrapped with the original method. This restricts translation to the
original method.

trusted_block_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
trusted_block_identifier variable. The maximum length is 3500 bytes.

trusted_block_identifier

Direction: Input
Type: String

A pointer to a string variable containing a trusted block key-token of an
internal trusted block, or the key label of a trusted block key-token record of
an internal trusted block. It is used to validate the public-key certificate and to
define the rules for key generation and key export.

certificate_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
certificate variable. The maximum length is 5000 bytes.

It is an error if the certificate_length variable is 0 and the trusted block’s
asymmetric encrypted output key format in the rule section selected by the
rule_id variable indicates PKCS-1.2 output format or RSA-OAEP output format.

If the certificate_length variable is 0 or the trusted block’s asymmetric encrypted
output key format in the rule section selected by the rule_id variable indicates
no asymmetric key output, the certificate is ignored.

certificate

Direction: Input
Type: String

A pointer to a string variable containing a public-key certificate. The certificate
must contain the public-key modulus and exponent in binary form, as well as
a digital certificate. The certificate must verify using the root public key that is
in the trusted block pointed to by the trusted_block_identifier parameter.

Note: After the hash is computed over the certificate data specified by offsets
28 and 32, the hash is BER encoded by pre-pending these bytes:

Remote Key Export (CSNDRKX)

Chapter 15. Managing PKA cryptographic keys 725

X'30213009 06052B0E 03021A05 000 414'

See “PKCS #1 hash formats” on page 1044.

certificate_parms_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
certificate_parms variable. The length must be 36 bytes if the certificate_length
variable is 0, else the length must be 0.

certificate_parms

Direction: Input
Type: String

A pointer to a string variable containing a structure for identifying the location
and length of values within the public-key certificate pointed to by the
certificate parameter. If the value of the certificate_length variable is 0, then the
information in this variable is ignored but the variable must be declared. The
format of the certificate_parms variable is defined in Table 198.

Table 198. Keywords for Remote Key Export certificate_parms parameter

Offset
(bytes)

Length
(bytes) Description

0 4 Offset of modulus

4 4 Length of modulus

8 4 Offset of public exponent

12 4 Length of public exponent

16 4 Offset of digital signature

20 4 Length of digital signature

24 1 Identifier for hash algorithm. The following values are defined:

Identifier
Hash algorithm

X'01' SHA-1
X'02' MD5 (Currently not supported)
X'03' RIPEMD-160 (Currently not supported)

25 1 Identifier for digital signature hash formatting method used. The
following values are defined:

Identifier
Hash formatting method

X'01' PKCS-1.0
X'02' PKCS-1.1
X'03' X9.31 (Currently not supported)
X'04' ISO-9796 (Currently not supported)
X'05' ZERO-PAD (Currently not supported)

26 2 Reserved, must be binary zeros

28 4 Offset of first byte of certificate data hashed to compute the digital
signature

32 4 Length of certificate data hashed to compute the digital signature

Remote Key Export (CSNDRKX)

726 Common Cryptographic Architecture Application Programmer's Guide

Note: The modulus, exponent, and signature values can have bit lengths that
are not multiples of 8; each of these values is right-aligned and padded on the
left with binary zeroes to make it an even number of bytes in length.

transport_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
transport_key_identifier variable. The length must be 0 or 64 bytes.

transport_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing a KEK key-token, or a key label of a
KEK key-token record. The KEK is either an internal CCA DES key-token (key
type IMPORTER or EXPORTER), or an external version X'10' (RKX) DES
key-token. It is used to encrypt a key exported by the verb.

When the symmetric encrypted output key format flag of the selected rule
indicates return an RKX key-token, this parameter is ignored but must be
declared.
v If this parameter points to a CCADES key-token, the token must be of key

type IMPORTER or EXPORTER.
v If the source_key_identifier parameter identifies an internal CCA DES

key-token, the token must be of key type EXPORTER.

For more information on RKX key tokens, see “External RKX DES key tokens”
on page 851.

rule_id_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
rule_id variable. The length must be eight bytes.

rule_id

Direction: Input
Type: String

A pointer to a string variable that identifies the rule in the trusted block to be
used to control key generation or export. The trusted block can contain
multiple rules, each of which is identified by a unique rule ID value.

importer_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
importer_key_identifier variable. The length must be 0 or 64 bytes.

importer_key_identifier

Direction: Input
Type: String

Remote Key Export (CSNDRKX)

Chapter 15. Managing PKA cryptographic keys 727

A pointer to a string variable containing an IMPORTER KEK key-token or a
label of an IMPORTER KEK key-token record. This KEK is used to decipher
the key pointed to by the source_key_identifier parameter.

This variable is ignored if the verb is used to generate a new key, or the
source_key_identifier variable contains either an RKX key token or an internal
CCA DES key-token. For more information on RKX key tokens, see “External
RKX DES key tokens” on page 851.

source_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
source_key_identifier variable. The length must be 0 or 64 bytes.

source_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing a DES key-token or a label of a DES
key-token record. The key token contains the key to be exported, and must
meet one of these criteria:
v It is a single-length or double-length external CCA DES key-token.
v It is a single-length or double-length internal CCA DES key-token.
v It is a single-length, double-length, or triple-length RKX key-token.

Note:

1. If the key token is a CCA DES key-token, its XPORT-OK control vector bit
(bit 17) must be B'1', or else the export will not be allowed.

2. If a DES key-token has three 8-byte key parts, the parts are considered
unique if any two of the three key parts differ.

asym_encrypted_key_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
asym_encrypted_key variable. On output, the variable is updated with the actual
length of the asym_encrypted_key variable. The input length must be at least the
length of the modulus in bytes of the public-key in the certificate variable.

asym_encrypted_key

Direction: Output
Type: String

A pointer to a string variable containing a generated or exported clear key
returned by the verb. The clear key is encrypted by the public (asymmetric)
key provided by the certificate variable.

sym_encrypted_key_identifier_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
sym_encrypted_key_identifier variable. On output, the variable is updated with

Remote Key Export (CSNDRKX)

728 Common Cryptographic Architecture Application Programmer's Guide

the actual length of the sym_encrypted_key_identifier variable. The input length
must be a minimum of 64 bytes.

sym_encrypted_key_identifier

Direction: Output
Type: String

A pointer to a string variable. On input, the sym_encrypted_key_identifier
variable must contain either a key label of a CCA DES key-token record or an
RKX key-token record, or be filled with binary zeros.

On output, the verb produces a CCA DES key-token or an RKX key-token,
depending on the value of the symmetric encrypted output key format value
of the rule section within the trusted_block_identifier variable. The key token
produced contains either a generated or exported key encrypted using the
key-encrypting key provided by the transport_key_identifier variable.
v If the output is an external CCA DES key-token:

1. If a common export key parameters subsection (X'0003') is present in the
selected rule, the control vector (CV) is copied from the subsection into
the output CCA DES key-token. Otherwise, the CV is copied from source
key-token.

2. If a transport key variant subsection (X'0001') is present in the selected
rule, the key is multiply enciphered under the transport key XORed with
the transport key variant from the subsection. Otherwise, the key is
multiply enciphered under the transport key XORed with binary zero

3. XORs the CV in the token with the encrypted result from the previous
step.

4. Stores the previous result in the token and updates the TVV.
v If the output is an (external) RKX key-token:

1. Encrypts the key using a variant of the trusted block MAC key.
2. Builds the token with the encrypted key and the rule_id variable.
3. Calculates the MAC of the token contents and stores the result in the

token.

If the sym_encrypted_key_identifier variable is a key label on input, on output the
key token produced by the verb is stored in DES key-storage and the variable
remains the same. Otherwise, on output the variable is updated with the key
token produced by the verb, provided the field is of sufficient length.

extra_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
extra_data variable. The length must be less than or equal to the byte length of
the certificate public key modulus minus the generated/exported key length
minus 42 (X'2A'), which is the OAEP overhead. For example, if the public key
in the certificate has a modulus length of 1024 bits (128 bytes), and the
exported key is single length, then the extra data length must be less than or
equal to 128 minus 8 minus 42, which equals 78.

extra_data

Direction: Input
Type: String

A pointer to a string variable containing extra data to be used as part of the

Remote Key Export (CSNDRKX)

Chapter 15. Managing PKA cryptographic keys 729

OAEP key-wrapping process. The extra_data variable is used when the output
format for the RSA-encrypted key that is returned in the asym_encrypted_key
variable is RSA-OAEP; otherwise, it is ignored.

Note: The RSA-OAEP format is specified as part of the rule in the trusted
block.

key_check_parameters_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
key_check_parameters variable. The length must be 0.

key_check_parameters

Direction: Input
Type: String

Reserved for future use.

key_check_value_length

Direction: Input/Output
Type: Integer

A pointer to a string variable containing the number of bytes of data in the
key_check_value variable. On output, and if the field is of sufficient length, the
variable is updated with the actual length of the key_check_value variable.

key_check_value

Direction: Output
Type: String

A pointer to a string variable containing the result of the key-check algorithm
chosen in the rule section of the selected trusted block. See “Encrypt zeros
DES-key verification algorithm” on page 1024 and “Modification Detection
Code calculation” on page 1024. When the selected key-check algorithm is to
encrypt an 8-byte block of binary zeros with the key, and the generated or
exported key is:
v Single length

1. A value of 0, 1, or 2 is considered insufficient space to hold the output
encrypted result, and the verb returns an error.

2. A value of 3 returns the leftmost three bytes of the encrypted result if the
key_check_value_length variable is 3 or greater. Otherwise, an error is
returned.

3. A value of 4 - 8 returns the leftmost four bytes of the encrypted result if
the key_check_value_length variable is 4 or greater. Otherwise, an error is
returned.

v Double length or triple length
The verb returns the entire 8-byte result of the encryption in the
key_check_value variable if the key_check_value_length variable is 8 or more.
Otherwise, an error is returned.

When the selected key-check algorithm is to compute the MDC-2 hash of the
key, and the generated or exported key is single length, the 8-byte key is made
into a double-length key by replicating the key halves. This is because the
MDC-2 calculation method does no padding, and requires that the data be a

Remote Key Export (CSNDRKX)

730 Common Cryptographic Architecture Application Programmer's Guide

minimum of 16 bytes and a multiple of eight bytes. If the generated or
exported key is double length or triple length, the key is processed as is. The
verb returns the 16-byte hash result of the key in the key_check_value variable if
the key_check_value_length variable is large enough, else an error is returned.

Restrictions
The restrictions for CSNDRKX.
v AES keys are not supported by this verb.
v Keys with a modulus length greater than 2048 bits are not supported in releases

before Release 3.30.
v The maximum public exponent is 17 bits for any key that has a modulus greater

than 2048 bits.
v A key identifier length must be 64 for a key label.
v Key-wrapping method keywords are not supported in releases before Release

4.4.
v A key-wrapping method rule-array keyword cannot be specified if the

symmetric encrypted output key format flag is not set to return a CCA
fixed-length DES key-token.

Required commands
The required commands for CSNDRKX.

This verb requires the Remote Key Export - Gen or export a non-CCA node key
command (offset X'0312') to be enabled in the active role.

The verb also requires the Key Generate - SINGLE-R command (offset X'00DB') to
be enabled to replicate a single-length source key (either from a CCA DES
key-token or an RKX key-token). If authorized, key replication occurs if all of the
following are true:
1. The key token returned using the sym_encrypted_key_identifier parameter is a

CCA DES key-token, as defined in the rule section identified by the rule_id
parameter.

2. The rule section identified by the rule_id parameter has a common export key
parameters subsection defined, and the control vector in the subsection is 16
bytes in length with key-form bits of B'010' for the left half and B'001' for the
right half.

3. The token identified by the source_key_identifier parameter is single length, and
is either a CCA DES key-token or an RKX key-token.

Note: A role with X'00DB' enabled can also use the Key Generate verb with the
SINGLE-R key-length keyword.

To enable the use of key-encrypting-keys with the NOCV option for export, this
verb requires the NOCV KEK usage for export-related functions command (offset
X'0300') to be enabled in the active role.

To enable the use of key-encrypting-keys with the NOCV option for import, this
verb requires the NOCV KEK usage for import-related functions command (offset
X'030A') to be enabled in the active role.

This verb also requires the following commands to be enabled in the active role:

Remote Key Export (CSNDRKX)

Chapter 15. Managing PKA cryptographic keys 731

Rule-array keyword Offset Command

USECONFG
WRAP-ECB
WRAP-ENH
ENH-ONLY

X'013F' Remote Key Export - include RKX in
default wrap config

WRAP-ECB or WRAP-ENH and
default key-wrapping method
setting does not match keyword

X'02BA' Remote Key Export - Allow wrapping
override keywords

Commands related to wrapping DES keys coincide with the addition of rule array
keywords to specify key-wrapping method and translation control:
v Remote Key Export - include RKX in default wrap config (offset X'013F')

Enable this command in the active role to allow any rule array keywords to be
specified or, in the absence of a key-wrapping method keyword, to have the
verb wrap the DES key using the default key-wrapping configuration
(USECONFG) setting. Enabling X'013F' makes the verb behave in the same
manner as other verbs that accept key-wrapping method and translation control
keywords.

Note: The purpose of offset X'013F' is to provide a way to maintain backward
compatibility with the key-wrapping method used in releases before Release 4.4.
To maintain backward compatibility with releases that do not accept
key-wrapping method keywords, do not enable X'013F' in the active role.

v Remote Key Export - Allow wrapping override keywords (offset X'02BA')
This command requires offset X'013F' to be enabled in the active role. Enable
offset X'02BA' in the active role to allow a key-wrapping keyword to be specified
that overrides the default key-wrapping configuration.

When an existing key is exported into a CCA fixed-length DES key-token (that is,
offset 18 in the selected trusted block rule section is X'01') and the Remote Key
Export - include RKX in default wrap config command (offset X'013F') is not
enabled in the active role (or the release is before Release 4.4), the DES key
identified by the sym_encrypted_key_identifier parameter is wrapped based on
the following criteria depending on whether the source key is an RKX key-token or
a CCA fixed-length DES key-token:
v Source key is an RKX key-token:

Configuration setting of
default wrapping method

CV bit 56 of rule subsection
X'0003' of selected trusted
block rule section

Wrapping method (and CV
bit 56) of exported DES key

WRAP-ECB (legacy) No CV (CV length = 0) WRAP-ECB (B'0')

B'0' (not ENH-ONLY) WRAP-ECB (B'0')

B'1' (ENH-ONLY) Error

WRAP-ENH (enhanced) No CV WRAP-ENH (B'0')

B'0' WRAP-ENH (B'0')

B'1' WRAP-ENH (B'1')

v Source key is a CCA fixed-length DES key-token:

Remote Key Export (CSNDRKX)

732 Common Cryptographic Architecture Application Programmer's Guide

Source key wrapping
method

CV bit 56 of source
key

CV bit 56 of rule
subsection X'0003' of
selected trusted block
rule section

Wrapping method
(and CV bit 56) of
exported DES key

WRAP-ECB (legacy) B'0' (not
ENH-ONLY)

No CV (CV length = 0) WRAP-ECB (B'0')

B'0' (not ENH-ONLY) WRAP-ECB (B'0')

B'1' (ENH-ONLY) Error

WRAP-ENH
(enhanced)

B'0' No CV WRAP-ENH (B'0')

B'0' WRAP-ENH (B'0')

B'1' WRAP-ENH (B'1')

B'1' (ENH-ONLY) No CV WRAP-ENH (B'0')

B'0' Error

B'1' WRAP-ENH (B'1')

Usage notes
The usage notes for CSNDRKX.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDRKXJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDRKXJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber trusted_block_length,
byte[] trusted_block_identifier,
hikmNativeNumber certificate_length,
byte[] certificate,
hikmNativeNumber certificate_parms_length,
byte[] certificate_parms,
hikmNativeNumber transport_key_identifier_length,
byte[] transport_key_identifier,
hikmNativeNumber rule_id_length,
byte[] rule_id,
hikmNativeNumber importer_key_identifier_length,
byte[] importer_key_identifier,
hikmNativeNumber source_key_identifier_length,
byte[] source_key_identifier,
hikmNativeNumber asym_encrypted_key_length,
byte[] asym_encrypted_key,
hikmNativeNumber sym_encrypted_key_identifier_length,
byte[] sym_encrypted__identifierkey,
hikmNativeNumber extra_data_length,
byte[] extra_data,
hikmNativeNumber key_check_parameters_length,
byte[] key_check_parameters,
hikmNativeNumber key_check_value_length,
byte[] key_check_value);

Remote Key Export (CSNDRKX)

Chapter 15. Managing PKA cryptographic keys 733

Trusted Block Create (CSNDTBC)
The verb creates an external trusted block under dual control. A trusted block is an
extension of CCA PKA key tokens using new section identifiers.

Trusted blocks are an integral part of a remote key-loading process. They contain
various items, some of which are optional, and some of which can be present in
different forms. Tokens are composed of concatenated sections. For a detailed
description of a trusted block, including its format and field values, see “Trusted
blocks” on page 968.

Creating an external trusted block: Create an active external trusted block in two
steps:
1. Create an inactive external trusted block using the INACTIVE rule_array

keyword. This step requires the Trusted Block Create - Create Block in
inactive form command (offset X'030F') to be enabled in the active role.

2. Complete the creation process by activating (promoting) an inactive external
trusted block using the ACTIVE rule_array keyword. This step requires the
Trusted Block Create - Activate an inactive block command (offset X'0310')
to be enabled in the active role. Changing an external trusted block from
inactive to active effectively approves the trusted block for further use.

Note: Authorize each command in a different role to enforce a dual-control policy.

The creation of an external trusted block typically takes place in a highly secure
environment. Use “PKA Key Import (CSNDPKI)” on page 696 to import an active
external trusted block into the desired node. The imported internal trusted block
can then be used as input to “Remote Key Export (CSNDRKX)” on page 722 in
order to generate or export DES keys.

Creating an inactive external trusted block: To create an inactive external trusted
block, use a rule_array_count of 1 and a rule_array keyword of INACTIVE. Identify
the input trusted block using the input_block_identifier parameter, and set the
input_block_identifier_length variable to the length of the key label or the key token
of the input block. The input block can be any one of these forms:
v An uninitialized trusted block. The trusted block is complete except that it does

not have MAC protection.
v An inactive trusted block. The trusted block is external, and it is in inactive

form. MAC protection is present due to recycling of an existing inactive trusted
block.

v An active trusted block. The trusted block is internal or external, and it is in
active form. MAC protection is present due to recycling of an existing active
trusted block.

Note: The MAC key is replaced with a new MAC key, and any RKX key-token
created with the input trusted block cannot be used with the output trusted block.

This verb randomly generates a confounder and triple-length MAC key, and uses a
variant of the MAC key to calculate an ISO 16609 CBC mode TDES MAC of the
trusted block contents. To protect the MAC key, the verb encrypts the confounder
and MAC key using a variant of an IMP-PKA key. The calculated MAC and the
encrypted confounder and MAC key are embedded in the output trusted block.
Use the transport_key_identifier parameter to identify the key token that contains the
IMP-PKA key.

Trusted Block Create (CSNDTBC)

734 Common Cryptographic Architecture Application Programmer's Guide

On input, set the trusted_block_identifier_length variable to the length of the key
label or at least the size of the output trusted block. The output trusted block is
returned in the key-token identified by the trusted_block_identifier parameter, and
the verb updates the trusted_block_identifier_length variable to the size of the key
token if a key label is not specified.

Creating an active external trusted block: To create an active external trusted
block, use a rule_array_count of 1 and a rule_array keyword of ACTIVE. Identify
the input trusted block using the input_block_identifier parameter, and set the
input_block_identifier_length variable to the length of the key label or the key token
of the input block. The input block must be an inactive external trusted block that
was created using the INACTIVE rule_array keyword.

Use the transport_key_identifier parameter to identify the key token that contains the
IMP-PKA key.

On input, set the trusted_block_identifier_length variable to the length of the key
label or at least the size of the output trusted block. The verb returns an error if
the input trusted block is not valid. Otherwise, it changes the flag in the trusted
block information section from the inactive state to the active state, recalculates the
MAC, and embeds the updated MAC value in the output trusted block.

The output trusted block is returned in the key-token identified by the
trusted_block_identifier parameter, and the verb updates the
trusted_block_identifier_length variable to the size of the key token if a key label is
not specified.

Format
The format of CSNDTBC.

CSNDTBC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_block_identifier_length,
input_block_identifier,
transport_key_identifier,
trusted_block_identifier_length,
trusted_block_identifier)

Parameters
The parameters for CSNDTBC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Trusted Block Create (CSNDTBC)

Chapter 15. Managing PKA cryptographic keys 735

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are eight bytes in length and must be left-aligned and padded on the right
with space characters. The rule_array keywords are described in Table 199.

Table 199. Keywords for Trusted Block Create control information

Keyword Description

Operation (One required)

INACTIVE Create an external trusted block, based on the input_block_identifier variable, and set the active flag to
B'0'. This makes the trusted block unusable in any other CCA services.

ACTIVE Create an external trusted block, based on the token identified by the input_block_identifier parameter,
and change the active flag from B'0' to B'1'. This makes the trusted block usable in other CCA services

input_block_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes in the
input_block_identifier variable. The maximum length is 3500 bytes.

input_block_identifier

Direction: Input
Type: String

A pointer to a string variable containing a trusted block key-token or the key
label of a trusted block key-token that has been built according to the format
specified in “Trusted blocks” on page 968. The trusted block key-token will be
updated by the verb and returned in the trusted_block_identifier variable.

When the operation is INACTIVE, the trusted block can have MAC protection
(for example, due to recycling of an existing trusted block), but typically it
does not.

transport_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing an operational CCA DES key-token or
the key label of an operational CCA DES key-token record. The key token must
be of type IMP-PKA.

An IMP-PKA key type is an IMPORTER key-encrypting key with only its
IMPORT key-usage bit (bit 21) on; its other key-usage bits (IMEX, OPIM,
IMIM, and XLATE) must be off.

Note: An IMP-PKA control vector can be built using “Control Vector Generate
(CSNBCVG)” on page 170 with a key type of IMPORTER and a rule_array
keyword of IMPORT.

trusted_block_identifier_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the

Trusted Block Create (CSNDTBC)

736 Common Cryptographic Architecture Application Programmer's Guide

trusted_block_identifier variable. The maximum length is 3500 bytes. The output
trusted block token can be up to seven bytes longer than the input trusted
block token due to padding.

trusted_block_identifier

Direction: Output
Type: String

A pointer to a string variable containing a trusted block token or a label of a
trusted block token returned by the verb.

Restrictions
The restrictions for CSNDRKX.

AES keys are not supported by this verb.

Required commands
The required commands for CSNDTBC.

The verb requires the following commands to be enabled in the active role based
on the keyword specified for the operation rule:

rule_array
keyword Offset Command

INACTIVE X'030F' Trusted Block Create - Create Block in inactive form

ACTIVE X'0310' Trusted Block Create - Activate an inactive block

To prevent a weaker transport key (key-encrypting key) from being used to
encipher a triple-length MAC key into an external trusted block, enable the TBC -
Disallow triple-length MAC keycommand (offset X'032E') to be enabled in the
active role.

Usage notes
The usage notes for CSNDRKX.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDTBCJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDTBCJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber input_block_identifier_length,
byte[] input_block_identifier,
byte[] transport_key_identifier,
hikmNativeNumber trusted_block_identifier_length,
byte[] trusted_block_identifier);

Trusted Block Create (CSNDTBC)

Chapter 15. Managing PKA cryptographic keys 737

Public Infrastructure Certificate (CSNDPIC)
Use the Public Infrastructure Certificate verb to create a self-signed PKCS #10
certificate signing request (CSR) based on an existing RSA or ECC pair of private
key and public key. The self-signed PKCS #10 request for the input public key is
signed by the input private key.

For a PKCS #10 CSR, the input private key can either be an internal RSA or ECC
token, or the label of the private key, or it can be the label of an RSA retained key
token. In addition to the input private key, the user must specify extra input
parameters that specify the following:
v The subject's distinguished name.
v The key usage and constraints indicators.
v The signature algorithm and hashing-method.
v The certificate extensions.
v The output format of the CSR.

Format
The format of CSNDPIC.

CSNDPIC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
subject_private_key_identifier_length,
subject_private_key_identifier,
subject_name_length,
subject_name,
extensions_length,
extensions),
reserved1_length,
reserved1),
reserved2_length,
reserved2),
reserved3_length,
reserved3),
reserved4)
reserved5),
reserved6_length,
reserved6),
certificate_length,
certificate)

Parameters
The parameters for CSNDPIC.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the

Public Infrastructure Certificate (CSNDPIC)

738 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|||
||
|
|

rule_array variable. This value must be in the range of 6 -14.

rule_array

Direction: Input
Type: String array

Keywords that provide control information to the verb. Each keyword is
left-aligned in 8-byte fields, and padded on the right with blanks. All
keywords must be in contiguous storage.

The rule_array keywords are described in Table 200.

Table 200. Keywords for Public Infrastructure Certificate control information

Keyword Description

Requested action (One required).

PK10SNRQ Specifies to create a PKCS #10 CSR request from the input private key (which always includes a
public key section).

Issuer modifier One required. Specifies how the issuer and issuer's distinguished name will be determined).

SELFSIGN Specifies that the CSR is for a self-signed certificate. The issuer's distinguished name is the value
that is passed in the subject_name parameter.

Input subject name format indicator (One required. Specifies the format of the input subject_name parameter).

SDNDER Specifies that the input subject_name is ASN.1 DER encoded.

Public Infrastructure Certificate (CSNDPIC)

Chapter 15. Managing PKA cryptographic keys 739

|

|

|||
||
|

|
|
|

|

||

||

|

||
|

|

||
|

|

||

Table 200. Keywords for Public Infrastructure Certificate control information (continued)

Keyword Description

SDNCLEAR Specifies that the input subject name is specified as a series of X.509 attribute-value pairs that are
separated by commas.

For example: cn=Thomas Watson,ou=Endicott,c=US

Identifier
Meaning

C countryName
O organizationName
OU organizationalUnitName
CN commonName
SN surname
L localityName
ST stateOrProvinceName
SP stateOrProvinceName
S stateOrProvinceName
T title
PC postalCode
EMAIL emailAddress
E emailAddress
EMAILADDRESS

emailAddress
STREET

streetAddress
DC domainComponent
MAIL mail
NAME name
GIVENNAME

givenName
INITIALS

initials
GENERATIONQUALIFIER

generationQualifier
DNQUALIFIER

dnQualifier
SERIALNUMBER

serialNumber

To specify a comma within an attribute value, escape the comma with the back slash character (\).
For example, an organization name of IBM,Poughkeepsie would be specified as:

OU=IBM\,Poughkeepsie

.

Output format indicator (One required. Specifies the format of the data returned in the certificate parameter).

DER-FMT Specifies that the output in the certificate parameter object are DER encoded according to the
X.509 standard.

PEM-FMT Specifies that the output in the certificate parameter are encoded using Base64 encoding according
to RFC 7468. The encoded stream will consist of EBCDIC printable characters with one line feed
(X'25') inserted after each group of 64 encoded characters and one line feed at the end of the
encoded stream.

Public Infrastructure Certificate (CSNDPIC)

740 Common Cryptographic Architecture Application Programmer's Guide

|

||

||
|

|

|
|
||
||
||
||
||
||
||
||
||
||
||
||
||
|
|
|
|
||
||
||
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

||
|

||
|
|
|

Table 200. Keywords for Public Infrastructure Certificate control information (continued)

Keyword Description

Key usage and constraint indicators. Specifies key usage indicators that are encoded as allowed in the Key Usage
extension in the data that is returned in the output certificate parameter.

One to seven of these rules are required if the extensions parameter does not specify any allowed usages for Key
Usage or Extended Key Usage. None of these rules are allowed if the extensions parameter is specified and does
specify usages for Key Usage or Extended Key Usage. Also, U-DECONL and U-ENCONL requires U-KEYAGR to be
specified. U-DECONL cannot be combined with U-ENCONL.

U-DIGSIG Specifies that digitalSignature is allowed.

U-NONRPD Specifies that nonRepudiation is allowed.

U-DATEENC Specifies that keyEncipherment is allowed.

U-KEYAGR Specifies that keyAgreement is allowed.

U-KCRTSN Specifies that keyCertSign is allowed.

U-CRLSN Specifies that cRLSign is allowed.

U-ENCONL Specifies that encipherOnly is allowed.

U-DECONL Specifies that decipherOnly is allowed.

Signature algorithm specification (One required. Specifies the signature algorithm is to be used in creating the data
returned in the certificate parameter. A hash method rule must also be specified.

RSA Specifies to use the RSA signature algorithm. The hash method that is used must be SHA-1,
SHA-224, SHA-256, SHA-384, or SHA-512.

ECDSA Specifies to use the ECDSA signature algorithm. The hash method that is used must be SHA-224,
SHA-256, SHA-384, or SHA-512.

Hash-method specification (One required. Specifies the hashing method that is to be used in conjunction with the
required signature algorithm in creating the data return in the certificate parameter.

SHA-1 The hash method to be used is SHA-1. Not allowed with the ECDSA signature algorithm.

SHA-224 The hash method to be used is SHA-224.

SHA-256 The hash method to be used is SHA-256.

SHA-384 The hash method to be used is SHA-384.

SHA-512 The hash method to be used is SHA-512.

subject_private_key_identifier_length

Direction: Input
Type: Integer

The length of the subject_private_key_identifier parameter in bytes. The
maximum value is 3500.

subject_private_key_identifier

Direction: Input
Type: String

Contains an internal token or label of a private RSA or ECC key or the label of
an RSA retained key token. The key must be able to generate digital signatures.
In addition, the key usage attributes must not conflict with the key usage
keywords.

subject_name_length

Direction: Input

Public Infrastructure Certificate (CSNDPIC)

Chapter 15. Managing PKA cryptographic keys 741

|

||

|
|

|
|
|
|

||

||

||

||

||

||

||

||

|
|

||
|

||
|

|
|

||

||

||

||

||
|

|

|||
||
|
|
|

|

|||
||
|
|
|
|
|

|

|||

Type: Integer

The length of the subject_name parameter in bytes. The maximum value is 400.

subject_name

Direction: Input
Type: String

The subject distinguished name (SDN) that is used for creating the output in
the certificate parameter. When the SELFSIGN rule is specified, the value of
subject_name is also used for the issuer distinguished name (IDN) in the output
certificate parameter.

extensions_length

Direction: Input
Type: Integer

The length of the extensions parameter in bytes. The maximum value is 1000.

extensions

Direction: Input
Type: String

Specifies a DER encoded set of x.509 extensions. If any of the extensions
specify key usage or extended key usage indicators, then no key usage or
constrain indicator rules can be specified.

reserved1_length

Direction: Input
Type: Integer

This parameter must be zero.

reserved1

Direction: Input
Type: String

This field is not used.

reserved2_length

Direction: Input
Type: Integer

This parameter must be zero.

reserved2

Direction: Input
Type: String

This field is not used.

reserved3_length

Direction: Input
Type: Integer

This parameter must be zero.

Public Infrastructure Certificate (CSNDPIC)

742 Common Cryptographic Architecture Application Programmer's Guide

||
|
|

|

|||
||
|
|
|
|
|

|

|||
||
|
|

|

|||
||
|
|
|
|

|

|||
||
|
|

|

|||
||
|
|

|

|||
||
|
|

|

|||
||
|
|

|

|||
||
|
|

reserved3

Direction: Input
Type: String

This field is not used.

reserved4

Direction: Input
Type: Integer

This parameter must be zero.

reserved5

Direction: Input
Type: Integer

This parameter must be zero.

reserved6_length

Direction: Input
Type: Integer

This parameter must be zero.

reserved6

Direction: Input
Type: String

This field is not used.

certificate_length

Direction: Input/Output
Type: Integer

On input, the length in bytes of the buffer for the certificate parameter. The
maximum value is 3500.

On output, the length in bytes of the data returned in the certificate
parameter.

certificate

Direction: Input/Output
Type: String

On input, specifies the buffer to be used for the output certificate. On output,
contains the data that is requested by the Requested Action rule.

Restrictions
The restrictions for CSNDPIC.

None.

Public Infrastructure Certificate (CSNDPIC)

Chapter 15. Managing PKA cryptographic keys 743

|

|||
||
|
|

|

|||
||
|
|

|

|||
||
|
|

|

|||
||
|
|

|

|||
||
|
|

|

|||
||
|
|
|

|
|

|

|||
||
|
|
|

|

|

|

Required commands
The required commands for CSNDPIC.

This verb requires the following commands to be enabled in the active role:

Rule-array
keyword Offset Command Function control

n/a X'0070' Public Infrastructure
Certificate

Allows the service to be used.

PK10SNRQ X'007C' Public Infrastructure
Certificate - PK10SNRQ

Allows the PK10SNRQ
keyword to be used with the
service.

Usage notes
The usage notes for CSNDPIC.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDPICJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDPICJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber subject_private_key_identifier_length,
byte[] subject_private_key_identifier,
hikmNativeNumber subject_name_length,
byte[] subject_name,
hikmNativeNumber extensions_length,
byte[] extensions,
hikmNativeNumber reserved1_length,
byte[] reserved1,
hikmNativeNumber reserved2_length,
byte[] reserved2,
hikmNativeNumber reserved3_length,
byte[] reserved3,
hikmNativeNumber reserved4,
hikmNativeNumber reserved5,
hikmNativeNumber reserved6_length,
byte[] reserved6,
hikmNativeNumber certificate_length,
byte[] certificate
);

Public Infrastructure Manage (CSNDPIM)
Use the CSNDPIM verb to manage the public key infrastructure stored inside the
adapter.

Public Infrastructure Certificate (CSNDPIC)

744 Common Cryptographic Architecture Application Programmer's Guide

|

|

|

||
||||

|||
|
|

|||
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

You can manage a public key infrastructure inside the HSM to enable the use of
standard-compliant X.509 certificates with CCA. For such certificates, you use a
so-called trust parent, which is the certificate installed from the Trusted Key Entry
workstation (TKE). The trust parent is the root of the trust chain of certificates that
validate an operational X.509 certificate. The trust parent could be an actual
certificate authority (CA) root certificate, or it could be a sub-CA certificate. The
security is the same from the perspective of the adapter because the trust parent is
installed under dual control security by administrators of the adapter.

Thus, the management of trust parents requires dual-control administrative
capabilities through the TKE, while management of operational certificates is
similar to existing public key tokens. The CSNDPIMOK interface to the public key
infrastructure (PKI) in the HSM allows some limited management and query
functions that do not require administrative authentication.

You supply the following information:
v To import a trust parent on the TKE:

– Supply a X.509 certificate that is DER or PEM encoded (binary DER), 64-byte
label to initiate import.

– Generate a hash of the X.509 certificate, a 64-byte label and a keyword to
complete import.

– A trust parent from a CCA point of view may actually be a sub-CA certificate
when considered from the view of an external PKI:
- The distinction for CCA is that a trust parent:
v establishes a new line of trust in the HSM, much like a master wrapping

key
v is loaded under dual control: load of a trust root is protected by two

access control points, one for each phase of the process.
- Loading a sub-CA certificate as a trust parent is expected for some

workflows:
v CCA does not implement a full PKI hierarchy internally. So any

operational X.509 certificate should have its trust parent, namely the
certificate for the issuer, loaded to the HSM.

v This is reasonable from a security perspective given that a sub-CA
loaded as a trust parent has been loaded by two administrators, and so
the same level of trust is justified.

Note: As a PKI participant, CCA cannot validate the signature on a sub-CA
certificate loaded as a trust parent, since the issuer certificate is not part of
the internal PKI.

– The HSM has no independent access to a network and thus:
- cannot use NTP to maintain accurate timing for trust parent expiration
- cannot interrogate external revocation lists.

v To list trust parents (by label) :
– Supply a keyword.
– Supply a buffer to hold the information.

Public Infrastructure Manage (CSNDPIM)

Chapter 15. Managing PKA cryptographic keys 745

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

Format
The format of CSNDPIM.

CSNDPIM(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
certificate_length,
certificate,
label_length,
label,
hash_length,
hash,
input_data_length,
input_data,
output_data_length,
output_data,
reserved1_length,
reserved1)

Parameters
The parameters for CSNDPIM.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 1, 2, 3 or 4.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are 8 bytes in length and must be left-aligned and padded on the right with
space characters. The rule_array keywords are described in Table 201.

Table 201. Keywords for CSNDPIM control information

Keyword Description

Requested action (One, required)

Public Infrastructure Manage (CSNDPIM)

746 Common Cryptographic Architecture Application Programmer's Guide

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|||
||
|
|
|

|

|||
||
|
|
|
|

||

||

|

Table 201. Keywords for CSNDPIM control information (continued)

Keyword Description

RNW-CERT Specifies to load the input certificate in place of a previously imported certificate. The new certificate
must have the same public key, subject name, and subject key identifier as the old certificate to be a
valid replacement. This operation is expected for expiration updates or other operations that change
certificate parameters without changing the subject public key.

Input:

label 64-byte label

certificate
X.509 certificate, binary DER encoded, or in PEM format

rule array
Hashing method keyword (optional). For available methods (keywords) see section Hashing
method later in this table. If not passed, then no hash is returned.

Output:

v A status indication is returned.

v If a hashing method had been specified, on success, the hash of the certificate is returned for
verification with a tool. The size of the hash is determined by the hashing method.

CHGLABEL Specifies to change the label for a previously imported certificate. This might be used after
RNW-CERT to update the label in some matching updated certificate characteristics. This command
does not change any security aspects for the referenced certificate or the certificates that depend on it.

Input:

label current 64-byte label

input_data
new 64-byte label

As output, a status indication is returned.

VAL-CERT Specifies to validate the input certificate against the public key infrastructure stored in the HSM. This
is a method of testing the certificate to see if an operational request with the certificate will succeed.

Input:

certificate
X.509 certificate, binary DER encoded or PEM format

Output:

status indication
Either a success indication is returned or an informational error about why the certificate
validation failed (for example, issuer not found). The returned status indicates only one
error, while there may be more than one issues with a particular certificate.

output_data
The 64-byte label is returned for the certificate in the adapter that is used to validate the
input operational certificate. This returned label may be used as input with the LSTISSUR
keyword to obtain the issuer of the validating certificate. It can also be used with GET-CERT
to obtain the full certificate for the validating certificate. This allows the user to re-construct
the validation certificate chain used for their operational certificate. This is necessary if a user
needs to pass a certification chain to a partner.

Note: This keyword does not require a signature on a Connectivity Programming Request/Reply
Block (CPRB) of type T2 (T2 CPRB).

Public Infrastructure Manage (CSNDPIM)

Chapter 15. Managing PKA cryptographic keys 747

|

||

||
|
|
|

|

||

|
|

|
|
|

|

|

|
|

||
|
|

|

||

|
|

|

||
|

|

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|

Table 201. Keywords for CSNDPIM control information (continued)

Keyword Description

GET-CERT Given an input 64-byte label for a particular certificate, this keword returns the full X.509 certificate
for that certificate and the HSM-internal state of the certificate. Optionally the HSM-computed hash of
the certificate is also returned.

Input:

label 64-byte label

rule array
Hashing method keyword (optional). For available methods (keywords) see section Hashing
method later in this table. If not passed, then no hash is returned.

Output:

On success, the following output is returned. On failure, only an error indication is returned.

output_data
X.509 certificate, binary DER encoded, or in PEM format, matching the input 64-byte label

v See the SIZEDATA keyword definition for alternate output.

v See the Output format indicator section later in this table.

hash If a hashing method had been specified, the hash of the certificate referred to by the input
label is returned.

rule array
State of the certificate, specified as a single 8-byte rule-array keyword, to be interpreted as
follows:

1. The first left-most byte X'BBxxxxxxxxxxxxxx' is reserved.

2. The second left-most byte X'xxBBxxxxxxxxxxxx' indicates the activity status of a
certificate. Valid values are:

v X'xx30xxxxxxxxxxxx': The certificate is not active.

– For a root certificate this could mean that the certificate has only been loaded, but
not activated.

– For any certificates (root or non-root) this could mean the certificate has expired
(check other bytes).

v X'xx31xxxxxxxxxxxx': The certificate is active.

– An active installed certificate is used by the HSM to validate other certificates.

3. The third left-most byte X'xxxxBBxxxxxxxxxx' indicates the expiration status of a
certificate. Valid values are:

v X'xxxx30xxxxxxxxxx': The certificate is not expired.

v X'xxxx31xxxxxxxxxx': The certificate is expired.

4. The fourth left-most byte X'xxxxxxBBxxxxxxxx' is reserved.

5. The fifth left-most byte X'xxxxxxxxBBxxxxxx'indicates the hash method specified when a
certificate was loaded. Valid values are:

v X'xxxxxxxx32xxxxxx': The SHA-256 method was used to load the certificate.

v X'xxxxxxxx34xxxxxx': The SHA-384 method was used to load the certificate.

v X'xxxxxxxx38xxxxxx': The SHA-512 method was used to load the certificate.
Note: This keyword does not require a signature on a Connectivity Programming Request/Reply
Block (CPRB) of type T2 (T2 CPRB).

Public Infrastructure Manage (CSNDPIM)

748 Common Cryptographic Architecture Application Programmer's Guide

|

||

||
|
|

|

||

|
|
|

|

|

|
|

|

|

||
|

|
|
|

|

|
|

|

|
|

|
|

|

|

|
|

|

|

|

|
|

|

|

|
|
|

Table 201. Keywords for CSNDPIM control information (continued)

Keyword Description

LSTROOTS Returns a list of 64-byte labels for installed trust parent certificates.

There is no input.

Output:

status indication
A status indication is returned.

output_data
On success, an array of 64 byte labels representing all the loaded root certificates is returned.
The returned buffer size indicates the count of certificates (as a multiple of 64).

v See the SIZEDATA keyword definition for alternate output.
Note: This keyword does not require a signature on a Connectivity Programming Request/Reply
Block (CPRB) of type T2 (T2 CPRB).

Action modifier (One, optional)

SIZEDATA Specifies to return only the size of the data returned by the requested action. Used with VAL-CERT,
GET-CERT, and LSTROOTS keywords.

The size returned is placed in the output_data_length parameter. It refers to the data that would have
been placed in the output_data parameter if the SIZEDATA keyword was not passed.

Certificate validation method (One, required for VAL-CERT)

RFC-2459 Attempt to validate the certificate using the semantics of RFC-2459.

RFC-3280 Attempt to validate the certificate using the semantics of RFC-3280

RFC-5280 Attempt to validate the certificate using the semantics of RFC-5280

RFC-ANY Attempt to validate the certificate using first the semantics of RFC-2459, then RFC-3280, and then
RFC-5280. If the certificate is not compliant with any RFC, the first error encountered (from RFC-2459
processing) is returned.

Hashing method (One, optional with RNW-CERT and GET-CERT)

SHA-256 The hash variable (either input or output, depending on the action) is calculated with the SHA-256
hash method. The size of the variable is 32 bytes.

SHA-384 The hash variable (either input or output, depending on the action) is calculated with the SHA-384
hash method. Size of the variable is 48 bytes.

SHA-512 The hash variable (either input or output, depending on the action) is calculated with the SHA-512
hash method. Size of the variable is 64 bytes.

Output format indicator (one, required with GET-CERT and not allowed otherwise) (One, optional with
RNW-CERT and GET-CERT)

DER-FMT Specifies that the output data object should be DER encoded

PEM-FMT Specifies that the output data object should be PEM (Base64) encoded.

certificate_length

Direction: Input
Type: Integer

Pointer to an integer variable containing the number of bytes of data in the
certificate variable. The maximum length is 3500.

certificate

Direction: Input
Type: String

Public Infrastructure Manage (CSNDPIM)

Chapter 15. Managing PKA cryptographic keys 749

|

||

||

|

|

|
|

|
|
|

|
|
|

|

||
|

|
|

|

||

||

||

||
|
|

|

||
|

||
|

||
|

|
|

||

||
|

|

|||
||
|
|
|

|

|||
||
|

A pointer to a string variable containing an X.509 certificate. The data must be
DER or PEM encoded.

label_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
label variable. This value must be 64 or 0 if no label processing is expected.

label

Direction: Input
Type: String

A pointer to a string variable containing a label for the input certificate
specified with the certificate parameter. The label is 64-byte ASCII data
buffer, with the following format characteristics:
v If the label is less than 64 characters, it must be left-justified in the 64

character buffer, and it must be padded on the right with spaces.
v The first character must be either alphanumeric, or one member from the

following set: @, $, or #.
v All other characters must be either alphanumeric, a period, or one of the set:

@, $, or #.
v The input string is not null-terminated. It is a fixed length string (64

characters) with no special terminators.

hash_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
hash variable. This value depends on the specified hashing method keyword. It
must be 32 for SHA-256, 48 for SHA-384, and 64 for SHA-512.

hash

Direction: Input/Output
Type: String

A pointer to a string variable containing a hash of the referenced X.509
certificate. The hash is either input or output, depending on the requested
action keyword. The format of the hash data is raw binary data of the size
indicated by the hashing method keyword.

input_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
input_data variable. The maximum length depends on the usage.

input_data

Direction: Input
Type: String

A pointer to a string variable with contents that depend on the rule array
keyword for the requested action:

Public Infrastructure Manage (CSNDPIM)

750 Common Cryptographic Architecture Application Programmer's Guide

|
|

|

|||
||
|
|
|

|

|||
||
|
|
|
|

|
|

|
|

|
|

|
|

|

|||
||
|
|
|
|

|

|||
||
|
|
|
|
|

|

|||
||
|
|
|

|

|||
||
|
|
|

CHGLABEL
Parameter input_data shall contain the new 64-byte label for the
internally stored certificate.

all others
Parameter input_data_length should be zero and this parameter
should be NULL.

output_data_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
output_data variable. On input, it must indicate the size of the buffer available.
On output, if the size is sufficient, the variable contains the actual length of the
data returned by the service. If the SIZEDATA keyword is passed, the size
returned refers to the amount of data that is returned if the SIZEDATA
keyword is not passed.

output_data

Direction: Output
Type: String

A pointer to a string variable containing the output data from the service, with
contents that depends on the rule array keyword for the requested action:

LSTROOTS
Paramter output_data contains the array of 64 byte labels returned.

GET-CERT
Paramter output_data contains the returned X.509 certificate
corresponding to the input label.

VAL-CERT
Paramter output_data contains the returned label from the validating
certificate for the input certificate.

all others
Paramter output_data_length is zero and this parameter is NULL.

reserved1_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
reserved1 variable. This parameter must be a null pointer or point to a value
of 0.

reserved1

Direction: Output
Type: String

A pointer to a string variable reserved for this verb.

Restrictions
The restrictions for CSNDPIM.
v PKCS#7 certificate containers are currently not supported by this service.

Public Infrastructure Manage (CSNDPIM)

Chapter 15. Managing PKA cryptographic keys 751

|
|
|

|
|
|

|

|||
||
|
|
|
|
|
|
|

|

|||
||
|
|
|

|
|

|
|
|

|
|
|

|
|

|

|||
||
|
|
|
|

|

|||
||
|
|

|

|

|

However it is possible to install all of the certificates from a PKCS#7 container,
given that they are pulled from the container and loaded to the HSM as sub-CA
certificates one at a time, in dependency order. The trust anchor for the chain
should be loaded first using the platform-appropriate administration tool, as
required. This is still done as a ‘load-root’ from a TKE command perspective,
however the adapter PKI will recognize the parent relationship and
automatically chain them.

v An end-entity may not be loaded as a sub-CA certificate.
v A key identifier length must be 64 for a key label.
v The following signature algorithms are supported:

Table 202. Supported signature algorithms for public infrastructure management (CSNDPIM)

Signature Algorithm OID URL

sha1-with-rsa-signature 1.2.840.113549.1.1.5 http://oid-info.com/get/1.2.840.113549.1.1.5

sha224WithRSAEncryption 1.2.840.113549.1.1.14 http://oid-info.com/get/1.2.840.113549.1.1.14

sha256WithRSAEncryption 1.2.840.113549.1.1.11 http://oid-info.com/get/1.2.840.113549.1.1.11

sha384WithRSAEncryption 1.2.840.113549.1.1.12 http://oid-info.com/get/1.2.840.113549.1.1.12

sha512WithRSAEncryption 1.2.840.113549.1.1.13 http://oid-info.com/get/1.2.840.113549.1.1.13

ecdsa-with-SHA1 1.2.840.10045.4.1 http://oid-info.com/get/1.2.840.10045.4.1

ecdsa-with-SHA224 1.2.840.10045.4.3.1 http://oid-info.com/get/1.2.840.10045.4.3.1

ecdsa-with-SHA256 1.2.840.10045.4.3.2 http://oid-info.com/get/1.2.840.10045.4.3.2

ecdsa-with-SHA384 1.2.840.10045.4.3.3 http://oid-info.com/get/1.2.840.10045.4.3.3

ecdsa-with-SHA512 1.2.840.10045.4.3.4 http://oid-info.com/get/1.2.840.10045.4.3.4

v Concerning the signature algorithm, it is recommended to use a hash method of
commensurate security to the curve of the key being wrapped. The IETF
RFC5753 document provides the following information:
– Implementations that support SignedData with ECDSA:

- must support ECDSA with SHA-256
- may support ECDSA with SHA-1, ECDSA with SHA-224, ECDSA with

SHA-384, and ECDSA with SHA-512. Other digital signature algorithms
may also be supported.

– When using ECDSA, to promote interoperability it is recommended that
- the P-192, P-224, and P-256 curves are to be used with SHA-256
- the P-384 curve is to be used with SHA-384
- the P-521 curve is to be used with SHA-512.

Required commands
The required commands for CSNDPIM.

This verb requires the following commands to be enabled in the active role:

Rule-array keyword or
verb Offset Command

Command required for complete verb

CSNDPIM 0x01B1 Public Infrastructure Management

Command required for requested action

RNW-CERT 0x01B4 PIM: Renew Certificate

Public Infrastructure Manage (CSNDPIM)

752 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|
|
|

|

|

|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

|

|

|
|
|

|

|

|

|

|

|

|

||
|||

|

|||

|

|||

http://oid-info.com/get/1.2.840.113549.1.1.5
http://oid-info.com/get/1.2.840.113549.1.1.14
http://oid-info.com/get/1.2.840.113549.1.1.11
http://oid-info.com/get/1.2.840.113549.1.1.12
http://oid-info.com/get/1.2.840.113549.1.1.13
http://oid-info.com/get/1.2.840.10045.4.1
http://oid-info.com/get/1.2.840.10045.4.3.1
http://oid-info.com/get/1.2.840.10045.4.3.2
http://oid-info.com/get/1.2.840.10045.4.3.3
http://oid-info.com/get/1.2.840.10045.4.3.4
http://www.rfc-base.org/txt/rfc-5753.txt
http://www.rfc-base.org/txt/rfc-5753.txt

Rule-array keyword or
verb Offset Command

CHGLABEL 0x01B5 PIM: Change Certificate Label

Usage notes
The usage notes for CSNDPIM.

None.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNDPIMJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNDPIMJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber certificate_length,
byte[] certificate,
hikmNativeNumber label_length,
byte[] label,
hikmNativeNumber hash_length,
byte[] hash,
hikmNativeNumber input_data_length,
byte[] input_data,
hikmNativeNumber output_data_length,
byte[] output_data,
hikmNativeNumber reserved1_length,
byte[] reserved1

);

Public Infrastructure Manage (CSNDPIM)

Chapter 15. Managing PKA cryptographic keys 753

|
|||

|||
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Public Infrastructure Manage (CSNDPIM)

754 Common Cryptographic Architecture Application Programmer's Guide

Chapter 16. TR-31 symmetric key management verbs

These verbs support TR-31 symmetric key management.
v “Key Export to TR31 (CSNBT31X)”
v “TR31 Key Import (CSNBT31I)” on page 781
v “TR31 Key Token Parse (CSNBT31P)” on page 804
v “TR31 Optional Data Build (CSNBT31O)” on page 808
v “TR31 Optional Data Read (CSNBT31R)” on page 811

Key Export to TR31 (CSNBT31X)
Use the Key Export to TR31 verb to convert a proprietary CCA external or internal
symmetric key-token and its attributes into a non-proprietary key block that is
formatted under the rules of TR-31.

After being exported into a TR-31 key block, the key and its attributes are ready to
be interchanged with any outside third party who uses TR-31. The verb takes as
input either an external or internal fixed-length DES key-token that contains a DES
or Triple-DES (TDES) key, along with an internal DES EXPORTER or OKEYXLAT
key-encrypting key used to wrap the external TR-31 key block.

The Key Export to TR31 verb is analogous to the Key Export verb, except that Key
Export to TR31 accepts an external or internal fixed-length DES key-token as input,
instead of only an internal fixed-length DES key-token, and it translates the key to
an external non-CCA format instead of an external fixed-length DES key-token.
The purpose of both verbs is to export a DES key to another party.

An external-to-external translation would not normally be called an export or import
operation. Instead, it would be called a key translation, and would be handled by a
verb such as Key Translate2. For practical reasons, the export of an external CCA
DES key-token to external TR-31 format is supported by the Key Export to TR31
verb, and the import of an external TR-31 key block to an external CCA DES
key-token is supported by the TR31 Key Import verb.

Note that the Key Export to TR31 verb does not support the translation of an
external key from encipherment under one key-encrypting key to encipherment
under a different key-encrypting key. When converting an external DES key to an
external TR-31 format, the key-encrypting key used to wrap the external source
key must be the same as the one used to wrap the TR-31 key block. If a translation
of an external DES key from encipherment under one key-encrypting to a different
key-encrypting key is desired, use the Key Translate or Key Translate2 verbs.

Both CCA and TR-31 define key attributes that control key usage. In both cases,
the usage information is securely bound to the key so that the attributes cannot be
changed in unintended or uncontrolled ways. CCA maintains its DES key
attributes in a control vector (CV), while a TR-31 key block uses fields: key usage,
algorithm, mode of use, and exportability.

Each attribute in a CCA control vector falls under one of these categories:
1. There is a one-to-one correspondence between the CV attribute and the TR-31

attribute. For these attributes, conversion is straightforward.

© Copyright IBM Corp. 2007, 2018 755

2. There is not a one-to-one correspondence between the CV attribute and the
TR-31 attribute, but the attribute can be automatically translated when
performing this export operation.

3. There is not a one-to-one correspondence between the CV attribute and the
TR-31 attribute, in which case a rule-array keyword is defined to specify which
attribute is used in the TR-31 key block.

4. Category (1), (2), or (3) applies, but there are some attributes that are lost
completely on translation (for example, key-generating bits in key-encrypting
keys).

5. None of the above categories applies, because the key type, its attributes, or
both simply cannot be reasonably translated into a TR-31 key block.

The control vector is always checked for compatibility with the TR-31 attributes. It
is an error if the specified TR-31 attributes are in any way incompatible with the
control vector of the input key. In addition, access control points are defined that
can be used to restrict the permitted attribute conversions.

The TR-31 key block has a header that can contain optional blocks. Optional blocks
become securely bound to the key by virtue of the MAC on the TR-31 key block.
The opt_blocks parameter is provided to allow a complete and properly formatted
optional block structure to be included as part of the TR-31 key block that is
returned by the verb. The TR31 Optional Data Build (CSNBT31O) verb can be used
to construct an optional block structure, one optional block at a time.

An optional block has a 2-byte ASCII block ID value that determines the use of the
block. The use of a particular optional block is either defined by TR-31, or it has a
proprietary use. An optional block that has a block ID with a numeric value is a
proprietary block. IBM has its own proprietary optional block to contain a CCA
control vector. See “TR-31 optional block data” on page 967 for a description of the
IBM-defined data.

To include a copy of the control vector from the DES source key in an optional
block of the TR-31 key block, specify the ATTR-CV or INCL-CV control vector
transport control keyword in the rule array. If either optional keyword is specified,
the verb copies the single-length or double-length control vector field from the
source key into the optional data field of the TR-31 header. The TR31 Key Import
verb can later extract this data and use it as the control vector for the CCA key
that it creates when importing the TR-31 key block. This method provides a way to
use TR-31 for transport of CCA keys and to make the CCA key have identical
control vectors on the sending and receiving nodes.

The ATTR-CV and INCL-CV keywords both cause the control vector to be
included in a TR-31 optional block, but each has a different purpose:

ATTR-CV
Causes a copy of the control vector to be included, but both the TR-31
usage and mode of use fields in the non-optional part of the TR-31 key
block header are set to IBM proprietary values. These values, described in
“TR-31 optional block data” on page 967, indicate that the usage and mode
information are specified in the control vector of the optional block and not
in the TR-31 header. The restrictions imposed by the setting of the relevant
access control points are bypassed, and any CCA key can be exported as
long as the export control fields in the control vector allow it.

INCL-CV
Causes a copy of the control vector to be included as additional detail. The

Key Export to TR31 (CSNBT31X)

756 Common Cryptographic Architecture Application Programmer's Guide

resulting attributes set in the non-optional part of the TR-31 key block
header are identical to not using either keyword, except that the value for
the number of optional blocks is increased by one. The export operation is
still subject to the restrictions imposed by the settings of the relevant access
control points.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

With PCI-HSM 2016, CCA introduces compliance-tagged key support for domains
that enter compliance mode. Compliance-tagged TDES keys may be converted to
or from TR-31 key blocks. The wrapping key encrypting key (KEK) must be
compliance-tagged as well as the key to be exported or imported. A
compliance-tagged KEK cannot be used to import or export a key that is not
compliance-tagged.

Format
The format of CSNBT31X.

CSNBT31X(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_version_number,
key_field_length,
source_key_identifier_length,
source_key_identifier,
unwrap_kek_identifier_length,
unwrap_kek_identifier,
wrap_kek_identifier_length,
wrap_kek_identifier,
opt_blocks_length,
opt_blocks,
tr31_key_block_length,
tr31_key_block)

Parameters
The parameters for CSNBT31X.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 2, 3, 4 or 5.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are 8 bytes in length and must be left-aligned and padded on the right with

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 757

|

|
|
|
|
|
|

space characters. The rule_array keywords for this verb are shown in Table 203.

Table 203. Keywords for Key Export to TR31 control information

Keyword Meaning

Key block protection method (one required). Specifies which version of the TR-31 key block to use for exporting the
CCA DES key. The version defines the method by which the key block is cryptographically protected and the
content and layout of the block.

VARXOR-A Specifies to use the Key Variant Binding Method 2005 Edition. Corresponds to TR-31 Key Block
Version ID of "A" (X'41').

VARDRV-B Specifies to use the Key Derivation Binding Method 2010 Edition. Corresponds to TR-31 Key
Block Version ID of "B" (X'42').

VARXOR-C Specifies to use the Key Variant Binding Method 2010 Edition. Corresponds to TR-31 Key Block
Version ID of "C" (X'43').

Control vector transport control (one, optional). If no keyword from this group is provided, or keyword INCL-CV is
specified, the control vector in the CCA key token identified by the source_key_identifier parameter is verified to
agree with the TR-31 key usage and mode of key use keywords specified from the groups below.

INCL-CV Specifies to copy the control vector from the CCA key-token into an optional proprietary block
that is included in the TR-31 key block header. See Table 279 on page 968. The TR-31 key usage
and mode of use fields indicate the key attributes. Those attributes, as derived from the
keywords specified, must be compatible with the ones in the included CV. In addition, the
export of the key must meet the translation and ACP authorizations indicated in the export
translation table for the specified keywords. A key usage keyword and a mode of use keyword
are required when this keyword is specified.

ATTR-CV Same as keyword INCL-CV, except that the key usage field of the TR-31 key block (byte number
5 - 6) is set to the proprietary value "10" (X'3130'), and the mode of use field (byte number 8) is
set to the proprietary value "1" (X'31'). These proprietary values indicate that the key usage and
mode of use attributes are specified by the CV in the optional block. For this option, only the
general ACPs related to export are checked, not the ones relating to specific CCA to TR-31
translations. No key usage or mode of use keywords are allowed when this keyword is specified.

TR-31 key usage value for output key (one required). Not valid if ATTR-CV keyword is specified. Only those TR-31
modes of key use shown are supported.

Keyword TR-31
modes of
key use

CCA usage keyword Meaning

BDK "B0" KEYGENKY Specifies to export to a TR-31 base derivation key (BDK).

You must select one mode of use keyword from Table 204
on page 762 with this usage keyword. The table shows all
of the supported translations for key usage keyword BDK.
It also shows the access control commands that must be
enabled in the active role in order to use the combination
of inputs shown.

CVK "C0" MAC or DATA Specifies to export to a TR-31 CVK card verification key.

You must select one mode of use keyword from Table 205
on page 764 with this usage keyword. The table shows all
of the supported translations for key usage keyword CVK.
It also shows the access control commands that must be
enabled in the active role in order to use the combination
of inputs shown.

Key Export to TR31 (CSNBT31X)

758 Common Cryptographic Architecture Application Programmer's Guide

Table 203. Keywords for Key Export to TR31 control information (continued)

Keyword Meaning

ENC "D0" ENCIPHER,
DECIPHER, CIPHER,
or DATA

Specifies to export to a TR-31 data encryption key.

You must select one mode of use keyword from Table 206
on page 765 with this usage keyword. The table shows all
of the supported translations for key usage keyword ENC.
It also shows the access control commands that must be
enabled in the active role in order to use the combination
of inputs shown.

KEK "K0" EXPORTER or
OKEYXLAT

Specifies to export to a TR-31 key-encryption or wrapping
key.

You must select one mode of use keyword from Table 207
on page 766 with this usage keyword. The table shows all
of the supported translations for key usage keyword KEK.
It also shows the access control commands that must be
enabled in the active role in order to use the combination
of inputs shown.

KEK-WRAP "K1" IMPORTER or
IKEXLAT

Specifies to export to a TR-31 key block protection key.

You must select one mode of use keyword from Table 207
on page 766 with this usage keyword. The table shows all
of the supported translations for key usage keyword
KEK-WRAP. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

ISOMAC0 "M0" MAC, MACVER,
DATA, DATAM, or
DATAMV

Specifies to export to a TR-31 ISO 16609 MAC algorithm 1
(using TDEA) key.

You must select one mode of use keyword from Table 208
on page 767 with this usage keyword. The table shows all
of the supported translations for key usage keyword
ISOMAC0. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

ISOMAC1 "M1" MAC, MACVER,
DATA, DATAM, or
DATAMV

Specifies to export to a TR-31 ISO 9797-1 MAC algorithm 1
key.

You must select one mode of use keyword from Table 208
on page 767 with this usage keyword. The table shows all
of the supported translations for key usage keyword
ISOMAC1. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

ISOMAC3 "M3" MAC, MACVER,
DATA, DATAM, or
DATAMV

Specifies to export to a TR-31 ISO 9797-1 MAC algorithm 3
key.

You must select one mode of use keyword from Table 208
on page 767 with this usage keyword. The table shows all
of the supported translations for key usage keyword
ISOMAC3. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 759

Table 203. Keywords for Key Export to TR31 control information (continued)

Keyword Meaning

PINENC "P0" OPINENC or IPINENC Specifies to export to a TR-31 PIN encryption key.

You must select one mode of use keyword from Table 210
on page 770 with this usage keyword. The table shows all
of the supported translations for key usage keyword
PINENC. It also shows the access control commands that
must be enabled in the active role in order to use the
combination of inputs shown.

PINVO "V0" PINGEN or PINVER Specifies to export to a TR-31 PIN verification key or other
algorithm.

You must select one mode of use keyword from Table 210
on page 770 with this usage keyword. The table shows all
of the supported translations for key usage keyword
PINVO. It also shows the access control commands that
must be enabled in the active role in order to use the
combination of inputs shown.

PINV3624 "V1" PINGEN or PINVER Specifies to export to a TR-31 PIN verification, IBM 3624
key.

You must select one mode of use keyword from Table 210
on page 770 with this usage keyword. The table shows all
of the supported translations for key usage keyword
PINV3624. It also shows the access control commands that
must be enabled in the active role in order to use the
combination of inputs shown.

VISAPVV "V2" PINGEN or PINVER Specifies to export to a TR-31 PIN verification, VISA PVV
key.

You must select one mode of use keyword from Table 210
on page 770 with this usage keyword. The table shows all
of the supported translations for key usage keyword
VISAPVV. It also shows the access control commands that
must be enabled in the active role in order to use the
combination of inputs shown.

EMVACMK "E0" DKYGENKY Specifies to export to a TR-31 EMV/chip issuer master
key: application cryptograms key.

You must select one mode of use keyword from Table 211
on page 773 with this usage keyword. The table shows all
of the supported translations for key usage keyword
EMVACMK. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

EMVSCMK "E1" DKYGENKY Specifies to export to a TR-31 EMV/chip issuer master
key: secure messaging for confidentiality key.

You must select one mode of use keyword from Table 211
on page 773 with this usage keyword. The table shows all
of the supported translations for key usage keyword
EMVSCMK. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

Key Export to TR31 (CSNBT31X)

760 Common Cryptographic Architecture Application Programmer's Guide

Table 203. Keywords for Key Export to TR31 control information (continued)

Keyword Meaning

EMVSIMK "E2" DKYGENKY Specifies to export to a TR-31 EMV/chip issuer master
key: secure messaging for integrity key.

You must select one mode of use keyword from Table 211
on page 773 with this usage keyword. The table shows all
of the supported translations for key usage keyword
EMVSIMK. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

EMVDAMK "E3" DATA, MAC, CIPHER,
or ENCIPHER

Specifies to export to a TR-31 EMV/chip issuer master
key: data authentication code key.

You must select one mode of use keyword from Table 211
on page 773 with this usage keyword. The table shows all
of the supported translations for key usage keyword
EMVDAMK. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

EMVDNMK "E4" DKYGENKY Specifies to export to a TR-31 EMV/chip issuer master
key: dynamic numbers key.

You must select one mode of use keyword from Table 211
on page 773 with this usage keyword. The table shows all
of the supported translations for key usage keyword
EMVDNMK. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

EMVCPMK "E5" DKYGENKY Specifies to export to a TR-31 EMV/chip issuer master
key: card personalization key.

You must select one mode of use keyword from Table 211
on page 773 with this usage keyword. The table shows all
of the supported translations for key usage keyword
EMVCPMK. It also shows the access control commands
that must be enabled in the active role in order to use the
combination of inputs shown.

TR-31 mode of key use (one required). Not valid if ATTR-CV keyword is specified. Only those TR-31 modes shown
are supported.

Keyword TR-31
mode

Usage keyword Meaning

ENCDEC "B" ENC, KEK,
KEK-WRAP

Specifies both encrypt and decrypt, wrap and unwrap.

DEC-ONLY "D" ENC, KEK,
KEK-WRAP, PINENC

Specifies to decrypt and unwrap only.

ENC-ONLY "E" ENC, PINENC Specifies to encrypt and wrap only.

GENVER "C" CVK, ISOMAC0,
ISOMAC1, ISOMAC3,
PINVO, PINV3624,
VISAPVV

Specifies to both generate and verify.

GEN-ONLY "G" CVK, ISOMAC0,
ISOMAC1, ISOMAC3,
PINVO, PINV3624,
VISAPVV

Specifies to generate only.

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 761

Table 203. Keywords for Key Export to TR31 control information (continued)

Keyword Meaning

VER-ONLY "V" CVK, ISOMAC0,
ISOMAC1, ISOMAC3,
PINVO, PINV3624,
VISAPVV

Specifies to verify only.

DERIVE "X" BDK, EMVACMK,
EMVSCMK,
EMVSIMK,
EMVDAMK,
EMVDNMK,
EMVCPMK

Specifies that key is used to derive other keys.

ANY "N" BDK, PINVO,
PINV3624, VISAPVV,
EMVACMK,
EMVSCMK,
EMVSIMK,
EMVDAMK,
EMVDNMK,
EMVCPMK

Specifies no special restrictions (other than restrictions
implied by the key usage).

TR-31 exportability (one, optional). Use to set exportability field in TR-31 key block. Defines whether the key may be
transferred outside the cryptographic domain in which the key is found.

Keyword TR-31 byte Meaning

EXP-ANY "E" Specifies that the key in the TR-31 key block is exportable under a key-encrypting
key in a form that meets the requirements of X9.24 Parts 1 or 2. This is the default.
Note: A TR-31 key block with a key block version ID of "B" or "C" and an
exportability field value of "E" cannot be wrapped by a key-encrypting key that is
wrapped in ECB mode (legacy wrap mode). This limitation is because ECB mode
does not comply with ANSI X9.24 Part 1.

EXP-TRST "S" Specifies that the key in the TR-31 key block is sensitive, exportable under a
key-encrypting key in a form not necessarily meeting the requirements of X9.24
parts 1 or 2.

EXP-NONE "N" Specifies that the key in the TR-31 key block is non-exportable.

Note:
1. These keys are the base keys from which derived unique key per transaction

(DUKPT) initial keys are derived for individual devices such as PIN pads.
2. This table defines the only supported translations for this TR-31 usage. Usage

must be the following value:
"B0" BDK base derivation key.

3. KEYGENKY keys are double length only.

Table 204. Export translation table for a TR-31 BDK base derivation key (BDK)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

BDK ("B0") VARXOR-A KEYGENKY, double length, UKPT
(CV bit 18 = B'1')

ANY ("N") X'0180' TR31 Export - Permit
KEYGENKY:UKPT to B0

BDK ("B0") VARDRV-B,
VARXOR-C

KEYGENKY, double length, UKPT
(CV bit 18 = B'1')

DERIVE
("X")

X'0180' TR31 Export - Permit
KEYGENKY:UKPT to B0

Security considerations:

Key Export to TR31 (CSNBT31X)

762 Common Cryptographic Architecture Application Programmer's Guide

1. There is asymmetry in the translation from a CCA DATA key to a TR-31 key.
The asymmetry results from CCA DATA keys having attributes of both data
encryption keys and MAC keys, while TR-31 separates data encryption keys
from MAC keys. A CCA DATA key can be exported to a TR-31 "C0" key, if one
or both applicable MAC generate and MAC verify control vector bits are on.
However, a TR-31 "C0" key cannot be imported to the lower-security CCA
DATA key, it can be imported only to a CCA key type of MAC or MACVER.
This restriction eliminates the ability to export a CCA MAC or MACVER key to
a TR-31 key and re-importing it back as a CCA DATA key with the capability
to Encipher, Decipher, or both.

2. Since the translation from TR-31 usage "C0" is controlled by rule array
keywords when using the CSNBT31I verb, it is possible to convert an exported
CCA CVVKEY-A or CVVKEY-B key into an AMEX-CSC key or the other way
around. This conversion can be restricted by not enabling offsets X'015A' (TR31
Import - Permit C0 to MAC/MACVER:CVVKEY-A) and X'015B' (TR31 Import -
Permit C0 to MAC/MACVER:AMEXCSC) at the same time. However, if both
CVVKEY-x and AMEX-CSC translation types are required, then offsets X'015A'
and X'015B' must be enabled. In this case, control is up to the development,
deployment, and execution of the applications themselves.

Note:
1. Card verification keys are used for computing or verifying (against supplied

value) a card verification code with the CVV, CVC, CVC2, and CVV2
algorithms. In CCA, these keys correspond to keys used with two algorithms:
v Visa CVV and MasterCard CVC codes are generated and verified using the

CVV Generate and CVV Verify verbs. These verbs require a key type of
DATA or MAC/MACVER with a subtype extension (CV bits 0 - 3) of
ANY-MAC, single-length CVVKEY-A and single-length CVVKEY-B, a
double-length CVVKEY-A (see CVV Key Combine verb). The MAC generate
and the MAC verify (CV bits 20 - 21) key usage values must be set
appropriately.

v American Express CSC codes are generated and verified using the
Transaction Validation verb. This verb requires a key type of MAC or
MACVER with a subtype extension of ANY-MAC or AMEX-CSC.

2. This table defines the only supported translations for this TR-31 usage. Usage
must be the following value:
"C0" CVK card verification key.

3. CCA and TR-31 represent CVV keys differently. These differences make
representations between CCA and TR-31 incompatible. CCA represents the
key-A and key-B keys as two 8-byte (single length) keys, while TR-31
represents these keys as one 16-byte (double length) key. Visa standards now
require one 16-byte key. The CVV Generate and CVV Verify verbs have support
added to accept one 16-byte CVV key, using left and right key parts as key-A
and key-B. See “CVV Key Combine (CSNBCKC)” on page 526. This new verb
provides a way to combine two single-length MAC-capable keys into one
double-length CVV key.

4. Import and export of 8-byte CVVKEY-A and CVVKEY-B MAC/MACVER keys
is allowed only using the IBM proprietary TR-31 usage and mode values ("10"
and "1", respectively) to indicate encapsulation of the IBM control vector in an
optional block, since the 8-byte CVVKEY-A is meaningless and useless as a
TR-31 "C0" usage key of any mode.

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 763

Table 205. Export translation table for a TR-31 CVK card verification key (CVK)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

CVK ("C0") VARXOR-A,
VARDRV-B,
VARXOR-C

MAC, single or
double length,
AMEX-CSC (CV
bits 0 - 3 =
B'0100')

MAC generate
on, MAC verify
off (CV bits 20 -
21 = B'10')

GEN-ONLY
("G")

X'0181' TR31 Export - Permit
MAC/MACVER:AMEX-CSC to
C0:G/C/V

MAC generate
off, MAC verify
on (CV bits 20 -
21 = B'01')

VER-ONLY
("V")

MAC generate
on, MAC verify
on (CV bits 20 -
21 = B'11')

GENVER
("C")

MAC, double
length,
CVVKEY-A (CV
bits 0 - 3 =
B'0010')

MAC generate
on, MAC verify
off (CV bits 20 -
21 = B'10')

GEN-ONLY
("G")

X'0182' TR31 Export - Permit
MAC/MACVER:CVV-KEYA to
C0:G/C/V

MAC generate
off, MAC verify
on (CV bits 20 -
21 = B'01')

VER-ONLY
("V")

MAC generate
on, MAC verify
on (CV bits 20 -
21 = B'11')

GENVER
("C")

MAC, double
length,
ANY-MAC (CV
bits 0 - 3 =
B'0000')

MAC generate
on, MAC verify
off (CV bits 20 -
21 = B'10')

GEN-ONLY
("G")

X'0183' TR31 Export - Permit
MAC/MACVER:ANY-MAC to
C0:G/C/V

MAC generate
off, MAC verify
on (CV bits 20 -
21 = B'01')

VER-ONLY
("V")

MAC generate
on, MAC verify
on (CV bits 20 -
21 = B'11')

GENVER
("C")

DATA, double
length

MAC generate
on, MAC verify
off (CV bits 20 -
21 = B'10')

GEN-ONLY
("G")

X'0184' TR31 Export - Permit
DATA to C0:G/C

MAC generate
on, MAC verify
on (CV bits 20 -
21 = B'11')

GENVER
("C")

Security consideration: There is asymmetry in the translation from a CCA DATA
key to a TR-31 key. The asymmetry results from CCA DATA keys having attributes
of both data encryption keys and MAC keys, while TR-31 separates data
encryption keys from MAC keys. A CCA DATA key can be exported to a TR-31

Key Export to TR31 (CSNBT31X)

764 Common Cryptographic Architecture Application Programmer's Guide

"D0" key, if one or both applicable Encipher or Decipher control vector bits are on.
However, a TR-31 "D0" key cannot be imported to the lower-security CCA DATA
key, it can be imported only to a CCA key type of ENCIPHER, DECIPHER, or
CIPHER. This restriction eliminates the ability to export a CCA DATA key to a
TR-31 key and re-importing it back as a CCA DATA key with the capability to
MAC generate and MAC verify.

Note:
1. Data encryption keys are used for the encryption and decryption of data.
2. This table defines the only supported translations for this TR-31 usage. Usage

must be the following value:
"D0" Data encryption

Table 206. Export translation table for a TR-31 data encryption key (ENC)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

ENC ("D0") VARXOR-A,
VARDRV-B,
VARXOR-C

ENCIPHER, single or double
length

ENC-ONLY
("E")

X'0185' TR31 Export - Permit
ENCIPHER/DECIPHER/
CIPHER to D0:E/D/BDECIPHER, single or double

length
DEC-ONLY
("D")

CIPHER, single or double length ENCDEC
("B")

DATA, single or double length,
Encipher on, Decipher on (CV bits
18 - 19 = B'11')

ENCDEC
("B")

X'0186' TR31 Export - Permit
DATA to D0:B

Security consideration: The CCA OKEYXLAT, EXPORTER, IKEYXLAT, or
IMPORTER KEK translation to a TR-31 "K0" key with mode "B" (both wrap and
unwrap) is not allowed for security reasons. Even with access-control point control,
this capability would give an immediate path to turn a CCA EXPORTER key into a
CCA IMPORTER key, and the other way around.

Note:
1. Key encryption or wrapping keys are used only to encrypt or decrypt other

keys, or as a key used to derive keys that are used for that purpose.
2. This table defines the only supported translations for this TR-31 usage. Usage

must be one of the following values:
"K0" Key encryption or wrapping
"K1" TR-31 key block protection key

3. CCA mode support is the same for version IDs "B" and "C", because the
distinction between TR-31 "K0" and "K1" does not exist in CCA keys. CCA does
not distinguish between targeted protocols, and so there is no good way to
represent the difference. Also note that most wrapping mechanisms now
involve derivation or key variation steps.

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 765

Table 207. Export translation table for a TR-31 key encryption or wrapping, or key block protection key (KEK or
KEK-WRAP)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

KEK ("K0") VARXOR-A,
VARDRV-B,
VARXOR-C

EXPORTER, double length,
EXPORT on (CV bit 21 = B'1')

ENC-ONLY
("E")

X'0187' TR31 Export - Permit
EXPORTER/OKEYXLAT to
K0:EOKEYXLAT, double length

IMPORTER, double length,
IMPORT on (CV bit 21 = B'1')

DEC-ONLY
("D")

X'0188' TR31 Export - Permit
IMPORTER/IKEYXLAT to
K0:DIKEYXLAT, double length

KEK-WRAP
("K1")

VARDRV-B,
VARXOR-C

EXPORTER, double length,
EXPORT on (CV bit 21 = B'1')

ENC-ONLY
("E")

X'0189' TR31 Export - Permit
EXPORTER/OKEYXLAT to
K1:EOKEYXLAT, double length

IMPORTER, double length,
IMPORT on (CV bit 21 = B'1')

DEC-ONLY
("D")

X'018A' TR31 Export - Permit
IMPORTER/IKEYXLAT to
K1:DIKEYXLAT, double length

Security consideration: There is asymmetry in the translation from a CCA DATA
key to a TR-31 key. The asymmetry results from CCA DATA keys having attributes
of both data encryption keys and MAC keys, while TR-31 separates data
encryption keys from MAC keys. A CCA DATA key can be exported to a TR-31
"M0", "M1", or "M3" key, if one or both applicable MAC generate and MAC verify
control vector bits are on. However, a TR-31 "M0", "M1", or "M3" key cannot be
imported to the lower-security CCA DATA key, it can be imported only to a CCA
key type of MAC or MACVER. This restriction eliminates the ability to export a
CCA MAC or MACVER key to a TR-31 key and re-importing it back as a CCA
DATA key with the capability to Encipher, Decipher, or both.

Note:
1. MAC keys are used to compute or verify a code for message authentication.
2. This table defines the only supported translations for this TR-31 usage. Usage

must be one of the following values:
"M0" ISO 16609 MAC algorithm 1, TDEA

The ISO 16609 MAC algorithm 1 is based on ISO 9797. It is identical to
"M1", except that it does not support 8-byte DES keys.

"M1" ISO 9797 MAC algorithm 1

The ISO 9797 MAC algorithm 1 is identical to "M0", except that it also
supports 8-byte DES keys.

"M3" ISO 9797 MAC algorithm 3

The X9.19 style of Triple-DES MAC.
3. A CCA control vector has no bits defined to limit key usage by algorithm, such

as CBC MAC (TR-31 usage "M0" and "M1") or X9.19 (TR-31 usage "M3"). When
importing a TR-31 key block, the resulting CCA key token deviates from the
restrictions of usages "M0", "M1", and "M3". Importing a TR-31 key block which
allows MAC generation ("G" or "C") results in a control vector with the
ANY-MAC attribute rather than for the restricted algorithm that is set in the
TR-31 key block. The ANY-MAC attribute provides the same restrictions as
what CCA currently uses for generating and verifying MACs.

Key Export to TR31 (CSNBT31X)

766 Common Cryptographic Architecture Application Programmer's Guide

Table 208. Export translation table for a TR-31 ISO MAC algorithm key (ISOMACn)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

ISOMAC0
("M0")

VARXOR-A,
VARDRV-B,
VARXOR-C

MAC, double length, MAC
generate on (CV bit 20 = B'1')

GEN-ONLY
("G")

X'018B' TR31 Export - Permit
MAC/DATA/DATAM to
M0:G/CDATA, double length, MAC

generate on (CV bit 20 = B'1')

MAC, double length, MAC
generate on, MAC verify on (CV
bits 20 - 21 = B'11')

GENVER
("C")

DATAM, double length, MAC
generate on, MAC verify on (CV
bits 20 - 21 = B'11')

DATA, double length, MAC
generate on, MAC verify on (CV
bits 20 - 21 = B'11')

MACVER, double length, MAC
generate off, MAC verify on (CV
bits 20 - 21 = B'01')

VER-ONLY
("V")

X'018C' TR31 Export - Permit
MACVER/DATAMV to M0:V

DATAMV, double length, MAC
generate off, MAC verify on (CV
bits 20 - 21 = B'01')

ISOMAC1
("M1")

VARXOR-A,
VARDRV-B,
VARXOR-C

MAC, single or double length,
MAC generate on (CV bit 20 =
B'1')

GEN-ONLY
("G")

X'018D' TR31 Export - Permit
MAC/DATA/DATAM to
M1:G/C

DATA, single or double length,
MAC generate on (CV bit 20 =
B'1')

MAC, single or double length,
MAC generate on, MAC verify on
(CV bits 20 - 21 = B'11')

GENVER
("C")

DATAM, single or double length,
MAC generate on, MAC verify on
(CV bits 20 - 21 = B'11')

DATA, single or double length,
MAC generate on, MAC verify on
(CV bits 20 - 21 = B'11')

MACVER, single or double length,
MAC generate off, MAC verify on
(CV bits 20 - 21 = B'01')

VER-ONLY
("V")

X'018E' TR31 Export - Permit
MACVER/DATAMV to M1:V

DATAMV, single or double length,
MAC generate off, MAC verify on
(CV bits 20 - 21 = B'01')

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 767

Table 208. Export translation table for a TR-31 ISO MAC algorithm key (ISOMACn) (continued)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

ISOMAC3
("M3")

VARXOR-A,
VARDRV-B,
VARXOR-C

MAC, single or double length,
MAC generate on (CV bit 20 =
B'1')

GEN-ONLY
("G")

X'018F' TR31 Export - Permit
MAC/DATA/DATAM to
M3:G/C

DATA, single or double length,
MAC generate on (CV bit 20 =
B'1')

MAC, single or double length,
MAC generate on, MAC verify on
(CV bits 20 - 21 = B'11')

GENVER
("C")

DATAM, single or double length,
MAC generate on, MAC verify on
(CV bits 20 - 21 = B'11')

DATA, single or double length,
MAC generate on, MAC verify on
(CV bits 20 - 21 = B'11')

MACVER, single or double length,
MAC generate off, MAC verify on
(CV bits 20 - 21 = B'01')

VER-ONLY
("V")

X'0190' TR31 Export - Permit
MACVER/DATAMV to M3:V

DATAMV, single or double length,
MAC generate off, MAC verify on
(CV bits 20 - 21 = B'01')

Security considerations:
1. It is highly recommended that the INCL-CV keyword be used when exporting

PINGEN, PINVER, IPINENC, or OPINENC keys. Using this keyword ensures
that importing the TR-31 key block back into CCA will have the desired
attributes.

2. TR-31 key blocks that are protected under legacy version ID "A" (keyword
VARXOR-A, using the Key Variant Binding Method 2005 Edition) use the same
mode of use "N" (keyword ANY) for PINGEN and PINVER keys. For version
ID "A" keys only, for a given PIN key usage, enabling both the PINGEN and
PINVER access-control points at the same time while enabling offset X'01B0'
(for mode "N") is NOT recommended. In other words, for a particular PIN
verification usage, you should not simultaneously enable the four commands
shown below for that usage:

Table 209. Commands

Key type, mode, or
version Offset Command

"V0": For usage V0, a user with the following four commands enabled in the active role
can change a PINVER key into a PINGEN key and the other way round. Avoid
simultaneously enabling these four commands.

Key type PINVER X'0193' TR31 Export - Permit PINVER:NO-SPEC to V0

Key type PINGEN X'0194' TR31 Export - Permit PINGEN:NO-SPEC to V0

Mode ANY X'01B0' TR31 Export - Permit PINGEN/PINVER to V0/V1/V2:N

Version VARXOR-A X'014D' TR31 Export - Permit Version A TR-31 Key Blocks

Key Export to TR31 (CSNBT31X)

768 Common Cryptographic Architecture Application Programmer's Guide

Table 209. Commands (continued)

Key type, mode, or
version Offset Command

"V1": For usage V1, a user with the following four commands enabled in the active role
can change a PINVER key into a PINGEN key and the other way around. Avoid
simultaneously enabling these four commands.

Key type PINVER X'0195' TR31 Export - Permit PINVER:NO-SPEC/IBM-PIN/IBM-
PINO to V1

Key type PINGEN X'0196' TR31 Export - Permit PINGEN:NO-SPEC/IBM-PIN/IBM-
PINO to V1

Mode ANY X'01B0' TR31 Export - Permit PINGEN/PINVER to V0/V1/V2:N

Version VARXOR-A X'014D' TR31 Export - Permit Version A TR-31 Key Blocks

"V2": For usage V2, a user with the following four commands enabled in the active role
can change a PINVER key into a PINGEN key and the other way around. Avoid
simultaneously enabling these four commands.

Key type PINVER X'0197' TR31 Export - Permit PINVER:NO-SPEC/VISA-PVV to V2

Key type PINGEN X'0198' TR31 Export - Permit PINGEN:NO-SPEC/VISA-PVV to V2

Mode ANY X'01B0' TR31 Export - Permit PINGEN/PINVER to V0/V1/V2:N

Version VARXOR-A X'014D' TR31 Export - Permit version A TR-31 key blocks

Failure to comply with this recommendation allows changing PINVER keys
into PINGEN and the other way around.

Note:
1. PIN encryption keys are used to protect PIN blocks. PIN verification keys are

used to generate or verify a PIN using a particular PIN-calculation method for
that key type.

2. This table defines the only supported translations for this TR-31 usage. Usage
must be one of the following values:
"P0" PIN encryption
"V0" PIN verification, KPV, other algorithm

Usage "V0" is intended to be a PIN-calculation method "other" than
those methods defined for "V1" or "V2". Because CCA does not have a
PIN-calculation method of "other" defined, it maps usage "V0" to the
subtype extension of NO-SPEC (CV bits 0 - 3 = B'0000'). Be aware that
NO-SPEC allows any method, including "V1" and "V2", and that this
mapping is suboptimal.

"V1" PIN verification, IBM 3624
"V2" PIN verification, Visa PVV

3. Mode must be one of the following values:
"E" Encrypt/wrap only

This mode restricts PIN encryption keys to encrypting a PIN block.
May be used to create or reencipher an encrypted PIN block (for
key-to-key translation).

"D" Decrypt/unwrap only

This mode restricts PIN encryption keys to decrypting a PIN block.
Generally used in a PIN translation to decrypt the incoming PIN block.

"N" No special restrictions (other than restrictions implied by the key
usage)

This mode is used by several vendors for a PIN generate or PIN
verification key when the key block version ID is "A".

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 769

"G" Generate only

This mode is used for a PINGEN key that may not perform a PIN
verification. This mode is the only mode available when the control
vector in the CCA key-token (applicable when INCL-CV keyword is
not provided) does NOT have the EPINVER control vector bit on.

"V" Verify only

This mode is used for PIN verification only. This mode is the only
mode available when the control vector in the CCA key-token
(applicable when INCL-CV is not provided) ONLY has the EPINVER
control vector usage bit on (CV bits 18 - 22 = B'00001').

"C" Both generate and verify (combined)

This mode is the only output mode available for TR-31 when any of the
CCA key-token PIN generating bits are on in the control vector
(CPINGENA, EPINGENA, EPINGEN, or CPINGENA) in addition to
the EPINVER bit.

Table 210. Export translation table for a TR-31 PIN encryption or PIN verification key (PINENC, PINVO, PINV3624,
VISAPVV)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

PINENC
("P0")

VARXOR-A,
VARDRV-B,
VARXOR-C

OPINENC, double length ENC-ONLY
("E")

X'0191' TR31 Export - Permit
OPINENC to P0:E

IPINENC, double length DEC-ONLY
("D")

X'0192' TR31 Export - Permit
IPINENC to P0:D

PINVO
("V0")

VARXOR-A PINVER, double length, NO-SPEC
(CV bits 0 - 4 = B'0000')

ANY ("N")
(requires
both
commands)

X'0193' TR31 Export - Permit
PINVER:NO-SPEC to V0

X'01B0' TR31 Export - Permit
PINGEN/PINVER to
V0/V1/V2:N

VARXOR-A,
VARDRV-B,
VARXOR-C

PINVER, double length, NO-SPEC
(CV bits 0 - 4 = B'0000'),
CPINGEN off, EPINGENA off,
EPINGEN off, CPINGENA off (CV
bits 18 - 21 = B'0000')

VER-ONLY
("V")

X'0193' TR31 Export - Permit
PINVER:NO-SPEC to V0

VARXOR-A PINGEN, double length, NO-SPEC
(CV bits 0 - 4 = B'0000')

ANY ("N")
(requires
both
commands)

X'0194' TR31 Export - Permit
PINGEN:NO-SPEC to V0

X'01B0' TR31 Export - Permit
PINGEN/PINVER to
V0/V1/V2:N

VARXOR-A,
VARDRV-B,
VARXOR-C

PINGEN, double length, NO-SPEC
(CV bits 0 - 4 = B'0000'), EPINVER
off (CV bit 22 = B'0')

GEN-ONLY
("G")

X'0194' TR31 Export - Permit
PINGEN:NO-SPEC to V0

PINGEN, double length, NO-SPEC
(CV bits 0 - 4 = B'0000'), EPINVER
on (CV bit 22 = B'1')

GENVER
("C")

Key Export to TR31 (CSNBT31X)

770 Common Cryptographic Architecture Application Programmer's Guide

Table 210. Export translation table for a TR-31 PIN encryption or PIN verification key (PINENC, PINVO, PINV3624,
VISAPVV) (continued)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

PINV3624
("V1")

VARXOR-A PINVER, double length, NO-SPEC
or IBM-PIN/IBM-PINO (CV bits 0
- 4 = B'0000' or B'0001')

ANY ("N")
(requires
both
commands)

X'0195' TR31 Export - Permit
PINVER:NO-SPEC/IBM-PIN/
IBM-PINO to V1

X'01B0' TR31 Export - Permit
PINGEN/PINVER to
V0/V1/V2:N

VARXOR-A,
VARDRV-B,
VARXOR-C

PINVER, double length, NO-SPEC
or IBM-PIN/IBM-PINO (CV bits 0
- 4 = B'0000' or B'0001'), CPINGEN
off, EPINGENA off, EPINGEN off,
CPINGENA off (CV bits 18 - 21 =
B'0000')

VER-ONLY
("V")

X'0195' TR31 Export - Permit
PINVER:NO-SPEC/IBM-PIN/
IBM-PINO to V1

VARXOR-A PINGEN, double length, NO-SPEC
or IBM-PIN/IBM-PINO (CV bits 0
- 4 = B'0000' or B'0001')

ANY ("N")
(requires
both
commands)

X'0196' TR31 Export - Permit
PINGEN:NO-SPEC/IBM-PIN/
IBM-PINO to V1

X'01B0' TR31 Export - Permit
PINGEN/PINVER to
V0/V1/V2:N

VARXOR-A,
VARDRV-B,
VARXOR-C

PINGEN, double length, NO-SPEC
or IBM-PIN/IBM-PINO (CV bits 0
- 4 = B'0000' or B'0001'), EPINVER
off (CV bit 22 = B'0')

GEN-ONLY
("G")

X'0196' TR31 Export - Permit
PINGEN:NO-SPEC/IBM-PIN/
IBM-PINO to V1

PINGEN, double length, NO-SPEC
or IBM-PIN/IBM-PINO (CV bits 0
- 4 = B'0000' or B'0001'), EPINVER
on (CV bit 22 = B'1')

GENVER
("C")

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 771

Table 210. Export translation table for a TR-31 PIN encryption or PIN verification key (PINENC, PINVO, PINV3624,
VISAPVV) (continued)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

VISAPVV
("V2")

VARXOR-A PINVER, double length, NO-SPEC
or VISA-PVV (CV bits 0 - 4 =
B'0000' or B'0010')

ANY ("N")
(requires
both
commands)

X'0197' TR31 Export - Permit
PINVER:NO-SPEC/VISA-PVV
to V2

X'01B0' TR31 Export - Permit
PINGEN/PINVER to
V0/V1/V2:N

VARXOR-A,
VARDRV-B,
VARXOR-C

PINVER, double length, NO-SPEC
or VISA-PVV (CV bits 0 - 4 =
B'0000' or B'0010'), CPINGEN off,
EPINGENA off, EPINGEN off,
CPINGENA off (CV bits 18 - 21 =
B'0000')

VER-ONLY
("V")

X'0197' TR31 Export - Permit
PINVER:NO-SPEC/VISA-PVV
to V2

VARXOR-A PINGEN, double length, NO-SPEC
or VISA-PVV (CV bits 0 - 4 =
B'0000' or B'0010')

ANY ("N")
(requires
both
commands)

X'0198' TR31 Export - Permit
PINGEN:NO-SPEC/VISA-PVV
to V2

X'01B0' TR31 Export - Permit
PINGEN/PINVER to
V0/V1/V2:N

VARXOR-A,
VARDRV-B,
VARXOR-C

PINGEN, double length, NO-SPEC
or VISA-PVV (CV bits 0 - 4 =
B'0000' or B'0010'), EPINVER off
(CV bit 22 = B'0')

GEN-ONLY
("G")

X'0198' TR31 Export - Permit
PINGEN:NO-SPEC/VISA-PVV
to V2

PINGEN, double length, NO-SPEC
or VISA-PVV (CV bits 0 - 4 =
B'0000' or B'0010'), EPINVER on
(CV bit 22 = B'1')

GENVER
("C")

Note:
1. EMV/chip issuer master-key keys are used by the chip cards to perform

cryptographic operations or, in some cases, to derive keys used to perform
operations. In CCA, these keys are (a) diversified key-generating keys (key type
DKYGENKY), allowing derivation of operational keys, or (b) operational keys.
Note that in this context, the term master key has a different meaning than for
CCA. These master keys, also called KMCs, are described by EMV as DES
master keys for personalization session keys. They are used to derive the
corresponding chip card master keys, and not typically used directly for
cryptographic operations other than key derivation. In CCA, these keys are
usually key generating keys with derivation level DKYL1 (CV bits 12 - 14 =
B'001'), used to derive other key generating keys (the chip card master keys).
For some cases, or for older EMV key derivation methods, the issuer master
keys could be level DKYL0 (CV bits 12 - 14 = B'000').

2. This table defines the only supported translations for this TR-31 usage. Usage
must be one of the following values:
"E0" Application cryptograms
"E1" Secure messaging for confidentiality
"E2" Secure messaging for integrity
"E3" Data authentication code
"E4" Dynamic numbers

Key Export to TR31 (CSNBT31X)

772 Common Cryptographic Architecture Application Programmer's Guide

"E5" Card personalization
3. EMV support in CCA is different than TR-31 support, and CCA key types do

not match TR-31 types.
4. DKYGENKY keys are double length only.

Table 211. Export translation table for a TR-31 EMV/chip issuer master-key key (DKYGENKY, DATA)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

EMVACMK
("E0")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DMAC (CV bits 19 - 22 = B'0010')

ANY ("N") X'0199' TR31 Export - Permit
DKYGENKY:DKYL0 +DMAC to
E0

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DMV (CV bits 19 - 22 = B'0011')

ANY ("N") X'019A' TR31 Export - Permit
DKYGENKY:DKYL0 +DMV to
E0

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DALL (CV bits 19 - 22 = B'1111')

ANY ("N") X'019B' TR31 Export - Permit
DKYGENKY:DKYL0 +DALL to
E0

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 = B'001'),
DMAC (CV bits 19 - 22 = B'0010')

ANY ("N") X'019C' TR31 Export - Permit
DKYGENKY:DKYL1 +DMAC to
E0

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 = B'001'),
DMV (CV bits 19 - 22 = B'0011')

ANY ("N") X'019D' TR31 Export - Permit
DKYGENKY:DKYL1 +DMV to
E0

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 = B'001'),
DALL (CV bits 19 - 22 = B'1111')

ANY ("N") X'019E' TR31 Export - Permit
DKYGENKY:DKYL1 +DALL to
E0

VARDRV-B,
VARXOR-C

DERIVE
("X")

EMVSCMK
("E1")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DDATA (CV bits 19 - 22 = B'0001')

ANY ("N") X'019F' TR31 Export - Permit
DKYGENKY:DKYL0 +DDATA
to E1

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 144 = B'000'),
DMPIN (CV bits 19 - 22 = B'1001')

ANY ("N") X'01A0' TR31 Export - Permit
DKYGENKY:DKYL0 +DMPIN
to E1

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DALL (CV bits 19 - 22 = B'1111')

ANY ("N") X'01A1' TR31 Export - Permit
DKYGENKY:DKYL0 +DALL to
E1

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 = B'001'),
DDATA (CV bits 19 - 2 = B'0001')

ANY ("N") X'01A2' TR31 Export - Permit
DKYGENKY:DKYL1 +DDATA
to E1

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 = B'001'),
DMPIN (CV bits 19 - 22 = B'1001')

ANY ("N") X'01A3' TR31 Export - Permit
DKYGENKY:DKYL1 +DMPIN
to E1

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 = B'001'),
DALL (CV bits 19 - 22 = B'1111')

ANY ("N") X'01A4' TR31 Export - Permit
DKYGENKY:DKYL1 +DALL to
E1

VARDRV-B,
VARXOR-C

DERIVE
("X")

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 773

Table 211. Export translation table for a TR-31 EMV/chip issuer master-key key (DKYGENKY, DATA) (continued)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

EMVSIMK
("E2")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DMAC (CV bits 19 - 22 = B'0010')

ANY ("N") X'01A5' TR31 Export - Permit
DKYGENKY:DKYL0 +DMAC to
E2

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DALL (CV bits 19 - 22 = B'1111')

ANY ("N") X'01A6' TR31 Export - Permit
DKYGENKY:DKYL0 +DALL to
E2

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 = B'001'),
DMAC (CV bits 19 - 22 = B'0010')

ANY ("N") X'01A7' TR31 Export - Permit
DKYGENKY:DKYL1 +DMAC to
E2

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 = B'001'),
DALL (CV bits 19 - 22 = B'1111')

ANY ("N") X'01A8' TR31 Export - Permit
DKYGENKY:DKYL1 +DALL to
E2

VARDRV-B,
VARXOR-C

DERIVE
("X")

EMVDAMK
("E3")

VARXOR-A DATA, double length ANY ("N") X'01A9' TR31 Export - Permit
DATA/MAC/CIPHER/
ENCIPHER to E3

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A MAC (not MACVER), double
length

ANY ("N")

VARXOR-A GEN-ONLY
("G")

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A CIPHER, double length ANY ("N")

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A ENCIPHER, double length ANY ("N")

VARDRV-B,
VARXOR-C

DERIVE
("X")

EMVDNMK
("E4")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DDATA (CV bits 19 - 22 = B'0001')

ANY ("N") X'01AA' TR31 Export - Permit
DKYGENKY:DKYL0 +DDATA
to E4

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DALL (CV bits 19 - 22 = B'1111')

ANY ("N") X'01AB' TR31 Export - Permit
DKYGENKY:DKYL0 +DALL to
E4

VARDRV-B,
VARXOR-C

DERIVE
("X")

Key Export to TR31 (CSNBT31X)

774 Common Cryptographic Architecture Application Programmer's Guide

Table 211. Export translation table for a TR-31 EMV/chip issuer master-key key (DKYGENKY, DATA) (continued)

Key usage
keyword

Key block
protection
method
keyword

CCA key type and required
control vector attributes

Mode of use
keyword Offset Command

EMVCPMK
("E5")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DEXP (CV bits 19 - 22 = B'0101')

ANY ("N") X'01AC' TR31 Export - Permit
DKYGENKY:DKYL0 +DEXP to
E5

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DMAC (CV bits 19 - 22 = B'0010')

ANY ("N") X'01AD' TR31 Export - Permit
DKYGENKY:DKYL0 +DMAC to
E5

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DDATA (CV bits 19 - 22 = B'0001')

ANY ("N") X'01AE' TR31 Export - Permit
DKYGENKY:DKYL0 +DDATA
to E5

VARDRV-B,
VARXOR-C

DERIVE
("X")

VARXOR-A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 = B'000'),
DALL (CV bits 19 - 22 = B'1111')

ANY ("N") X'01AF' TR31 Export - Permit
DKYGENKY:DKYL0 +DALL to
E5

VARDRV-B,
VARXOR-C

DERIVE
("X")

key_version_number

Direction: Input
Type: String

A pointer to a string variable containing two numeric ASCII bytes that are
copied into the key version number field of the output TR-31 key block. Use a
value of "00" (X'3030') if no key version number is needed.

This value is ignored If the key identified by the source_key_identifier parameter
contains a partial key, that is, the KEY-PART bit (CV bit 44) is on in the control
vector. When a partial key is passed, the verb sets the key version number
field in the TR-31 key block to C0 (X'6330'). According to TR-31, this value
indicates that the TR-31 key block contains a component of a key (key part).

key_field_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length of the key field that is
encrypted in the TR-31 block. The length must be a multiple the DES cipher
block size, which is eight. It must also be greater than or equal to the length of
the cleartext key passed using the source_key_identifier parameter plus the
length of the key length field (two bytes) that precedes this key in the TR-31
block. For example, if the source key is a double-length TDES key (its length is
16 bytes), then the key field length must be greater than or equal to (16 + 2)
bytes, and must also be a multiple of 8. This means that the minimum
key_field_length in this case would be 24.

TR-31 allows a variable number of padding bytes to follow the cleartext key,
and the application designer can choose to pad with more than the minimum
number of bytes needed to form a block that is a multiple of 8. This padding is
generally done to hide the length of the cleartext key from those who cannot
decipher that key. Most often, all keys (single, double, or triple length) are
padded to the same length so that it is not possible to determine which length
is carried in the TR-31 block by examining the encrypted block.

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 775

Note: This parameter is not expected to allow for ASCII encoding of the
encrypted data stored in the key field according to the TR-31 specification. For
example, when a value of 24 is passed here, following the minimum example
above, the length of the final ASCII-encoded encrypted data in the key field in
the output TR-31 key block is 48 bytes.

source_key_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the
source_key_identifier variable. The value must be 64.

source_key_identifier

Direction: Input
Type: String

A pointer to a string variable containing either the key label for the source key,
or the key token containing the source key. The source key is the key that is to
be exported. The key must be a CCA fixed-length DES internal or external
key-token. If the source key is an external token, an identifier for the KEK that
wraps the source key must be identified by the unwrap_kek_identifier parameter.
TR-31 currently supports only DES and TDES keys. AES is not supported.

unwrap_kek_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the
unwrap_kek_identifier variable. The value must be greater than or equal to 0. A
null key-token can have a length of 1. Set this value to 64 for a key label or a
KEK.

unwrap_kek_identifier

Direction: Input
Type: String

A pointer to a string variable containing either the key label for the source key
KEK, or the key token containing the source key KEK when the source key is
an external CCA key token, and a NULL key token otherwise. The source key
KEK can also be the wrapping key for the key that is to be exported if the
wrap_kek_identifier is not specified. The source key KEK must be a CCA internal
DES KEK token of type EXPORTER or OKEYXLAT.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap or unwrap TR-31 "B" or "C" key blocks that have or will have "E"
exportability, because ECB mode does not comply with ANSI X9.24 Part 1.

wrap_kek_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the
wrap_kek_identifier variable. Set this value to 64.

wrap_kek_identifier

Direction: Input

Key Export to TR31 (CSNBT31X)

776 Common Cryptographic Architecture Application Programmer's Guide

Type: String

A pointer to a string variable containing an operational fixed-length DES
key-token with a key type of EXPORTER or OKEYXLAT to use for wrapping
the output TR-31 key block, a null key token, or a key label of such a key in
DES key-storage. If the identified key token is null, then the key identified by
the unwrap_kek_identifier parameter is also used for wrapping the output TR-31
key block.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap or unwrap TR-31 "B" or "C" key blocks that have or will have "E"
exportability, because ECB-mode does not comply with ANSI X9.24 Part 1. This
parameter exists to allow for KEK separation. It is possible that KEKs are
restricted as to what they can wrap, such that a KEK for wrapping CCA
external keys might not be usable for wrapping TR-31 external keys, or the
other way around.

opt_blocks_length

Direction: Input
Type: Integer

A pointer to an integer variable that specifies the length in bytes of the
opt_blocks variable. If no optional data is to be included in the TR-31 key block,
set this value to zero.

opt_blocks

Direction: Input
Type: String

A pointer to a string variable containing optional blocks data that is to be
included in the output TR-31 key block. The optional blocks data can be
constructed using the TR31 Optional Data Build verb.

Note: The Padding Block, ID "PB" cannot be added by the user, and therefore
is not accepted in the opt_blocks parameter. CCA adds a Padding Block of the
appropriate size as needed when building the TR-31 key block in Key Export
to TR31. The Padding Block for optional blocks serves no security purpose,
unlike the padding in the encrypted key portion of the payload.

tr31_key_block_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the length in bytes of the
tr31_key_block variable. On input, specify the size of the application program
buffer available for the output key-token. On return from the verb, this
variable is updated to contain the actual length of that returned token. TR-31
key blocks are variable in length.

tr31_key_block

Direction: Output
Type: String

A pointer to a string variable containing the output key block produced by the
verb. The output key block contains the external form of the key created by the
verb, wrapped according to the method specified.

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 777

Note: The padding optional block in the output TR-31 key block can be
present with zero data bytes. This situation can occur if the optional block
portion of the header needs exactly four bytes of padding, the size of an
optional block header without the data portion. The data portion is defined as
optional by TR-31, which allows this.

Restrictions
The restrictions for CSNBT31X.
v The only proprietary values for the TR-31 header fields supported by this verb

are those values defined and used by IBM CCA when carrying a control vector
in an optional block in the header.

v AES is not currently supported for TR-31 key blocks.
v The export is prohibited if the CCA key does not have attributes XPORT-OK (CV

bit 17 = B'1') and T31XPTOK (CV bit 57 = B'1').

Required commands
The required commands for CSNBT31X.

The Key Export to TR31 verb requires the following commands to be enabled in
the active role:

Rule-array
keyword Offset Command

TR-31 key block
protection method

VARXOR-A X'014D' TR31 Export - Permit version A TR-31 key blocks

VARDRV-B X'014E' TR31 Export - Permit version B TR-31 key blocks

VARXOR-C X'014F' TR31 Export - Permit version C TR-31 key blocks

INCL-CV X'0158' TR31 Export - Permit any CCA key if INCL-CV is specified

When providing the INCL-CV keyword:
v If this command is enabled in the active role, the key-type

specific commands are not checked.
v If this command is not enabled in the active role, the key-type

specific commands are required.

ATTR-CV N/A Note: No commands relating to specific CCA to TR-31
transitions are checked when this keyword is specified. Only the
general access control commands related to export are checked.

Be aware of the interaction of access-control point X'0158' (TR31 Export - Permit
any CCA key if INCL-CV is specified) with the INCL-CV keyword. Without the
INCL-CV keyword, most export translations are guarded by key-type-specific
access control points, to guard the source CCA system against attacks involving
re-import of the exported key under ambiguous circumstances. When the control
vector is exported along with the key as an optional block securely bound to the
encrypted key, the source system is somewhat protected because the key on import
is allowed to have only the form of the included control vector. No expansion of
capability is allowed. If access-control point X'0158' is enabled in the active role,
the key-type-specific access control points are not checked when INCL-CV is
provided. If ACP X'0158' is not enabled, the type-specific access control points are
still required. The following figure illustrates this concept:

Key Export to TR31 (CSNBT31X)

778 Common Cryptographic Architecture Application Programmer's Guide

Be aware of access-control point X'01B0' (TR31 Export - Permit PINGEN/PINVER to
V0/V1/V2:N) for export of PINGEN or PINVER keys to wrapping method A , usage
V0, V1, or V2, and mode N. TR-31 key blocks with legacy key usage A (key block
protected using the Key Variant Binding Method 2005 Edition) use the same mode
N for PINGEN as well as PINVER keys. For usage A keys only, enabling a PINGEN
and PINVER access-control point while enabling offset X'01B0' (for keyword ANY,
mode N) is NOT recommended. Failure to comply with this recommendation
allows changing PINVER keys into PINGEN and the other way around.

In addition to the above commands, the verb requires these additional commands
to be enabled in the active role depending on the TR-31 key usage rule-array
keyword provided and additional information as shown in the table referenced in
the rightmost column:

TR-31 key usage
keyword Offset Command

Specific key
type and
control vector
attributes

"B0": TR-31 BDK base derivation keys

BDK X'0180' TR31 Export - Permit KEYGENKY:UKPT to B0 See Table 204
on page 762.

"C0": TR-31 CVK card verification keys

CVK X'0181' TR31 Export - Permit MAC/MACVER:AMEX-CSC to C0:G/C/V See Table 205
on page 764.X'0182' TR31 Export - Permit MAC/MACVER:CVV-KEYA to C0:G/C/V

X'0183' TR31 Export - Permit MAC/MACVER:ANY-MAC to C0:G/C/V

X'0184' TR31 Export - Permit DATA to C0:G/C

"D0": TR-31 data encryption keys

ENC X'0185' TR31 Export - Permit ENCIPHER/DECIPHER/CIPHER to
D0:E/D/B

See Table 206
on page 765.

X'0186' TR31 Export - Permit DATA to D0:B

"E0", "E1", "E2", "E3", "E4", and "E5": TR-31 EMC/chip issuer master-key keys

EMVACMK X'0199' TR31 Export - Permit DKYGENKY:DKYL0+DMAC to E0 See Table 207
on page 766.X'019A' TR31 Export - Permit DKYGENKY:DKYL0+DMV to E0

X'019B' TR31 Export - Permit DKYGENKY:DKYL0+DALL to E0

X'019C' TR31 Export - Permit DKYGENKY:DKYL1+DMAC to E0

X'019D' TR31 Export - Permit DKYGENKY:DKYL1+DMV to E0

X'019E' TR31 Export - Permit DKYGENKY:DKYL1+DALL to E0

┌────────────────┐
│ ACP X’0158’ │

┌────→│ is enabled ├────→Any CCA key specified
│ │ in active role │ is allowed
│ └────────────────┘

────→INCL-CV────┤
│ ┌────────────────┐
│ │ ACP X’0158’ │
└────→│ is not enabled ├────→Check key-type-specific

│ in active role │ access control points
└────────────────┘

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 779

TR-31 key usage
keyword Offset Command

Specific key
type and
control vector
attributes

EMVSCMK X'019F' TR31 Export - Permit DKYGENKY:DKYL0+DDATA to E1 See Table 207
on page 766.X'01A0' TR31 Export - Permit DKYGENKY:DKYL0+DMPIN to E1

X'01A1' TR31 Export - Permit DKYGENKY:DKYL0+DALL to E1

X'01A2' TR31 Export - Permit DKYGENKY:DKYL1+DDATA to E1

X'01A3' TR31 Export - Permit DKYGENKY:DKYL1+DMPIN to E1

X'01A4' TR31 Export - Permit DKYGENKY:DKYL1+DALL to E1

EMVSIMK X'01A5' TR31 Export - Permit DKYGENKY:DKYL0+DMAC to E2 See Table 207
on page 766.X'01A6' TR31 Export - Permit DKYGENKY:DKYL0+DALL to E2

X'01A7' TR31 Export - Permit DKYGENKY:DKYL1+DMAC to E2

X'01A8' TR31 Export - Permit DKYGENKY:DKYL1+DALL to E2

EMVDAMK X'01A9' TR31 Export - Permit DATA/MAC/CIPHER/ENCIPHER to E3 See Table 207
on page 766.

EMVDNMK X'01AA' TR31 Export - Permit DKYGENKY:DKYL0+DDATA to E4 See Table 207
on page 766.X'01AB' TR31 Export - Permit DKYGENKY:DKYL0+DALL to E4

EMVCPMK X'01AC' TR31 Export - Permit DKYGENKY:DKYL0+DEXP to E5 See Table 207
on page 766.X'01AD' TR31 Export - Permit DKYGENKY:DKYL0+DMAC to E5

X'01AE' TR31 Export - Permit DKYGENKY:DKYL0+DDATA to E5

X'01AF' TR31 Export - Permit DKYGENKY:DKYL0+DALL to E5

"K0" and "K1": TR-31 key encryption or wrapping, or key block protection keys

KEK X'0187' TR31 Export - Permit EXPORTER/OKEYXLAT to K0:E See Table 208
on page 767.X'0188' TR31 Export - Permit IMPORTER/IKEYXLAT to K0:D

KEK-WRAP X'0189' TR31 Export - Permit EXPORTER/OKEYXLAT to K1:E

X'018A' TR31 Export - Permit IMPORTER/IKEYXLAT to K1:D

"M0", "M1", and "M3": TR-31 ISO MAC algorithm keys

ISOMAC0 X'018B' TR31 Export - Permit MAC/DATA/DATAM to M0:G/C See Table 210
on page 770.X'018C' TR31 Export - Permit MACVER/DATAMV to M0:V

ISOMAC1 X'018D' TR31 Export - Permit MAC/DATA/DATAM to M1:G/C

X'018E' TR31 Export - Permit MACVER/DATAMV to M1:V

ISOMAC3 X'018F' TR31 Export - Permit MAC/DATA/DATAM to M3:G/C

X'0190' TR31 Export - Permit MACVER/DATAMV to M3:V

"P0", "V0", "V1": TR-31 PIN encryption or PIN verification keys

Key Export to TR31 (CSNBT31X)

780 Common Cryptographic Architecture Application Programmer's Guide

TR-31 key usage
keyword Offset Command

Specific key
type and
control vector
attributes

PINENC X'0191' TR31 Export - Permit OPINENC to P0:E See Table 211
on page 773.X'0192' TR31 Export - Permit IPINENC to P0:D

PINVO X'0193' TR31 Export - Permit PINVER:NO-SPEC to V0

X'0194' TR31 Export - Permit PINGEN:NO-SPEC to V0

X'01B0' TR31 Export - Permit PINGEN/PINVER to V0/V1/V2:N

PINV3624 X'0195' TR31 Export - Permit PINVER:NO-SPEC/IBM-PIN/IBM-PINO
to V1

X'0196' TR31 Export - Permit PINGEN:NO-SPEC/IBM-PIN/IBM-PINO
to V1

X'01B0' TR31 Export - Permit PINGEN/PINVER to V0/V1/V2:N

VISAPVV X'0197' TR31 Export - Permit PINVER:NO-SPEC/VISA-PVV to V2

X'0198' TR31 Export - Permit PINGEN:NO-SPEC/VISA-PVV to V2

X'01B0' TR31 Export - Permit PINGEN/PINVER to V0/V1/V2:N

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBT31XJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBT31XJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
byte[] key_version_number,
hikmNativeNumber key_field_length,
hikmNativeNumber source_key_identifier_length,
byte[] source_key_identifier,
hikmNativeNumber unwrap_kek_identifier_length,
byte[] unwrap_kek_identifier,
hikmNativeNumber wrap_kek_identifier_length,
byte[] wrap_kek_identifier,
hikmNativeNumber opt_blocks_length,
byte[] opt_blocks,
hikmNativeNumber tr31_key_block_length,
byte[] tr31_key_block);

TR31 Key Import (CSNBT31I)
Use the TR31 Key Import verb to convert a non-proprietary external key-block that
is formatted under the rules of TR-31 into a proprietary CCA external or internal
fixed-length DES key-token with its attributes in a control vector.

After being imported into a CCA key-token, the key and its attributes are ready to
be used in a CCA system. The verb takes as input an external TR-31 key block and
the internal DES IMPORTER or IKEYXLAT key-encrypting key of the key that was
used to wrap the TR-31 key block.

Key Export to TR31 (CSNBT31X)

Chapter 16. TR-31 symmetric key verbs 781

The TR31 Key Import verb is analogous to the existing Key Import verb, except
that TR31 Key Import accepts an external non-CCA DES key-token instead of an
external CCA fixed-length DES key-token, and it translates the key to either an
external or internal fixed-length DES key-token instead of only an internal
fixed-length DES key-token. An import by TR31 Key Import to an external
key-token requires a suitable internal fixed-length DES key-encrypting key. The
purpose of both verbs is to import a DES key from another party.

An external-to-external translation would not normally be called an export or import
operation. Instead, it would be called a key translation and would be handled by a
verb such as Key Translate or Key Translate2. For practical reasons, the export of
an external CCA DES key-token to an external TR-31 format is supported by the
Key Export to TR31 verb, and the import of an external TR-31 key block to an
external CCA DES key-token format is supported by the TR31 Key Import verb.

Note that the TR31 Key Import verb does not support the translation of an external
key from encipherment under one key-encrypting key to encipherment under a
different key-encrypting key. When converting an external TR-31 key block to an
external fixed-length DES key-token, the key-encrypting key used to wrap the
external TR-31 key block must be the same as the one used to wrap the external
fixed-length DES key-token. Use the Key Translate or Key Translate2 verbs for
switching external key wrapping keys: the normal function of those verbs.

Both CCA and TR-31 define key attributes that control key usage. In both cases,
the usage information is securely bound to the key so that the attributes cannot be
changed in unintended or uncontrolled ways. CCA maintains its DES key
attributes in a control vector (CV), while a TR-31 key block uses fields: key usage,
algorithm, mode of use, and exportability.

Each attribute in a CCA control vector falls under one of these categories:
1. There is a one-to-one correspondence between the CV attribute and the TR-31

attribute. For these attributes, conversion is straightforward.
2. There is not a one-to-one correspondence between the CV attribute and the

TR-31 attribute, but the attribute can be automatically translated when
performing this export operation.

3. There is not a one-to-one correspondence between the CV attribute and the
TR-31 attribute, in which case a rule-array keyword has been defined to specify
which attribute is to be used in the TR-31 key block.

4. Category (1), (2), or (3) applies, but there are some attributes that are lost
completely on translation (for example, key-generating bits in key-encrypting
keys).

5. None of the above categories applies, because the key type, its attributes, or
both simply cannot be reasonably translated into a TR-31 key block.

The control vector is always checked for compatibility with the TR-31 attributes. It
is an error if the specified control vector attributes are in any way incompatible
with the attributes of the input key. In addition, access control points are defined
that can be used to restrict the permitted attribute conversions.

The import operation produces the CCA external or internal fixed-length DES
key-token as its output. It does not return any field values or optional block data
from the TR-31 key block header. To obtain the header field values, use the TR31
Key Token Parse verb. To obtain optional block data from the header, use the TR31
Optional Data Read verb.

TR31 Key Import (CSNBT31I)

782 Common Cryptographic Architecture Application Programmer's Guide

An optional control vector transport control rule-array keyword can be passed to
the Key Export to TR31 verb. Such a keyword specifies that the verb is to copy the
control vector from the CCA DES key into the TR-31 key block. A copy of the
control vector is passed in an IBM-proprietary optional block. See “TR-31 optional
block data” on page 967.

If the TR-31 key block contains an IBM-proprietary block, the TR31 Key Import
verb verifies that the control vector is compatible with the attributes in the TR-31
key block. If any incompatibility is found, the verb rejects the import. If the control
vector is valid for the key, the verb uses it for the control vector of the CCA DES
key-token. Note that the import operation is always subject to the restrictions
imposed by the relevant access control points, even if a control vector is received.

A control vector, if present, can be in the TR-31 key block in one of two ways,
depending on the control vector transport control keyword specified in the rule
array of the Key Export to TR31 verb when the key was exported. One keyword
option is ATTR-CV, and the other is INCL-CV:

ATTR-CV
Causes a copy of the control vector to be included in the TR-31 key block.
The TR-31 key usage and mode of use fields are set to IBM proprietary. See
“TR-31 optional block data” on page 967. These proprietary values indicate
that the usage and mode information is contained in the included control
vector. In this case, if the TR31 Key Import verb successfully verifies that
the included control vector does not conflict with the rule-array keywords
specified, it uses it as the control vector for the imported CCA DES
key-token.

INCL-CV
Causes a copy of the control vector to be included in the TR-31 key block.
The TR-31 key usage and mode of use fields contain attributes from the set
defined in the TR-31 standard. In this case, the TR31 Key Import verb
verifies that the usage and mode information in those fields are compatible
with the included control vector. The verb also verifies that no rule array
keywords conflict with the control vector.

Note that the included CV could have more capability from a CCA
perspective than the TR-31 usage and mode fields indicate. This difference
is not an error, because the key block binding methods give the importer
assurance that the key block optional blocks are as secure as any other
attribute.

Note: This verb supports PCI-HSM 2016 compliant-tagged key tokens.

With PCI-HSM 2016, CCA introduces compliance-tagged key support for domains
that enter compliance mode. Compliance-tagged TDES keys may be converted to
or from TR-31 key blocks. The wrapping key encrypting key (KEK) must be
compliance-tagged as well as the key to be exported or imported. A
compliance-tagged KEK cannot be used to import or export a key that is not
compliance-tagged.

Special notes
Additional information about CSNBT31I.
1. Several import situations might require keywords. Keywords are ignored for

INCL-CV scenarios unless they directly conflict with the included CV. For

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 783

|

|
|
|
|
|
|

example, the verb returns an error if the control vector indicates that a
DKYGENKY key has a subtype of DKYL0 and the user specifies the DKYL1
keyword.

2. Be aware of the interaction of ACP X'0158' (TR31 Export - Permit Any CCA Key
if INCL-CV Is Specified) with the INCL-CV keyword for the Key Export to
TR31 verb. Without the INCL-CV keyword specified, most export translations
are guarded by key-type specific ACPs. These ACPs are used to guard the
source CCA system against attacks involving reimport of the exported key
under ambiguous circumstances. When the control vector is exported in an
optional block along with the key, it is securely bound to the encrypted key.
This somewhat protects the source system because the key on import is
allowed to have only the form of the included control vector. Expansion of
capability is blocked. If ACP X'0158' is not enabled in the active role, the
type-specific ACPs are still required. However, if ACP X'0158' is enabled, the
key-type specific ACPs are not checked when INCL-CV is specified.

3. Be aware of ACP X'017C' (TR31 Import - Permit V0/V1/V2:N to
PINGEN/PINVER) for import of PINGEN or PINVER keys to wrapping mode
A, usage V0, V1, V2, and mode N.

The extra translation-specific ACPs are intended to enable control of situations
where the CCA imported key type is ambiguous based on the TR-31 key attributes.
This ambiguity is never the case when INCL-CV has been specified with the Key
Export to TR31 verb, which ensures that the imported TR-31 key block has a valid
CV to precisely control the resultant CCA key. Therefore, there are no
translation-specific ACPs governing INCL-CV import translations.

Examples
Examples for CSNBT31I.
1. A full MAC key that is exported as TR-31 "C0" key block with an included

control vector will be re-imported as a full MAC key.
2. A DKYGENKY key with key usage DALL key exported as a TR-31 "E0", "E1",

or "E2" key block with an included control vector will be re-imported as a
DKYGENKY key with key usage DALL, even though the "E0", "E1", and "E2
types are more restricted.

Format
The format of CSNBT31I.

CSNBT31I(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
tr31_key_block_length,
tr31_key_block,
unwrap_kek_identifier_length,
unwrap_kek_identifier,
wrap_kek_identifier_length,
wrap_kek_identifier,
output_key_identifier_length,
output_key_identifier,
num_opt_blocks,
cv_source,
protection_method)

TR31 Key Import (CSNBT31I)

784 Common Cryptographic Architecture Application Programmer's Guide

Parameters
The parameter definitions for CSNBT31I.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 1, 2, 3, or 4.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are 8 bytes in length and must be left-aligned and padded on the right with
space characters. The rule_array keywords are shown in the following table:

Keyword Meaning

Token identifier (one required)

INTERNAL Specifies to return the output key in an internal CCA key-token.

EXTERNAL Specifies to return the output key in an external CCA key-token, wrapped by the transport key
identified by the wrap_kek_identifier parameter.

CCA output key usage subgroups (One from one subgroup required based on TR-31 input key usage. Keywords for
the subgroup are valid only for given TR-31 key usage.)
Note: None of the following keywords are allowed if the TR-31 key block provided as input has an optional block
that contains a CCA control vector. See Table 279 on page 968. If the TR-31 key block header contains an optional
block with a control vector in it, the control vector is used in place of keywords to produce the output CCA
key-token. If the key usage and mode of use fields of the key block are not IBM-defined (see Table 279 on page 968),
the control vector must not conflict with any TR-31 header fields.

CV subtype extension for "C0" key usage (one required). Only valid for TR-31 key block with key usage "C0" and no
control vector in optional block.

CVK-CVV Convert a TR-31 card verification key (CVK) to a double-length CCA DES MAC key that has a
subtype extension of CVVKEY-A. This restricts the key to generating or verifying a Visa CVV
or MasterCard CVC.

CVK-CSC Convert a TR-31 CVK to a CCA DES MAC key that has a subtype extension of AMEX-CSC.
This restricts the key to generating or verifying an American Express card security code, also
known as a card identification number (CID).

CV key type for "K0" key usage (one required). Only valid for TR-31 key block with key usage "K0" and no control
vector in optional block.

EXPORTER For TR-31 key usage "K0" and mode of use "E" or "B", convert a TR-31 key encryption or
wrapping key to a CCA EXPORTER key.

OKEYXLAT For TR-31 key usage "K0" and mode of use "E" or "B", convert a TR-31 key encryption or
wrapping key to a CCA OKEYXLAT key.

IMPORTER For TR-31 key usage "K0" and mode of use "D" or "B", convert a TR-31 key encryption or
wrapping key to a CCA IMPORTER key.

IKEYXLAT For TR-31 key usage "K0" and mode of use "D" or "B", convert a TR-31 key encryption or
wrapping key to a CCA IKEYXLAT key.

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 785

Keyword Meaning

CV key type for "V0", "V1", or "V2" key usage (one required). Only valid for TR-31 key block with key usage "V0",
"V1", or "V2" and no control vector in optional block. When this keyword is specified, an optional CV key type
modifier can be specified for key usage "V0" or "V1".

PINGEN Convert a TR-31 PIN verification key to a CCA PINGEN key.

PINVER Convert a TR-31 PIN verification key to a CCA PINVER key.

CV key usage for "E0" or "E2" key usage (one required) Only valid for TR-31 key block with key usage "E0" or "E2"
and no control vector in optional block.

DMAC Convert TR-31 EMV/chip issuer master key: application cryptograms or secure messaging for
integrity to CCA DKYGENKY with key usage DMAC.

DMV Convert TR-31 EMV/chip issuer master key: application cryptograms or secure messaging for
integrity to CCA DKYGENKY with key usage DMV.

CV key usage for "E1" key usage (one required) Only valid for TR-31 key block with key usage "E1" and no control
vector in optional block.

DMPIN Convert TR-31 EMV/chip issuer master key: secure messaging for confidentiality to CCA
DKYGENKY with key usage DMPIN

DDATA Convert TR-31 EMV/chip issuer master key: secure messaging for confidentiality to CCA
DKYGENKY with key usage DDATA.

CV key usage for "E5" key usage (one required) Only valid for TR-31 key block with key usage "E5" and no control
vector in optional block.

DMAC Convert TR-31 EMV/chip issuer master key: card personalization to CCA DKYGENKY with
key usage DMAC.

DMV Convert TR-31 EMV/chip issuer master key: card personalization to CCA DKYGENKY with
key usage DMV.

DEXP Convert TR-31 EMV/chip issuer master key: card personalization to CCA DKYGENKY with
key usage DEXP.

CV subtype for "E0", "E1", or "E2" key usage (one required). Only valid for TR-31 key block with key usage "E0",
"E1", or "E2" and no control vector in optional block.

DKYL0 Convert TR-31 EMV/chip issuer master key: application cryptograms, secure message for
confidentiality, or secure message for integrity to CCA DKYGENKY with subtype DKYL0.

DKYL1 Convert TR-31 EMV/chip issuer master key: application cryptograms, secure message for
confidentiality, or secure message for integrity to CCA DKYGENKY with subtype DKYL1.

CV key type modifier for "V0" or "V1" key usage (one required). Only valid for TR-31 key block with key usage "V0"
or "V1" and no control vector in optional block.

NOOFFSET Convert a TR-31 PIN verification key to a CCA PINGEN or PINVER key with the key type
modifier NOOFFSET, so that the key cannot participate in a PIN offset process or PVV process.

Key-wrapping method (one, optional)

USECONFG This is the default. Specifies to wrap the key using the configuration setting for the default
wrapping method. The default wrapping method configuration setting may be changed using
the TKE. This keyword is ignored for AES keys.
Note: Do not use this keyword if the default wrapping method is WRAP-ECB and a control
vector is present in an optional block of the TR-31 key block with CV bit 56 = B'1'
(ENH-ONLY). Use the WRAP-ENH keyword instead.

WRAP-ECB Specifies to wrap the key using the legacy wrapping method.
Note: Do not use this keyword if a control vector is present in an optional block of the TR-31
key block with CV bit 56 = B'1' (ENH-ONLY).

WRAP-ENH Specifies to wrap the key using the enhanced wrapping method.

Translation control (optional). This keyword is valid only with key-wrapping method WRAP-ENH or with
USECONFG when the default wrapping method is WRAP-ENH. This option cannot be used on a key with a
control vector valued to binary zeros.

TR31 Key Import (CSNBT31I)

786 Common Cryptographic Architecture Application Programmer's Guide

Keyword Meaning

ENH-ONLY Specifies to restrict the key from being wrapped with the legacy method once it has been
wrapped with the enhanced method. Sets CV bit 56 = B'1' (ENH-ONLY).
Note: If a control vector is present in an optional block of the TR-31 key block with CV bit 56
= B'0', this keyword overrides that value in the CCA key-token. This keyword has no effect if
the control vector in an optional block is all zeros.

Table 212 shows all valid translations for import of a TR-31 BDK base
derivation key (usage "B0") to a CCA KEYGENKY key, along with any access
control commands that must be enabled in the active role for that key type and
control vector attributes. These keys are for translating derived unique key per
transaction (DUKPT) base derivation keys.

Table 212. Import translation table for a TR-31 BDK base derivation key (usage "B0")

Key
usage

Key block
protection
method
keyword
(version ID)

Mode of
use

Rule-array
keywords

CCA key type and control vector
attributes Offset Command

"B0" "A" "N" N/A KEYGENKY, double length, UKPT
(CV bit 18 = B'1')

N/A N/A

"B0" "B" or "C" "X" N/A KEYGENKY, double length, UKPT
(CV bit 18 = B'1')

N/A N/A

Note:
1. These keys are the base keys from which derived unique key per transaction (DUKPT) initial keys are derived

for individual devices such as PIN pads.
2. This table defines the only supported translations for this TR-31 usage. Usage must be the following value:

"B0" BDK base derivation key.
3. There are no specific access-control commands for this translation because it is not ambiguous or in need of

interpretation.

Table 213 shows all valid translations for import of a TR-31 CVK card
verification key (usage "C0") to a CCA MAC or DATA key, along with any
access control commands that must be enabled in the active role for that key
type and control vector attributes. These keys are for computing or verifying
(against supplied value) a card verification code with the CVV, CVC, CVC2,
and CVV2 algorithm.

Table 213. Import translation table for a TR-31 CVK card verification key (usage "C0")

Key
usage

Key block
protection
method
keyword
(version
ID)

Mode
of use

Rule-array
keywords

CCA key type and control
vector attributes Offset Command

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 787

Table 213. Import translation table for a TR-31 CVK card verification key (usage "C0") (continued)

"C0" "A", "B", or
"C"

"G" or
"C"

CVK-CSC MAC, single or double length,
AMEX-CSC (CV bits 0 - 3 =
B'0100')

X'015B' TR31 Import - Permit C0 to
MAC/MACVER:AMEXCSC

CVK-CVV MAC, double length,
CVVKEY-A (CV bits 0 - 3 =
B'0010')

X'015A' TR31 Import - Permit C0 to
MAC/MACVER:CVVKEY-A

"V" CVK-CSC MACVER, single or double
length, AMEX-CSC (CV bits 0
- 3 = B'0100')

X'015B' TR31 Import - Permit C0 to
MAC/MACVER:AMEXCSC

CVK-CVV MACVER, double length,
CVVKEY-A (CV bits 0 - 3 =
B'0010')

X'015A' TR31 Import - Permit C0 to
MAC/MACVER:CVVKEY-A

Security considerations:
1. There is asymmetry in the translation from a CCA DATA key to a TR-31 key. The asymmetry results from CCA

DATA keys having attributes of both data encryption keys and MAC keys, while TR-31 separates data
encryption keys from MAC keys. A CCA DATA key can be exported to a TR-31 "C0" key, if one or both
applicable MAC generate and MAC verify control vector bits are on. However, a TR-31 "C0" key cannot be
imported to the lower-security CCA DATA key, it can be imported only to a CCA key type of MAC or
MACVER. This restriction eliminates the ability to export a CCA MAC or MACVER key to a TR-31 key and
re-importing it back as a CCA DATA key with the capability to Encipher, Decipher, or both.

2. The translation from TR-31 usage "C0" is controlled by rule array keywords when using the TR31_Key_Import
verb. This makes it possible to convert an exported CCA CVVKEY-A key into an AMEX-CSC key or the other
way around. To prevent such a conversion, do not enable offsets X'015A' (TR31 Import - Permit C0 to
MAC/MACVER:CVVKEY-A) and X'015B' (TR31 Import - Permit C0 to MAC/MACVER:AMEXCSC) at the same
time. However, if both CVVKEY-A and AMEX-CSC translation types are required, then offsets X'015A' and
X'015B' must be enabled. In this case, control is up to the development, deployment, and execution of the
applications themselves.

Note:
1. Card verification keys are used for computing or verifying (against supplied value) a card verification code with

the CVV, CVC, CVC2, and CVV2 algorithms. In CCA, these keys correspond to keys used with two algorithms:
v Visa CVV and MasterCard CVC codes are generated and verified using the CVV Generate and CVV Verify

verbs. These verbs require a key type of DATA or MAC/MACVER with a subtype extension (CV bits 0 - 3) of
ANY-MAC, single-length CVVKEY-A and single-length CVVKEY-B, and a double-length CVVKEY-A (see CVV
Key Combine verb). The MAC generate and the MAC verify (CV bits 20 - 21) key usage values must be set
appropriately.

v American Express CSC codes are generated and verified using the Transaction Validation verb. This verb
requires a key type of MAC or MACVER with a subtype extension of ANY-MAC or AMEX-CSC.

2. The translation from TR-31 usage "C0" to a CCA MAC/MACVER key with a subtype extension of ANY-MAC
(CV bits 0 - 3 = B'0000') is not allowed.

3. This table defines the only supported translations for this TR-31 usage. Usage must be the following value:
"C0" CVK card verification key

4. CCA does not have an equivalent to the TR-31 "generate only" mode of use, so a translation from TR-31 mode
"G" will result in a CCA MAC key with both MAC generate and MAC verify attributes (CV bits 20 - 21 = B'11').
Note that any key that can perform a generate operation can readily verify a MAC as well.

5. The CCA representation and the TR-31 representation of CVV keys are incompatible. CCA represents the
CVVKEY-A and CVVKEY-B keys as two 8-byte (single length) keys, while TR-31 represents these keys as one
16-byte key. The CVV Generate and CVV Verify verbs have support added to accept one 16-byte CVV key, using
left and right key parts as A and B. Current Visa standards require this.

6. Import and export of 8-byte CVVKEY-A and CVVKEY-B MAC/MACVER keys is allowed only using the
proprietary TR-31 usage+mode values ("10" and "1", respectively) to indicate encapsulation of the IBM control
vector in an optional block, because the 8-byte CVVKEY-A is meaningless and useless as a TR-31 "C0" usage key
of any mode.

Table 214 on page 789 shows all valid translations for import of a TR-31 data
encryption key (usage "D0") to a CCA ENCIPHER, DECIPHER, CIPHER, or
DATA key, along with any access control commands that must be enabled in

TR31 Key Import (CSNBT31I)

788 Common Cryptographic Architecture Application Programmer's Guide

the active role for that key type and control vector attributes. These keys are
used for the encryption and/or decryption of data.

Table 214. Import translation table for a TR-31 data encryption key (usage "D0")

Key
usage

Key block
protection
method
keyword
(version ID)

Mode of
use

Rule-array
keywords

CCA key type and control vector
attributes Offset Command

"D0" "A", "B", or
"C"

"E" N/A ENCIPHER, single or double length N/A N/A

"D" N/A DECIPHER, single or double length

"B" N/A CIPHER, single or double length

Security consideration: There is asymmetry in the translation from a CCA DATA key to a TR-31 key. The
asymmetry results from CCA DATA keys having attributes of both data encryption keys and MAC keys, while
TR-31 separates data encryption keys from MAC keys. A CCA DATA key can be exported to a TR-31 "D0" key, if
one or both applicable Encipher or Decipher control vector bits are on. However, a TR-31 "D0" key cannot be
imported to the lower-security CCA DATA key, it can be imported only to a CCA key type of ENCIPHER,
DECIPHER, or CIPHER. This restriction eliminates the ability to export a CCA DATA key to a TR-31 key, and
re-importing it back as a CCA DATA key with the capability to MAC generate and MAC verify.
Note:
1. Data encryption keys are used for the encryption and decryption of data.
2. This table defines the only supported translations for this TR-31 usage. Usage must be the following value:

"D0" Data encryption
3. There are no specific access-control commands for this translation since it is not ambiguous or in need of

interpretation.

Table 215 shows all valid translations for import of a TR-31 key encryption or
wrapping, or key block protection key (usages "K0", "K1") to a CCA EXPORT,
OKEYXLAT, IMPORTER, or IKEYXLAT key, along with any access control
commands that must be enabled in the active role for that key type and control
vector attributes. These keys are used only to encrypt or decrypt other keys, or
as a key used to derive keys that are used for that purpose.

Table 215. Import translation table for a TR-31 key encryption or wrapping, or key block protection key (usages "K0",
"K1")

Key
usage

Key block
protection
method
keyword
(version
ID)

Mode
of use

Rule-array
keywords

CCA key type and control
vector attributes Offset Command

"K0" "A", "B", or
"C"

"E" OKEYXLAT OKEYXLAT, double length X'015C' TR31 Import - Permit K0:E
to EXPORTER/OKEYXLATEXPORTER EXPORTER, double length,

EXPORT on (CV bit 21 = B'1')

"D" IKEYXLAT IKEYXLAT, double length X'015D' TR31 Import - Permit K0:D
to IMPORTER/IKEYXLATIMPORTER IMPORTER, double length,

IMPORT on (CV bit 21 = B'1')

"B" OKEYXLAT OKEYXLAT, double length X'015E' TR31 Import - Permit K0:B
to EXPORTER/OKEYXLATEXPORTER EXPORTER, double length,

EXPORT on (CV bit 21 = B'1')

IKEYXLAT IKEYXLAT, double length X'015F' TR31 Import - Permit K0:B
to IMPORTER/IKEYXLATIMPORTER IMPORTER, double length,

IMPORT on (CV bit 21 = B'1')

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 789

Table 215. Import translation table for a TR-31 key encryption or wrapping, or key block protection key (usages "K0",
"K1") (continued)

"K1" "B" or "C" "E" OKEYXLAT OKEYXLAT, double length X'0160' TR31 Import - Permit K1:E
to EXPORTER/OKEYXLATEXPORTER EXPORTER, double length,

EXPORT on (CV bit 21 = B'1')

"D" IKEYXLAT IKEYXLAT, double length X'0161' TR31 Import - Permit K1:D
to IMPORTER/IKEYXLATIMPORTER IMPORTER, double length,

IMPORT on (CV bit 21 = B'1')

"B" OKEYXLAT OKEYXLAT, double length X'0162' TR31 Import - Permit K1:B
to EXPORTER/OKEYXLATEXPORTER EXPORTER, double length,

EXPORT on (CV bit 21 = B'1')

IKEYXLAT IKEYXLAT, double length X'0163' TR31 Import - Permit K1:B
to IMPORTER/IKEYXLATIMPORTER IMPORTER, double length,

IMPORT on (CV bit 21 = B'1')

Security considerations:

1. The CCA OKEYXLAT, EXPORTER, IKEYXLAT, or IMPORTER KEK translation to a TR-31 "K0" key with mode
"B" (both wrap and unwrap) is not allowed for security reasons. Even with access-control point control, this
capability would give an immediate path to turn a CCA EXPORTER key into a CCA IMPORTER, and the other
way around.

2. When a TR-31 key block does not have an included control vector as an optional block, the default control
vector is used to construct the output key-token. Default CCA EXPORTER or IMPORTER keys have CV bits 18 -
20 on, which are used for key generation.

Note:
1. Key encryption or wrapping keys are used only to encrypt or decrypt other keys, or as a key used to derive

keys that are used for that purpose.
2. This table defines the only supported translations for this TR-31 usage. Usage must be the following value:

"K0" Key encryption or wrapping
"K1" TR-31 key block protection key

3. Any attempt to import a TR-31 "K0" or "K1" key that has algorithm "D" (DEA) will result in an error because
CCA does not support single-length KEKs.

4. CCA mode support is the same for version IDs "A", "B", and "C", because the distinction between TR-31 "K0"
and "K1" does not exist in CCA keys. CCA does not distinguish between targeted protocols currently, and so
there is no good way to represent the difference. Also note that most wrapping mechanisms now involve
derivation or key variation steps.

Table 216 shows all valid translations for import of a TR-31 ISO MAC
algorithm key (usages "M0", "M1", "M3") to a CCA MAC, MACVER, DATA,
DATAM, or DATAMV key, along with any access control commands that must
be enabled in the active role for that key type and control vector attributes.
These keys are use to compute or verify a code for message authentication.

Table 216. Import translation table for a TR-31 ISO MAC algorithm key (usages "M0", "M1", "M3")

Key
usage

Key block
protection
method
keyword
(version
ID)

Mode
of use

Rule-array
keywords

CCA key type and control
vector attributes Offset Command

TR31 Key Import (CSNBT31I)

790 Common Cryptographic Architecture Application Programmer's Guide

Table 216. Import translation table for a TR-31 ISO MAC algorithm key (usages "M0", "M1", "M3") (continued)

"M0" "A", "B", or
"C"

"G" or
"C"

N/A MAC, double length,
ANY-MAC (CV bits 0 - 3 =
B'0000')

X'0164' TR31 Import - Permit
M0/M1/M3 to
MAC/MACVER:ANY-MAC

"V" MACVER, double length,
ANY-MAC (CV bits 0 - 3 =
B'0000')

"M1" "G" or
"C"

MAC, single or double length,
ANY-MAC (CV bits 0 - 3 =
B'0000')

"V" MACVER, single or double
length, ANY-MAC (CV bits 0 -
3 = B'0000')

"M3" "G" or
"C"

MAC, single or double length,
ANY-MAC (CV bits 0 - 3 =
B'0000')

"V" MACVER, single or double
length, ANY-MAC (CV bits 0 -
3 = B'0000')

Security consideration: There is asymmetry in the translation from a CCA DATA key to a TR-31 key. The
asymmetry results from CCA DATA keys having attributes of both data encryption keys and MAC keys, while
TR-31 separates data encryption keys from MAC keys. A CCA DATA key can be exported to a TR-31 "M0", "M1", or
"M3" key, if one or both applicable MAC generate and MAC verify control vector bits are on. However, a TR-31
"M0", "M1", or "M3" key cannot be imported to the lower-security CCA DATA key, it can be imported only to a
CCA key type of MAC or MACVER. This restriction eliminates the ability to export a CCA MAC or MACVER key
to a TR-31 key, and re-importing it back as a CCA DATA key with the capability to Encipher, Decipher, or both.

Note:
1. MAC keys are used to compute or verify a code for message authentication.
2. This table defines the only supported translations for this TR-31 usage. Usage must be one of the following

values:
"M0" SO 16609 MAC algorithm 1, TDEA

The ISO 16609 MAC algorithm 1 is based on ISO 9797. It is identical to "M1" except that it does not
support 8-byte DES keys.

"M1" SO 9797 MAC algorithm 1

The ISO 9797 MAC algorithm 1 is identical to "M0" except that it also supports 8-byte DES keys.
"M3" ISO 9797 MAC algorithm 3

The X9.19 style of Triple-DES MAC.
3. A CCA control vector has no bits defined to limit key usage by algorithm, such as CBC MAC (TR-31 usage "M0"

and "M1") or X9.19 (TR-31 usage "M3"). When importing a TR-31 key block, the resulting CCA key token
deviates from the restrictions of usages "M0", "M1", and "M3". Importing a TR-31 key block which allows MAC
generation ("G" or "C") results in a control vector with the ANY-MAC attribute rather than for the restricted
algorithm that is set in the TR-31 key block. The ANY-MAC attribute provides the same restrictions as what
CCA currently uses for generating and verifying MACs.

Table 217 on page 792 shows all valid translations for import of a TR-31 PIN
encryption or PIN verification key (usages "P0", "V0", "V1", "V2") to a CCA
OPINENC, IPINENC, PINGEN, or PINVER key, along with any access control
commands that must be enabled in the active role for that key type and control
vector attributes. These keys are used to protect PIN blocks and to generate or
verify a PIN using a particular PIN-calculation method for that key type.

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 791

Table 217. Import translation table for a TR-31 PIN encryption or PIN verification key (usages "P0", "V0", "V1", "V2")

Key
usage

Key block
protection
method
keyword
(version
ID) Mode of use

Rule-array
keywords

CCA key type and control
vector attributes Offset Command

"P0" "A", "B",
or "C"

"E" N/A OPINENC, double length X'0165' TR31 Import -
Permit P0:E to
OPINENC

"D" IPINENC, double length X'0166' TR31 Import -
Permit P0:D to
IPINENC

"V0" "A" "N" (requires
both
commands)

PINGEN PINGEN,
double length,
NO-SPEC (CV
bits 0 - 3 =
B'0000')

NOOFFSET off
(CV bit 37 =
B'0')

X'0167' TR31 Import -
Permit V0 to
PINGEN:NO-SPEC

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"G" or "C" NOOFFSET off
(CV bit 37 =
B'0')

X'0167' TR31 Import -
Permit V0 to
PINGEN:NO-SPEC

"A" "N" (requires
both
commands)

PINGEN,
NOOFFSET

NOOFFSET on
(CV bit 37 =
B'1')

X'0167' TR31 Import -
Permit V0 to
PINGEN:NO-SPEC

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"G" or "C" NOOFFSET on
(CV bit 37 =
B'1')

X'0167' TR31 Import -
Permit V0 to
PINGEN:NO-SPEC

"A" "N" (requires
both
commands)

PINVER PINVER,
double length,
NO-SPEC (CV
bits 0 - 3 =
B'0000')

NOOFFSET off
(CV bit 37 =
B'0')

X'0168' TR31 Import -
Permit V0 to
PINVER:NO-SPEC

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"V" NOOFFSET off
(CV bit 37 =
B'0')

X'0168' TR31 Import -
Permit V0 to
PINVER:NO-SPEC

"A" "N" (requires
both
commands)

PINVER,
NOOFFSET

NOOFFSET on
(CV bit 37 =
B'1')

X'0168' TR31 Import -
Permit V0 to
PINVER:NO-SPEC

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"V" NOOFFSET on
(CV bit 37 =
B'1')

X'0168' TR31 Import -
Permit V0 to
PINVER:NO-SPEC

TR31 Key Import (CSNBT31I)

792 Common Cryptographic Architecture Application Programmer's Guide

Table 217. Import translation table for a TR-31 PIN encryption or PIN verification key (usages "P0", "V0", "V1",
"V2") (continued)

"V1" "A" "N" (requires
both
commands)

PINGEN PINGEN,
double length,
IBM
PIN/IBM-PINO
(CV bits 0 - 3 =
B'0001')

NOOFFSET off
(CV bit 37 =
B'0')

X'0169' TR31 Import -
Permit V1 to
PINGEN:IBM-PIN/
IBMPINO

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"G" or "C" NOOFFSET off
(CV bit 37 =
B'0')

X'0169' TR31 Import -
Permit V1 to
PINGEN:IBM-PIN/
IBMPINO

"A" "N" (requires
both
commands)

PINGEN,
NOOFFSET

NOOFFSET on
(CV bit 37 =
B'1')

X'0169' TR31 Import -
Permit V1 to
PINGEN:IBM-PIN/
IBMPINO

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"G" or "C" NOOFFSET on
(CV bit 37 =
B'1')

X'0169' TR31 Import -
Permit V1 to
PINGEN:IBM-PIN/
IBMPINO

"A" "N" (requires
both
commands)

PINVER PINVER,
double length,
IBM
PIN/IBM-PINO
(CV bits 0 - 3 =
B'0001')

NOOFFSET off
(CV bit 37 =
B'0')

X'016A' TR31 Import -
Permit V1 to
PINVER:IBM-PIN/
IBMPINO

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"V" NOOFFSET off
(CV bit 37 =
B'0')

X'016A' TR31 Import -
Permit V1 to
PINVER:IBM-PIN/
IBMPINOEC

"A" "N" (requires
both
commands)

PINVER,
NOOFFSET

NOOFFSET on
(CV bit 37 =
B'1')

X'016A' TR31 Import -
Permit V1 to
PINVER:IBM-PIN/
IBMPINOC

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"V" NOOFFSET on
(CV bit 37 =
B'1')

X'016A' TR31 Import -
Permit V1 to
PINVER:IBM-PIN/
IBMPINO

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 793

Table 217. Import translation table for a TR-31 PIN encryption or PIN verification key (usages "P0", "V0", "V1",
"V2") (continued)

"V2" "A" "N" (requires
both
commands)

PINGEN PINGEN, double length,
VISA-PVV (CV bits 0 - 3 =
B'0010')

X'016B' TR31 Import -
Permit V2 to
PINGEN:VISA-PVV

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"G" or "C" PINGEN, double length,
VISA-PVV (CV bits 0 - 3 =
B'0010')

X'016B' TR31 Import -
Permit V2 to
PINGEN:VISA-PVV

"A" "N" (requires
both
commands)

PINVER PINVER, double length,
VISA-PVV (CV bits 0 - 3 =
B'0010')

X'016C' TR31 Import -
Permit V2 to
PINVER:VISA-PVV

X'017C' TR31 Import -
Permit V0/V1/V2:N
to PINGEN/PINVER

"A", "B",
or "C"

"V" PINVER, double length,
VISA-PVV (CV bits 0 - 3 =
B'0010')

X'016C' TR31 Import -
Permit V2 to
PINVER:VISA-PVV

Security note: TR-31 key blocks that are protected under legacy version ID "A"
(using the Key Variant Binding Method 2005 Edition) use the same mode of
use "N" for PINGEN and PINVER keys. For version ID "A" keys only, for a
given PIN key usage, enabling both the PINGEN and PINVER access-control
points at the same time while enabling offset X'017C' (for mode "N", no special
restrictions) is NOT recommended. In other words, for a particular PIN
verification key usage, you should not simultaneously enable the four
commands shown below for that usage:

Table 218. Commands

Key type, mode, or
version Offset Command

"V0": For usage V0, a user with the following four commands enabled in the active role
can change a PINVER key into a PINGEN key and the other way around. Avoid
simultaneously enabling these four commands.

Key type PINGEN X'0167' TR31 Import - Permit V0 to PINGEN:NO-SPEC

Key type PINVER X'0168' TR31 Import - Permit V0 to PINVER:NO-SPEC

Mode "N" X'017C' TR31 Import - Permit V0/V1/V2:N to PINGEN/PINVER

Version "A" X'0150' TR31 Import - Permit Version A TR-31 Key Blocks

"V1": For usage V1, a user with the following four commands enabled in the active role
can change a PINVER key into a PINGEN key and the other way around. Avoid
simultaneously enabling these four commands.

Key type PINGEN X'0169' TR31 Import - Permit V1 to PINGEN:IBM-PIN/IBMPINO

Key type PINVER X'016A' TR31 Import - Permit V1 to PINVER:IBM-PIN/IBMPINO

Mode "N" X'017C' TR31 Import - Permit V0/V1/V2:N to PINGEN/PINVER

Version "A" X'0150' TR31 Import - Permit Version A TR-31 Key Blocks

"V2": For usage V2, a user with the following four commands enabled in the active role
can change a PINVER key into a PINGEN key and the other way around. Avoid
simultaneously enabling these four commands.

Key type PINGEN X'016B' TR31 Import - Permit V2 to PINGEN:VISA-PVV

TR31 Key Import (CSNBT31I)

794 Common Cryptographic Architecture Application Programmer's Guide

Table 218. Commands (continued)

Key type, mode, or
version Offset Command

Key type PINVER X'016C' TR31 Import - Permit V2 to PINVER:VISA-PVV

Mode "N" X'017C' TR31 Import - Permit V0/V1/V2:N to PINGEN/PINVER

Version "A" X'0150' TR31 Import - Permit Version A TR-31 Key Blocks

Failure to comply with this recommendation allows changing PINVER keys
into PINGEN and the other way around.

Note:
1. PIN encryption keys are used to protect PIN blocks. PIN verification keys

are used to generate or verify a PIN using a particular PIN-calculation
method for that key type.

2. This table defines the only supported translations for this TR-31 usage.
Usage must be one of the following values:
"P0" PIN encryption
"V0" PIN verification, KPV, other algorithm

Usage "V0" does not have its own PIN-calculation method defined.
The mapping to NO-SPEC is sub-optimal. Exporting to "N" mode
restricts keys from being imported with the IBM-PIN/IBM-PINO or
VISA-PVV attribute, while CCA NO-SPEC allows any method.

"V1" PIN verification, IBM 3624
"V2" PIN verification, Visa PVV

The NOOFFSET keyword is not allowed for the Visa PVV
algorithm because it does not support this attribute.

3. Mode must be one of the following values:
"E" Encrypt/wrap only

This mode restricts PIN encryption keys to encrypting a PIN block.
May be used to create or reencipher an encrypted PIN block (for
key-to-key translation).

"D" Decrypt/unwrap only

This mode restricts PIN encryption keys to decrypting a PIN block.
Generally used in a PIN translation to decrypt the incoming PIN
block.

"N" No special restrictions (other than restrictions implied by the key
usage)

This mode is used by several vendors for a PIN generate or PIN
verification key when the key block version ID is "A".

"G" Generate only

This mode is used for a PINGEN key that may not perform a PIN
verification. The control vector will not have its EPINVER attribute
on (CV bit 22 = B'0').

"V" Verify only

This mode is used for PIN verification only. If the TR-31 key block
does not have a control vector included, the only usage bits set on
in the control vector is the EPINVER bit (CV bits 18 - 22 =
B'00001').

"C" Both generate and verify (combined)

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 795

This mode indicates that the control vector will have the default
PINGEN bits on (CV bits 18 -22 = B'11111').

4. Any attempt to import a TR-31 "P0" key that has mode "B" (both encrypt
and decrypt) will result in an error because CCA does not support this
combination of attributes.

5. If the TR-31 key block contains a control vector, and the control vector has
NOOFFSET on, the NOOFFSET keyword is not necessary because the verb
will automatically set NOOFFSET on in this case.

Table 219 shows all valid translations for import of a TR-31 EMV/chip issuer
master-key key (usages "E0", "E1", "E2", "E3", "E4", "E5") to a CCA DKYGENKY,
DATA, MAC, CIPHER, or ENCIPHER key, along with any access control
commands that must be enabled in the active role for that key type and control
vector attributes. These keys are used by the chip cards to perform
cryptographic operations or, in some cases, to derive keys used to perform
operations.

Table 219. Import translation table for a TR-31 EMV/chip issuer master-key key (usages "E0", "E1", "E2", "E3", "E4",
"E5")

Key
usage

Key block
protection
method
keyword
(version
ID)

Mode
of use

Rule-array
keywords

CCA key type and control
vector attributes Offset Command

"E0" "A" "N" DKYL0,
DMAC

DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 =
B'000'), DMAC (CV bits 19 -
22 = B'0010')

X'016D' TR31 Import - Permit E0 to
DKYGENKY:DKYL0+DMAC"B" or "C" "X"

"A" "N" DKYL0,
DMV

DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 =
B'000'), DMV (CV bits 19 - 22
= B'0011')

X'016E' TR31 Import - Permit E0 to
DKYGENKY:DKYL0+DMV"B" or "C" "X"

"A" "N" DKYL1,
DMAC

DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 =
B'001'), DMAC (CV bits 19 -
22 = B'0010')

X'016F' TR31 Import - Permit E0 to
DKYGENKY:DKYL1+DMAC"B" or "C" "X"

"A" "N" DKYL1,
DMV

DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 =
B'001'), DMV (CV bits 19 - 22
= B'0011')

X'0170' TR31 Import - Permit E0 to
DKYGENKY:DKYL1+DMV"B" or "C" "X"

TR31 Key Import (CSNBT31I)

796 Common Cryptographic Architecture Application Programmer's Guide

Table 219. Import translation table for a TR-31 EMV/chip issuer master-key key (usages "E0", "E1", "E2", "E3", "E4",
"E5") (continued)

"E1" "A" "N" DKYL0,
DMPIN

DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 =
B'000'), DMPIN (CV bits 19 -
22 = B'1001')

X'0171' TR31 Import - Permit E1 to
DKYGENKY:DKYL0+DMPIN"E"

"D"

"B"

"B" or "C" "X"

"A" "N" DKYL0,
DDATA

DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 =
B'000'), DDATA (CV bits 19 -
22 = B'0001')

X'0172' TR31 Import - Permit E1 to
DKYGENKY:DKYL0+DDATA"E"

"D"

"B"

"B" or "C" "X"

"A" "N" DKYL1,
DMPIN

DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 =
B'001'), DMPIN (CV bits 19 -
22 = B'1001')

X'0173' TR31 Import - Permit E1 to
DKYGENKY:DKYL1+DMPIN"E"

"D"

"B"

"B" or "C" "X"

"A" "N" DKYL1,
DDATA

DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 =
B'001'), DDATA (CV bits 19 -
22 = B'0001')

X'0174' TR31 Import - Permit E1 to
DKYGENKY:DKYL1+DDATA"E"

"D"

"B"

"B" or "C" "X"

"E2" "A" "N" DKYL0,
DMAC

DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 =
B'000'), DMAC (CV bits 19 -
22 = B'0010')

X'0175' TR31 Import - Permit E2 to
DKYGENKY:DKYL0+DMAC"B" or "C" "X"

"A" "N" DKYL1,
DMAC

DKYGENKY, double length,
DKYL1 (CV bits 12 - 14 =
B'001'), DMAC (CV bits 19 -
22 = B'0010')

X'0176' TR31 Import - Permit E2 to
DKYGENKY:DKYL1+DMAC"B" or "C" "X"

"E3" "A" "N" N/A ENCIPHER X'0177' TR31 Import - Permit E3 to
ENCIPHER"E"

"D"

"B"

"G"

"B" or "C" "X"

"E4" "A" "N" N/A DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 =
B'000'), DDATA (CV bits 19 -
22 = B'0001')

X'0178' TR31 Import - Permit E4 to
DKYGENKY:DKYL0+DDATA"B"

"B" or "C" "X"

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 797

Table 219. Import translation table for a TR-31 EMV/chip issuer master-key key (usages "E0", "E1", "E2", "E3", "E4",
"E5") (continued)

"E5" "A" "G" DKYL0,
DMAC

DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 =
B'000'), DMAC (CV bits 19 -
22 = B'0010')

X'0179' TR31 Import - Permit E5 to
DKYGENKY:DKYL0+DMAC"C"

"V"

"E"

"D"

"B"

"N"

"B" or "C" "X"

"A" "G" DKYL0,
DDATA

DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 =
B'000'), DDATA (CV bits 19 -
22 = B'0001')

X'017A' TR31 Import - Permit E5 to
DKYGENKY:DKYL0+DDATA"C"

"V"

"E"

"D"

"B"

"N"

"B" or "C" "X"

"A" "G" DKYL0,
DEXP

DKYGENKY, double length,
DKYL0 (CV bits 12 - 14 =
B'000'), DEXP (CV bits 19 - 22
= B'0101')

X'017B' TR31 Import - Permit E5 to
DKYGENKY:DKYL0+DEXP"C"

"V"

"E"

"D"

"B"

"N"

"B" or "C" "X"

Note:
1. EMV/chip issuer master-key keys are used by the chip cards to perform cryptographic operations or, in some

cases, to derive keys used to perform operations. In CCA, these keys are (a) diversified key-generating keys (key
type DKYGENKY), allowing derivation of operational keys, or (b) operational keys. Note that in this context,
"master key" has a different meaning than for CCA. These master keys, also called KMCs, are described by EMV
as DES master keys for personalization session keys. They are used to derive the corresponding chip card master
keys, and not typically used directly for cryptographic operations other than key derivation. In CCA, these keys
are usually key generating keys with derivation level DKYL1 (CV bits 12 - 14 = B'001'), used to derive other key
generating keys (the chip card master keys). For some cases, or for older EMV key derivation methods, the
issuer master keys could be level DKYL0 (CV bits 12 - 14 = B'000').

2. This table defines the only supported translations for this TR-31 usage. Usage must be one of the following
values:
"E0" Application cryptograms
"E1" Secure messaging for confidentiality
"E2" Secure messaging for integrity
"E3" Data authentication code
"E4" Dynamic numbers
"E5" Card personalization

3. EMV support in CCA is different than TR-31 support, and CCA key types do not match TR-31 types.
4. DKYGENKY keys are double length only.
5. In CCA, a MAC key that can perform a MAC generate operation also can perform a MAC verify. For TR-31

mode "G" (generate only), the translation to a CCA key results in a key that can perform MAC generate and
MAC verify.

TR31 Key Import (CSNBT31I)

798 Common Cryptographic Architecture Application Programmer's Guide

tr31_key_block_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
tr31_key_block variable. The length field in the TR-31 block is a 4-digit decimal
number, so the maximum acceptable length is 9992 bytes. For more
information, see “TR31 Key Token Parse (CSNBT31P)” on page 804.

tr31_key_block

Direction: Input
Type: String

A pointer to a string variable containing the TR-31 key block that is to be
imported. The key block is protected with the key identified by the
unwrap_kek_identifier parameter.

unwrap_kek_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
unwrap_kek_identifier variable. Set this value to 64.

unwrap_kek_identifier

Direction: Input
Type: String

A pointer to a string variable containing the operational fixed-length DES
key-token used to unwrap the key identified by the tr31_key_block parameter,
or a key label of such a key in DES key-storage. The key must have a key type
of IMPORTER or IKEYXLAT, and be authorized for import.

Note: DES keys wrapped in ECB mode (CCA legacy wrap mode) cannot be
used to wrap or unwrap TR-31 "B" or "C" key blocks that have or will have "E"
exportability, because ECB mode does not comply with ANSI X9.24 Part 1.

wrap_kek_identifier_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the
wrap_kek_identifier variable. The value must be greater than or equal to 0. A
null key-token can have a length of 1. Set this value to 64 for a key label or a
KEK.

wrap_kek_identifier

Direction: Input
Type: String

A pointer to a string variable containing the operational fixed-length DES
key-token used to wrap the key identified by the output_key_identifier
parameter, a null key-token, or a key label of such a key in DES key-storage. If
the parameter identifies a null key-token, then the unwrap_kek_identifier
parameter is also used for wrapping the CCA output key token.

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 799

output_key_identifier_length

Direction: Input/Output
Type: Integer

A pointer to an integer specifying the length in bytes of the output_key_identifier
variable. This is an input/output parameter.

output_key_identifier

Direction: Input/Output
Type: String

A pointer to a string variable containing the key token or the key label for the
token that is to receive the imported key. The output key-token is a CCA
internal or external key token containing the key received in the TR-31 token.
If a key token is provided, it must be a null token (64 bytes of X'00'). If a key
label is provided, the imported token is stored in the key storage file and
identified by that label.

num_opt_blocks

Direction: Output
Type: Integer

A pointer to an integer variable where the verb stores the number of optional
blocks that are present in the TR-31 key token.

cv_source

Direction: Output
Type: Integer

A pointer to an integer variable where the verb stores a value indicating how
the control vector in the output key token was created. It can be one of the
values in Table 220.

Table 220. TR31 Key Import CV sources

CSNBT31I
CV source Meaning

0 No CV was present in an optional block, and the output CV was created by
the verb based on input parameters and on the attributes in the TR-31 key
block header.

1 A CV was obtained from an optional block in the TR-31 key block, and the
key usage and mode of use were also specified in the TR-31 header. The verb
verified compatibility of the header values with the CV and then used that CV
in the output key token.

2 A CV was obtained from an optional block in the TR-31 key block, and the
key usage and mode of use in the TR-31 header held the proprietary values
indicating that key use and mode should be obtained from the included CV.
The CV from the TR-31 token was used as the CV for the output key token.

Any values other than these three are reserved and are currently invalid.

protection_method

Direction: Output
Type: Integer

A pointer to an integer variable where the verb stores a value indicating what
method was used to protect the input TR-31 key block. The TR-31 standard

TR31 Key Import (CSNBT31I)

800 Common Cryptographic Architecture Application Programmer's Guide

allows two methods, and the application program might want to know which
was used for security purposes. The variable can have one of the values in
Table 221.

Table 221. TR31 Key Import protection methods

CSNBT31I
protection
method Meaning

0 The TR-31 key block was protected using the variant method as identified
by a Key Block Version ID value of "A" (X'41').

1 The TR-31 key block was protected using the derived key method as
identified by a Key Block Version ID value of "B" (X'42').

2 The TR-31 key block was protected using the variant method as identified
by a Key Block Version ID value of "C" (X'43'). Functionally this method is
the same as "A", but to maintain consistency a different value is returned
here for "C".

Any values other than these three are reserved and are currently invalid.

Restrictions
The restrictions for CSNBT31I.

None.

Required commands
The required commands for CSNBT31I.

The TR31 Key Import verb requires the following commands to be enabled in the
active role:

Rule-array
keyword Offset Command

WRAP-ENH
or
WRAP-ECB

X'0153' TR31 Import - Permit Override of default wrapping method

TR-31 key
block
version ID Offset Command

"A" (X'41') X'0150' TR-31 Import - Permit version A TR-31 key blocks

"B" (X'42') X'0151' TR-31 Import - Permit version B TR-31 key blocks

"C" (X'43') X'0152' TR-31 Import - Permit version C TR-31 key blocks

Be aware of access-control point X'017C' (TR31 Import - Permit V0/V1/V2:N to
PINGEN/PINVER) for import of PINGEN or PINVER keys to wrapping method
"A", usage "V0", "V1", or "V2", and mode "N". TR-31 key blocks with legacy key
usage "A" (key block protected using the Key Variant Binding Method 2005
Edition) use the same mode "N" for PINGEN as well as PINVER keys. For usage
"A" keys only, enabling a PINGEN and PINVER access-control point while
enabling offset X'017C' (for mode "N") is NOT recommended. Failure to comply
with this recommendation allows changing PINVER keys into PINGEN, and the
other way around.

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 801

In addition to the required commands, the verb needs these additional commands
to be enabled in the active role depending on the rule-array keyword provided:

Rule-array keyword Offset Command

Specific key
usage, version ID,
and mode values

"C0": TR-31 CVK card verification keys

CVK-CSC X'015B' TR31 Import - Permit C0 to MAC/MACVER:AMEXCSC See Table 213 on
page 787.CVK-CVV X'015A' TR31 Import - Permit C0 to MAC/MACVER:CVKEY-A

"K0" and "K1": TR-31 key encryption or wrapping, or key block protection keys

OKEYXLAT or
EXPORTER

X'015C' TR31 Import - Permit K0:E to EXPORTER/ OKEYXLAT See Table 215 on
page 789.X'015E' TR31 Import - Permit K0:B to EXPORTER/OKEYXLAT

X'0160' TR31 Import - Permit K1:E to EXPORTER/OKEYXLAT

X'0162' TR31 Import - Permit K1:B to EXPORTER/OKEYXLAT

IKEYXLAT or
IMPORTER

X'015D' TR31 Import - Permit K0:D to IMPORTER/IKEYXLAT

X'015F' TR31 Import - Permit K0:B to IMPORTER/IKEYXLAT

X'0161' TR31 Import - Permit K1:D to IMPORTER/IKEYXLAT

X'0163' TR31 Import - Permit K1:B to IMPORTER/IKEYXLAT

"M0", "M1", and "M3": TR-31 ISO MAC algorithm keys

N/A X'0164' TR31 Import - Permit M0/M1/M3 to
MAC/MACVER:ANY-MAC

See Table 216 on
page 790.

X'018C' TR31 Export - Permit MACVER/DATAMV to M0:V

"P0", "V0", "V1": TR-31 PIN encryption or PIN verification keys

N/A X'0165' TR31 Import - Permit P0:E to OPINENC See Table 217 on
page 792.X'0166' TR31 Import - Permit P0:D to IPINENC

PINGEN X'0167' TR31 Import - Permit V0 to PINGEN:NO-SPEC

X'0169' TR31 Import - Permit V1 to PINGEN:IBM-PIN/IBMPINO

X'016B' TR31 Import - Permit V2 to PINGEN:VISA-PVV

X'017C' TR31 Import - Permit V0/V1/V2:N to PINGEN/PINVER

PINVER X'0168' TR31 Import - Permit V0 to PINVER:NO-SPEC

X'016A' TR31 Import - Permit V1 to PINVER:IBM-PIN/IBMPINO

X'016C' TR31 Import - Permit V2 to PINVER:VISA-PVV

X'017C' TR31 Import - Permit V0/V1/V2:N to PINGEN/PINVER

"E0", "E1", "E2", "E3", "E4", and "E5": TR-31 EMC/chip issuer master-key keys

DKYL0 X'016D' TR31 Import - Permit E0 to DKYGENKY:DKYL0+DMAC See Table 219 on
page 796.X'016E' TR31 Import - Permit E0 to DKYGENKY:DKYL0+DMV

X'0171' TR31 Import - Permit E1 to DKYGENKY:DKYL0+DMPIN

X'0172' TR31 Import - Permit E1 to DKYGENKY:DKYL0+DDATA

X'0175' TR31 Import - Permit E2 to DKYGENKY:DKYL0+DMAC

X'0179' TR31 Export - Permit DKYGENKY:DKYL1+DALL to E0

X'017A' TR31 Import - Permit E5 to DKYGENKY:DKYL0+DDATA

X'017B' TR31 Import - Permit E5 to DKYGENKY:DKYL0+DEXP

TR31 Key Import (CSNBT31I)

802 Common Cryptographic Architecture Application Programmer's Guide

Rule-array keyword Offset Command

Specific key
usage, version ID,
and mode values

DKYL1 X'016F' TR31 Import - Permit E0 to DKYGENKY:DKYL1+DMAC See Table 219 on
page 796.X'0170' TR31 Import - Permit E0 to DKYGENKY:DKYL1+DMV

X'0173' TR31 Import - Permit E1 to DKYGENKY:DKYL1+DMPIN

X'0174' TR31 Import - Permit E1 to DKYGENKY:DKYL1+DDATA

X'0176' TR31 Import - Permit E2 to DKYGENKY:DKYL1+DMAC

DMAC X'016D' TR31 Import - Permit E0 to DKYGENKY:DKYL0+DMAC See Table 219 on
page 796.X'016F' TR31 Import - Permit E0 to DKYGENKY:DKYL1+DMAC

X'0175' TR31 Import - Permit E2 to DKYGENKY:DKYL0+DMAC

X'0176' TR31 Import - Permit E2 to DKYGENKY:DKYL1+DMAC

X'0179' TR31 Import - Permit E5 to DKYGENKY:DKYL0+DMAC

DMV X'016E' TR31 Import - Permit E0 to DKYGENKY:DKYL0+DMV See Table 219 on
page 796.X'0170' TR31 Import - Permit E0 to DKYGENKY:DKYL1+DMV

DMPIN X'0171' TR31 Import - Permit E1 to DKYGENKY:DKYL0+DMPIN

X'0173' TR31 Import - Permit E1 to DKYGENKY:DKYL1+DMPIN

DDATA X'0172' TR31 Import - Permit E1 to DKYGENKY:DKYL0+DDATA See Table 219 on
page 796.X'0174' TR31 Import - Permit E1 to DKYGENKY:DKYL1+DDATA

X'017A' TR31 Import - Permit E5 to DKYGENKY:DKYL0+DDATA

DEXP X'017B' TR31 Import - Permit E5 to DKYGENKY:DKYL0+DEXP See Table 219 on
page 796.N/A X'0177' TR31 Import - Permit E3 to ENCIPHER

X'0178' TR31 Import - Permit E4 to DKYGENKY:DKYL0+DDATA

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBT31IJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBT31IJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber tr31_key_block_length,
byte[] tr31_key_block,
hikmNativeNumber unwrap_kek_identifier_length,
byte[] unwrap_kek_identifier,
hikmNativeNumber wrap_kek_identifier_length,
byte[] wrap_kek_identifier,
hikmNativeNumber output_key_identifier_length,
byte[] output_key_identifier,
hikmNativeNumber num_opt_blocks,
hikmNativeNumber cv_source,
hikmNativeNumber protection_method);

TR31 Key Import (CSNBT31I)

Chapter 16. TR-31 symmetric key verbs 803

TR31 Key Token Parse (CSNBT31P)
Use the TR31 Key Token Parse verb to disassemble the unencrypted header of an
external TR-31 key block into separate pieces of information.

The part of the header that is optional, called optional blocks, is not disassembled.
To obtain the contents of optional blocks, use the TR31 Optional Data Read verb.
Neither verb performs any cryptographic services, and both disassemble a key
block in application storage. The validity of the key block is verified as much as
can be done without performing any cryptographic services.

The TR-31 header fields that are disassembled into separate pieces of information
include a key block version ID, key block length, key usage, algorithm, mode of
use, key version number, exportability, and number of optional blocks. Except for
the two length values, which are returned as integers, the verb returns the field
values as ASCII strings. This format is used in the TR-31 key block itself. For more
information, see X9 TR-31 2010: Interoperable Secure Key Exchange Block Specification
for Symmetric Algorithms.

The following table summarizes the key blocks fields returned by this verb:

TR-31 field name Verb parameter

Field or
buffer
string
length in
bytes Description of TR-31 field

Key block version ID key_block_version 1 Identifies the method by which the key block is
cryptographically protected and the content layout of the
block.

Key block length key_block_length 4
(integer)

Entire key block length after encoding (header, encrypted
confidential data, and MAC).

Key usage key_usage 2 Provides information about the intended function of the
protected key/sensitive data, such as data encryption,
PIN encryption, or key wrapping. Numeric values are
reserved for proprietary use (that is, not defined by
TR-31).

Algorithm algorithm 1 The approved symmetric algorithm for which the
protected key may be used. Numeric values are reserved
for proprietary use.

Mode of use mode 1 Defines the operation for which the protected key can
perform. Numeric values are reserved for proprietary use.

Key version number key_version_number 2 Version number to optionally indicate that the contents of
the key block is a component (key part), or to prevent
re-injection of an old key. This field is a tool for
enforcement of local key change rules.

Exportability exportability 1 Defines whether the protected key may be exported.

Number of optional
blocks

num_opt_blocks 4
(integer)

Defines the number of optional blocks included in the key
block. If this value is greater than zero, use the TR31
Optional Data Read verb to obtain the contents of the
optional blocks.

This verb does not perform cryptographic services on any key value. You cannot
use this verb to change a key or to change the control vector related to a key.

TR31 Key Token Parse (CSNBT31P)

804 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNBT31P.

CSNBT31P(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
tr31_key_length,
tr31_key,
key_block_version,
key_block_length,
key_usage,
algorithm,
mode,
key_version_number,
exportability,
num_opt_blocks)

Parameters
The parameters for CSNBT31P.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 0.

rule_array

Direction: Input
Type: String array

No rule array keywords are defined for this verb.

tr31_key_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
tr31_key variable. Specify a length that is greater than or equal to the size of
the key block. The verb determines the actual length of the key by parsing its
contents.

tr31_key

Direction: Input
Type: String

A pointer to a string variable containing the TR-31 key block to be
disassembled.

key_block_version

TR31 Key Token Parse (CSNBT31P)

Chapter 16. TR-31 symmetric key verbs 805

Direction: Output
Type: String

A pointer to a string variable. The verb copies the one byte found in the key
block version ID field of the input key block to this variable.

Note that if the verb finds a proprietary key block version ID, the verb treats it
as an invalid value, because the verb is not capable of disassembling a key
block that has a proprietary ID. This variable is not updated if a processing
error occurs.

key_block_length

Direction: Output
Type: Integer

A pointer to an integer variable. The verb parses the 2-byte numeric ASCII key
block length field from the input key block, converts the string value into an
integer, and returns the integer in this variable. This value must be less than or
equal to the tr31_key_length input variable.

key_usage

Direction: Output
Type: String

A pointer to a string variable. The verb copies the two bytes found in the key
usage field of the input key block to this variable.

algorithm

Direction: Output
Type: String

A pointer to a string variable. The verb copies the one byte found in the
algorithm field of the input key block to this variable. The verb does not treat
a proprietary algorithm value as an error.

mode

Direction: Output
Type: String

A pointer to a one-byte string variable containing the TR-31 mode of use for
the key contained in the block. The value is obtained from the TR-31 header.
The mode of use describes what operations the key can perform, within the
limitations specified with the key usage value. For example, a key with usage
for data encryption can have a mode to indicate that it can be used only for
encryption, decryption, or both.

This pointer must be non-NULL and point to application storage with at least
the size given by the byte count noted. The storage is updated with the noted
value on a successful return from this verb, and unchanged otherwise.

key_version_number

Direction: Output
Type: String

A pointer to a 2-byte string variable obtained from the TR-31 header, which
can be used for one of three purposes, or can be unused.
v If both bytes are X'30' ("0"), then key versioning is unused for this key. In

this case, the second byte is not examined and can contain any value.

TR31 Key Token Parse (CSNBT31P)

806 Common Cryptographic Architecture Application Programmer's Guide

v If the first byte is X'63' ("c"), then the block contains a component of a key
which must be combined with other components in order to form the
complete key. TR-31 does not define the method through which the
components are combined. TR-31 specifies that local rules are used for that
purpose.
In this case, the second byte is not examined and can contain any value.

v If the first byte is anything other than the two values above, then the 2-byte
key version value is an identifier of the version of the key that is carried in
the block. This key version value can be used by an application, for
example, to ensure that an old version of a key is not reentered into the
system.

This pointer must be non-NULL and point to application storage with at least
the size given by the byte count noted. The storage is updated with the noted
value on a successful return from this verb, and unchanged otherwise.

exportability

Direction: Output
Type: String

A pointer to a one-byte string variable containing the key exportability value
from the TR-31 header. This value indicates whether the key can be exported
from this system, and if so specifies conditions under which export is
permitted. The following three values are possible:
v If the value is X'4E' ("N"), then the key is not exportable.
v If the value is X'53' ("S"), then the key is exportable under any

key-encrypting key.
v If the value is X'45' ("E"), then the key is exportable only under a trusted

key-encrypting key. TR 31 defines such a trusted key as either one that is
encrypted under the HSM master key or one that is itself contained in a
TR-31 key block. CCA does not support KEKs that are wrapped in TR-31
key blocks.

This pointer must be non-NULL and point to application storage with at least
the size given by the byte count noted. The storage is updated with the noted
value on a successful return from this verb, and unchanged otherwise.

num_opt_block

Direction: Output
Type: Integer

A pointer to an integer value containing the number of optional blocks that are
part of the TR-31 key block. Information about each optional block can be
obtained using the TR31 Optional Data Read verb. In this verb, use the
number of optional blocks acquired with this verb to obtain a list of the IDs
and lengths for each optional block. Then, use those lists to read the data from
each desired block.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBT31PJ.

See “Building Java applications using the CCA JNI” on page 28.

TR31 Key Token Parse (CSNBT31P)

Chapter 16. TR-31 symmetric key verbs 807

Format
public native void CSNBT31PJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber tr31_key_length,
byte[] tr31_key,
byte[] key_block_version,
hikmNativeNumber key_block_length,
byte[] key_usage,
byte[] algorithm,
byte[] mode,
byte[] key_version_number,
byte[] exportability,
hikmNativeNumber num_opt_blocks);

TR31 Optional Data Build (CSNBT31O)
Use the TR31 Optional Data Build verb to build a properly formatted TR-31
optional block from the data provided.

The newly constructed optional block can optionally be appended to an existing
structure of optional blocks, or it can be returned as a new optional blocks
structure. After the last optional block has been constructed, the completed
structure containing the optional blocks can be included in a TR-31 key block
during an export operation by the Key Export to TR31 verb by using its opt_blocks
parameter. For information about TR-31, including the format of a TR-31 optional
block, see X9 TR-31 2010: Interoperable Secure Key Exchange Block Specification for
Symmetric Algorithms.

The TR-31 key block has an unencrypted header that can contain optional blocks.
The header is securely bound to the key block using the integrated MAC. An
optional block has a 2-byte ASCII block ID value that determines the use of the
block. The ID of each block in an optional blocks structure must be unique.

The verb builds a structure of optional blocks by adding one optional block with
each call. This process is repeated until the entire set of optional blocks has been
added. For each call, provide the components for a single optional block. This
includes the optional block ID, the optional block length in bytes, and the optional
block data. In addition, provide an optional blocks buffer large enough to add the
optional block being built.

There are two valid scenarios for the optional blocks buffer provided on input, as
determined by the value of the opt_blocks_length variable:
1. The optional blocks buffer is empty. In this case, the newly constructed optional

block is copied into the buffer.
2. The optional blocks buffer contains one or more existing optional blocks. In this

case, the newly constructed optional block is appended to the existing optional
blocks. No duplicate IDs are allowed.

Upon successful completion, the opt_blocks_length variable is updated to the length
of the returned optional blocks structure.

This verb does not perform cryptographic services on any key value. You cannot
use this verb to change a key or to change the control vector related to a key.

TR31 Key Token Parse (CSNBT31P)

808 Common Cryptographic Architecture Application Programmer's Guide

Format
The format of CSNBT31O.

CSNBT31O(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
opt_blocks_bfr_length,
opt_blocks_length,
opt_blocks,
num_opt_blocks,
opt_block_id,
opt_block_data_length,
opt_block_data)

Parameters
The parameters for CSNBT31O.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 0, because no keywords are currently
defined for this verb.

rule_array

Direction: Input
Type: String array

No rule array keywords are defined for this verb.

opt_blocks_bfr_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the buffer
allocated for the opt_blocks variable. Set this length to at least the size of any
optional blocks structure in the buffer plus the optional block being added.

opt_blocks_length

Direction: Input/Output
Type: Integer

A pointer to an integer variable containing the length in bytes of the data in
the opt_blocks variable. This length must be less than or equal to the value of
the opt_blocks_bfr_length variable. On input, set this variable to the length of the
optional blocks structure being updated. Set this value to zero if it is the first
optional block in the structure. On successful completion, this variable is
updated with the length of the updated variable.

opt_blocks

TR31 Optional Data Build (CSNBT31O)

Chapter 16. TR-31 symmetric key verbs 809

Direction: Input/Output
Type: String

A pointer to a string variable containing a buffer for the optional blocks
structure that the verb updates. In the first call to the verb, the buffer will
generally be empty. The verb appends one optional block to the buffer with
each call.

num_opt_blocks

Direction: Output
Type: Integer

The num_opt_blocks parameter is a pointer to an integer variable containing the
number of optional blocks contained in the opt_blocks variable that is returned
by the verb.

opt_block_id

Direction: Input
Type: String

A pointer to a string variable containing a 2-byte value that identifies the use
of the optional block. Each ID must be unique, that is, no duplicates are
allowed.

Note that a value of "PB" is not allowed. The Key Export to TR31 verb adds a
padding block of the appropriate size as needed. Unlike the padding in the
encryption key portion of the TR-31 key block, the padding block for optional
blocks serves no security purpose.

opt_block_data_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the length in bytes of the data
passed in the opt_block_data variable. Note that it is valid for this length to be
zero, since an optional block can have an ID and a length, but no data.

opt_block_data

Direction: Input
Type: String

A pointer to a string variable containing the data for the optional block that is
to be constructed.

Restrictions
The restrictions for CSNBT31O.

An optional block with an ID of "PB" (padding block) cannot be added by the user.
The Key Export to TR31 verb adds a padding block of the appropriate size as
needed when building the TR-31 key block. Unlike the padding within the
encrypted key portion of the key block, the padding block for optional blocks
serves no security purpose.

TR31 Optional Data Build (CSNBT31O)

810 Common Cryptographic Architecture Application Programmer's Guide

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBT31OJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBT31OJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,
hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber opt_blocks_bfr_length,
hikmNativeNumber opt_blocks_length,
byte[] opt_blocks,
hikmNativeNumber num_opt_blocks,
byte[] opt_block_id,
hikmNativeNumber opt_block_data_length,
byte[] opt_block_data);

TR31 Optional Data Read (CSNBT31R)
Use the TR31 Optional Data Read verb to either obtain information about all of the
optional blocks in the header of an external TR-31 key block, or obtain the length
and data of the specified optional block.

To disassemble the part of the header that is not optional, use the TR31 Key Token
Parse verb. Neither verb performs any cryptographic services, and both
disassemble a key block in application storage. The validity of the key block is
verified as much as can be done without performing any cryptographic services.

A TR-31 key block contains an unencrypted header that can include one or more
optional blocks. All parts of the header are securely bound to the key block using
the integrated MAC.

Optional blocks in a key block must each be identified by a unique 2-byte ID. The
value of an ID must either be defined by TR-31 or be a numeric value, otherwise
the key block is invalid. Numeric IDs are reserved for proprietary use. For more
information, see X9 TR-31 2010: Interoperable Secure Key Exchange Block Specification
for Symmetric Algorithms.

In order to obtain the data of a particular optional block from the header of an
external TR-31 key block, perform the following steps:
1. Use the tr31_key parameter to identify the TR-31 key block that this verb is to

process.
2. Call the TR31 Key Token Parse verb to parse the TR-31 key block. See “TR31

Key Token Parse (CSNBT31P)” on page 804. Upon successful completion:
v Set the value of the tr31_key_length variable to the value returned in the

tr31_key_length variable.
v Set the value of the num_opt_blocks variable to the value returned in the

num_opt_blocks variable.
v Allocate a string buffer in bytes for the opt_blocks_id and an integer buffer in

bytes for the opt_blocks_length variables. These buffers must be at least two
times the value of the num_opt_blocks variable.

TR31 Optional Data Build (CSNBT31O)

Chapter 16. TR-31 symmetric key verbs 811

3. Specify a rule-array keyword of INFO to obtain information about the optional
blocks in the key block. The opt_block_id, opt_block_data_length, and
opt_block_data parameters are ignored.

4. Call the TR31 Optional Data Read verb to read data from the TR-31 key block.
Upon successful completion, the verb returns an array of optional block IDs in
the opt_blocks_id variable, and an array of lengths for the optional block IDs in
the opt_blocks_length variable. The IDs and lengths are returned in same order
as the optional blocks appear in the header of the TR-31 key block.

5. Determine which ID of the unique IDs contained in the opt_blocks_id variable is
to be obtained from the TR-31 key block. Set the opt_block_id variable to this
2-byte value. Set the value of the opt_block_data_length variable to the
corresponding length from the opt_blocks_length variable.

Note: The offset used to locate the ID in the opt_blocks_id variable has the same
value as the offset for the corresponding length in the opt_blocks_length variable.

6. Allocate a buffer in bytes for the opt_block_data variable that is at least the value
of the opt_block_data_length variable.

7. Specify a rule-array keyword of DATA to obtain the length and data of the
specified optional block. The num_opt_blocks and the opt_blocks_id parameters
are ignored.

8. Call the TR31 Optional Data Read verb. Upon successful completion, the verb
returns the data of the specified optional block in the opt_block_data variable.
The verb updates the opt_block_data_length variable to the number of bytes
returned in the opt_block_data variable.

This verb does not perform cryptographic services on any key value. You cannot
use this verb to change a key or to change the control vector related to a key.

Format
The format of CSNBT31R.

CSNBT31R(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
tr31_key_length,
tr31_key,
opt_block_id,
num_opt_blocks,
opt_block_ids,
opt_block_lengths,
opt_block_data_length,
opt_block_data)

Parameters
The parameters for CSNBT31R.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input

TR31 Optional Data Read (CSNBT31R)

812 Common Cryptographic Architecture Application Programmer's Guide

Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. The value must be 1.

rule_array

Direction: Input
Type: String array

A pointer to a string variable containing an array of keywords. The keywords
are 8 bytes in length and must be left-aligned and padded on the right with
space characters. The following rule_array keywords are defined for this verb:

Keyword Meaning

Operation (one required)

INFO Return information about the optional blocks in the TR-31 key block.

DATA Return the data contained in a specified optional block in the TR-31 key
block.

tr31_key_length

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of bytes of data in the
tr31_key variable. Specify a length that is greater than or equal to the size of
the key block. The verb determines the actual length of the key by parsing its
contents.

tr31_key

Direction: Input
Type: String

A pointer to a string variable containing the TR-31 key block to be
disassembled.

opt_block_id

Direction: Input
Type: String

This parameter is used when operation keyword DATA is specified, otherwise
it is ignored. For keyword DATA, this parameter is a pointer to a string
variable that identifies the 2-byte ID of the optional block to obtain from the
TR-31 key block.

num_opt_blocks

Direction: Input
Type: Integer

This parameter is used when operation keyword INFO is specified, otherwise
it is ignored. For keyword INFO, this parameter is a pointer to an integer
variable that specifies the number of 2-byte optional block IDs that are
allocated for (1) the opt_block_ids variable and (2) the number of 2-byte integers
that are allocated for the opt_block_lengths variable. This the value must specify
the exact number of optional blocks that are in the header of the TR-31 key
block. Use the TR31 Key Token Parse verb to determine the number of optional
blocks IDs in a TR-31 key block before calling this verb.

TR31 Optional Data Read (CSNBT31R)

Chapter 16. TR-31 symmetric key verbs 813

opt_block_ids

Direction: Output
Type: String array

This parameter is used when operation keyword INFO is specified, otherwise
it is ignored. For keyword INFO, this parameter is a pointer to a string array
of 2-byte values that lists the identifiers of each optional block contained in the
header of the TR-31 key block. Each ID must be unique, that is, no duplicates
are allowed. The IDs, along with the associated lengths listed in the
opt_block_lengths variable, are returned in the order that the optional blocks
appear in the header of the TR-31 key block. The size of the variable must be
at least two times the value of the num_opts_blocks variable.

opt_block_lengths

Direction: Output
Type: String array

This parameter is used when operation keyword INFO is specified, otherwise
it is ignored. For keyword INFO, this parameter is a pointer to an integer
array of 2-byte values that are 16-bit unsigned integers corresponding to the
associated length of the optional block identified in the opt_block_ids variable.
The lengths, along with the associated IDs listed in the opt_block_ids variable,
are returned in the order that the optional blocks appear in the header of the
TR-31 key block. The size of the variable must be at least two times the value
of the num_opts_blocks variable.

opt_block_data_length

Direction: Input/Output
Type: Integer

This parameter is used when operation keyword DATA is specified, otherwise
it is ignored. For keyword DATA, this parameter is a pointer to an integer
variable containing the length of the opt_block_data parameter. On input, this
variable specifies the maximum permissible length of the result. On output, the
verb updates the value to length of the returned optional block data.

opt_block_data

Direction: Output
Type: String

This parameter is used when operation keyword DATA is specified, otherwise
it is ignored. For keyword DATA, this parameter is a pointer to a string
variable. If the TR-31 key block is found to be valid and the TR-31 key block
contains an optional block specified by the optional_block_ID variable, the
optional block is copied into this variable if it is large enough. The
opt_block_data_length variable is updated with the length of the data returned in
the variable.

JNI version
This verb has a Java Native Interface (JNI) version, which is named CSNBT31RJ.

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBT31RJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,

TR31 Optional Data Read (CSNBT31R)

814 Common Cryptographic Architecture Application Programmer's Guide

hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber tr31_key_length,
byte[] tr31_key,
byte[] opt_block_id,
hikmNativeNumber num_opt_blocks,
byte[] opt_block_ids,
byte[] opt_block_lengths,
hikmNativeNumber opt_block_data_length,
byte[] opt_block_data);

TR31 Optional Data Read (CSNBT31R)

Chapter 16. TR-31 symmetric key verbs 815

TR31 Optional Data Read (CSNBT31R)

816 Common Cryptographic Architecture Application Programmer's Guide

Chapter 17. Utility verbs

Use the described utility verb for code conversion.
v “Code Conversion (CSNBXEA)”

Code Conversion (CSNBXEA)
Use the Code Conversion utility to convert between ASCII data, EBCDIC data, or a
custom 8-bit based conversion table.

Format
The format of CSNBXEA.

CSNBXEA(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
source_text,
target_text,
code_table_length,
code_table)

Parameters
The parameters for CSNBXEA.

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters common to all verbs” on page 22.

rule_array_count

Direction: Input
Type: Integer

A pointer to an integer variable containing the number of elements in the
rule_array variable. This value must be 1.

rule_array

Direction: Input
Type: String array

An array of 8-byte keywords providing the processing control information. The
keywords must be left-aligned and padded on the right with space characters.
The rule_array keywords are described in Table 222.

Table 222. Keywords for the CSNBXEA utility

Keyword Description

Service requested (One, required)

© Copyright IBM Corp. 2007, 2018 817

Table 222. Keywords for the CSNBXEA utility (continued)

Keyword Description

TOASCII Converts the contents of source_text from EBCDIC character set to ASCII character set using the
appropriate code table that is displayed in “Usage notes” on page 819. The result is placed in
parameter target_text.

The parameters code_table and code_table_length are ignored for this keyword.

TOEBCDIC Converts the contents of source_text from ASCII character set to EBCDIC character set by using
the code table that is displayed in “Usage notes” on page 819. The result is placed in parameter
target_text.

The parameters code_table and code_table_length are ignored for this keyword.

USETABLE Converts the contents of source_text from the original character set to a custom character set by
using the appropriate code table that is passed by the application in the code_table parameter.
The result is placed in parameter target_text.

Each byte of the source_text is used to index the code_table to discover the resulting byte for
the target_text. This keyword assumes that the conversion data is single-byte aligned. One byte
of source_text is used to look up 1 byte of conversion value in the code table. Therefore the
code_table_length must be at least 256 bytes. If the code_table_length is larger than 256 bytes,
the extra is ignored.

text_length

Direction: Input
Type: Integer

A pointer to an integer variable that contains the length of the source_text
parameter. The length must be a positive nonzero value.

source_text

Direction: Input
Type: String

This parameter contains the string to be converted.

target_text

Direction: Output
Type: String

This parameter contains the converted text that is returned by this verb. The
size of this buffer must be at least as long as indicated by text_length.

code_table_length

Direction: Input
Type: Integer

The size in bytes of the buffer that is passed as the code_table parameter.

code_table

Direction: Input
Type: String

A data conversion table that is specified by the user for converting the contents
of source_text to target_text.

Code Conversion (CSNBXEA)

818 Common Cryptographic Architecture Application Programmer's Guide

Restrictions
The restrictions for CSNBXEA.

None.

Required commands
The required commands for CSNBXEA.

None.

Usage notes
The usage notes for CSNBXEA. Also the conversion tables for EBCDIC to ASCII
and for ASCII to EBCDIC are listed.

This service is built to provide exact correspondence to the functions provided by
the ICSF verbs CSNBXEA and CSNBXAE. The default conversion tables for
EBCDIC-to-ASCII and ASCII-to-EBCDIC (see Table 223 on page 820 and Table 224
on page 821) match those used for the ICSF verbs. The origin of these conversion
tables was a comparison of the EBCDIC 1047 code page to a widely used mapping
for Extended ASCII. Round-trip conversions (achievable with two calls to this
service for ASCII-to-EBCDIC-to-ASCII or EBCDIC-to-ASCII-to-EBCDIC) provide
the original data as output.

This service is structured differently than the other services. It runs in the caller's
address space in the caller's key and mode. The adapter need not be active for you
to run this service.

Code Conversion (CSNBXEA)

Chapter 17. Utility verbs 819

Table 223. EBCDIC to ASCII conversion table

EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC

00 00 20 81 40 20 60 2D 80 F8 A0 C8 C0 7B E0 5C

01 01 21 82 41 A6 61 2F 81 61 A1 7E C1 41 E1 E7

02 02 22 1C 42 E1 62 DF 82 62 A2 73 C2 42 E2 53

03 03 23 84 43 80 63 DC 83 63 A3 74 C3 43 E3 54

04 CF 24 86 44 EB 64 9A 84 64 A4 75 C4 44 E4 55

05 09 25 0A 45 90 65 DD 85 65 A5 76 C5 45 E5 56

06 D3 26 17 46 9F 66 DE 86 66 A6 77 C6 46 E6 57

07 7F 27 1B 47 E2 67 98 87 67 A7 78 C7 47 E7 58

08 D4 28 89 48 AB 68 9D 88 68 A8 79 C8 48 E8 59

09 D5 29 91 49 8B 69 AC 89 69 A9 7A C9 49 E9 5A

0A C3 2A 92 4A 9B 6A BA 8A 96 AA EF CA CB EA A0

0B 0B 2B 95 4B 2E 6B 2C 8B A4 AB C0 CB CA EB 85

0C 0C 2C A2 4C 3C 6C 25 8C F3 AC DA CC BE EC 8E

0D 0D 2D 05 4D 28 6D 5F 8D AF AD 5B CD E8 ED E9

0E 0E 2E 06 4E 2B 6E 3E 8E AE AE F2 CE EC EE E4

0F 0F 2F 07 4F 7C 6F 3F 8F C5 AF F9 CF ED EF D1

10 10 30 E0 50 26 70 D7 90 8C B0 B5 D0 7D F0 30

11 11 31 EE 51 A9 71 88 91 6A B1 B6 D1 4A F1 31

12 12 32 16 52 AA 72 94 92 6B B2 FD D2 4B F2 32

13 13 33 E5 53 9C 73 B0 93 6C B3 B7 D3 4C F3 33

14 C7 34 D0 54 DB 74 B1 94 6D B4 B8 D4 4D F4 34

15 B4 35 1E 55 A5 75 B2 95 6E B5 B9 D5 4E F5 35

16 08 36 EA 56 99 76 FC 96 6F B6 E6 D6 4F F6 36

17 C9 37 04 57 E3 77 D6 97 70 B7 BB D7 50 F7 37

18 18 38 8A 58 A8 78 FB 98 71 B8 BC D8 51 F8 38

19 19 39 F6 59 9E 79 60 99 72 B9 BD D9 52 F9 39

1A CC 3A C6 5A 21 7A 3A 9A 97 BA 8D DA A1 FA B3

1B CD 3B C2 5B 24 7B 23 9B 87 BB D9 DB AD FB F7

1C 83 3C 14 5C 2A 7C 40 9C CE BC BF DC F5 FC F0

1D 1D 3D 15 5D 29 7D 27 9D 93 BD 5D DD F4 FD FA

1E D2 3E C1 5E 3B 7E 3D 9E F1 BE D8 DE A3 FE A7

1F 1F 3F 1A 5F 5E 7F 22 9F FE BF C4 DF 8F FF FF

Code Conversion (CSNBXEA)

820 Common Cryptographic Architecture Application Programmer's Guide

Table 224. ASCII to EBCDIC conversion table

ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC

00 00 20 40 40 7C 60 79 80 43 A0 EA C0 AB E0 30

01 01 21 5A 41 C1 61 81 81 20 A1 DA C1 3E E1 42

02 02 22 7F 42 C2 62 82 82 21 A2 2C C2 3B E2 47

03 03 23 7B 43 C3 63 83 83 1C A3 DE C3 0A E3 57

04 37 24 5B 44 C4 64 84 84 23 A4 8B C4 BF E4 EE

05 2D 25 6C 45 C5 65 85 85 EB A5 55 C5 8F E5 33

06 2E 26 50 46 C6 66 86 86 24 A6 41 C6 3A E6 B6

07 2F 27 7D 47 C7 67 87 87 9B A7 FE C7 14 E7 E1

08 16 28 4D 48 C8 68 88 88 71 A8 58 C8 A0 E8 CD

09 05 29 5D 49 C9 69 89 89 28 A9 51 C9 17 E9 ED

0A 25 2A 5C 4A D1 6A 91 8A 38 AA 52 CA CB EA 36

0B 0B 2B 4E 4B D2 6B 92 8B 49 AB 48 CB CA EB 44

0C 0C 2C 6B 4C D3 6C 93 8C 90 AC 69 CC 1A EC CE

0D 0D 2D 60 4D D4 6D 94 8D BA AD DB CD 1B ED CF

0E 0E 2E 4B 4E D5 6E 95 8E EC AE 8E CE 9C EE 31

0F 0F 2F 61 4F D6 6F 96 8F DF AF 8D CF 04 EF AA

10 10 30 F0 50 D7 70 97 90 45 B0 73 D0 34 F0 FC

11 11 31 F1 51 D8 71 98 91 29 B1 74 D1 EF F1 9E

12 12 32 F2 52 D9 72 99 92 2A B2 75 D2 1E F2 AE

13 13 33 F3 53 E2 73 A2 93 9D B3 FA D3 06 F3 8C

14 3C 34 F4 54 E3 74 A3 94 72 B4 15 D4 08 F4 DD

15 3D 35 F5 55 E4 75 A4 95 2B B5 B0 D5 09 F5 DC

16 32 36 F6 56 E5 76 A5 96 8A B6 B1 D6 77 F6 39

17 26 37 F7 57 E6 77 A6 97 9A B7 B3 D7 70 F7 FB

18 18 38 F8 58 E7 78 A7 98 67 B8 B4 D8 BE F8 80

19 19 39 F9 59 E8 79 A8 99 56 B9 B5 D9 BB F9 AF

1A 3F 3A 7A 5A E9 7A A9 9A 64 BA 6A DA AC FA FD

1B 27 3B 5E 5B AD 7B C0 9B 4A BB B7 DB 54 FB 78

1C 22 3C 4C 5C E0 7C 4F 9C 53 BC B8 DC 63 FC 76

1D 1D 3D 7E 5D BD 7D D0 9D 68 BD B9 DD 65 FD B2

1E 35 3E 6E 5E 5F 7E A1 9E 59 BE CC DE 66 FE 9F

1F 1F 3F 6F 5F 6D 7F 07 9F 46 BF BC DF 62 FF FF

JNI version
This verb has a Java Native Interface (JNI) version, which is namedCSNBXEAJ .

See “Building Java applications using the CCA JNI” on page 28.

Format
public native void CSNBXEAJ(

hikmNativeNumber return_code,
hikmNativeNumber reason_code,

Code Conversion (CSNBXEA)

Chapter 17. Utility verbs 821

hikmNativeNumber exit_data_length,
byte[] exit_data,
hikmNativeNumber rule_array_count,
byte[] rule_array,
hikmNativeNumber text_length,
byte[] source_text,
byte[] target_text,
hikmNativeNumber code_table_length,
byte[] code_table);

Code Conversion (CSNBXEA)

822 Common Cryptographic Architecture Application Programmer's Guide

Part 3. Reference information

The provided reference information informs about key formats, cryptographic
algorithms, as well as return and reason codes when you program with CCA.

You can find the following reference information:
v Chapter 18, “Return codes and reason codes,” on page 825
v Chapter 19, “Key token formats,” on page 847
v Chapter 20, “Key forms and types used in the Key Generate verb,” on page 985
v Chapter 21, “Control vectors and changing control vectors with the Control

Vector Translate verb,” on page 989
v Chapter 22, “PIN formats and algorithms,” on page 1005
v Chapter 23, “Cryptographic algorithms and processes,” on page 1021
v Chapter 24, “Access control points and verbs,” on page 1047
v Chapter 25, “Access control data structures,” on page 1073
v Chapter 26, “Using verbs and applications in PCI-HSM 2016 compliance mode,”

on page 1081
v Chapter 27, “Sample verb call routines,” on page 1093
v Chapter 28, “Initial system set-up tips,” on page 1103
v Chapter 29, “CCA installation instructions,” on page 1107
v Chapter 30, “Coexistence of CEX6C and previous CEX*C features,” on page 1117
v Chapter 31, “Utilities,” on page 1119
v Chapter 32, “Security API command and sub-command codes,” on page 1135
v Chapter 33, “openCryptoki support,” on page 1139
v Chapter 34, “List of abbreviations,” on page 1151

© Copyright IBM Corp. 2007, 2018 823

|
|

|

|

824 Common Cryptographic Architecture Application Programmer's Guide

Chapter 18. Return codes and reason codes

Read the contained reference information that describes the return codes and
reason codes reported at the conclusion of verb processing.

Reason code numbers narrow down the meaning of a return code. All reason code
numbers are unique and associated with a single return code. Generally, you can
base your application program design on the return codes.

Each verb supplies a return code and a reason code in the variables identified by
the return_code and reason_code parameters. See “Parameters common to all verbs”
on page 22.

Return codes
A return code provides a general indication of the results of verb processing.

A return code can have the values shown in Table 225.

Table 225. Return code values

Hex
value

Decimal
value Description

00 00 This return code indicates a normal completion of verb processing. To
provide additional information, there are also nonzero reason codes
associated with this return code.

04 04 This return code is a warning indicating the verb completed
processing; however, an unusual event occurred. The event is most
likely related to a problem created by the user or is a normal
occurrence based on the data supplied to the verb.

08 08 This return code indicates the verb prematurely stopped processing.
Generally, the application programmer needs to investigate the
significance of the associated reason code to determine the origin of the
problem. In some cases, due to transient conditions, retrying the verb
might produce different results.

0C 12 This return code indicates the verb prematurely stopped processing.
Either a coprocessor is not available or a processing error occurred. The
reason is most likely related to a problem in the set up of the hardware
or in the configuration of the software.

10 16 This return code indicates the verb prematurely stopped processing. A
processing error occurred. If these errors persist, a repair of the
coprocessor hardware or a correction to the coprocessor software might
be required.

Note: If an application receives a return code greater than 4, an error occurred. In
the case of an error, assume any output variables other than the return code and
reason code are not valid, unless otherwise indicated in the description of verb
processing.

Reason codes
A reason code details the results of verb processing.

© Copyright IBM Corp. 2007, 2018 825

Every reason code is associated with a single return code. A nonzero reason code
can be associated with a zero return code.

User Defined Extensions (UDX) return reason codes in the range of 20480 (X'5000')
- 24575 (X'5FFF').

The remainder of this topic lists the reason codes that accompany each of the
return codes. The return codes are shown in decimal form and the reason codes
are shown in decimal and in hexadecimal (hex) form.

Reason codes that accompany return code 0
Reason codes that accompany return code 0.

These codes are listed in Table 226.

Table 226. Reason codes for return code 0

Return
code,
decimal

Reason code,
decimal (hex) Description

0 000 (000) The verb completed processing successfully.

0 002 (002) One or more bytes of a key do not have odd parity.

0 008 (008) No value is present to be processed.

0 151 (097) The key token supplies the MAC length or MACLEN4 is the default for key tokens
that contain MAC or MACVER keys.

0 701 (2BD) A new master-key value has duplicate thirds.

0 702 (2BE) A provided master-key part does not have odd parity. See “Master Key Process
(CSNBMKP)” on page 157 about parity requirements for master key parts.

0 2013 (7DD) The Pending Change Buffer (PCB) is empty. This return code and reason code pair
applies only to IBM Z.

0 2146 (862) A weaker key was used to wrap a stronger key and the Warn when weak wrap -
Transport keys command (offset X'032C') was enabled in the active role.

0 2173 (87D) The specified payload format version for the output key token matches the payload
format version of the input key token.

0 3010 (BC2) This card is currently disabled. A card is placed in this state so that it can be moved
from one piece of hardware to another, while keeping its secret keys and master keys
intact. Normally, when a card has been moved a 'tamper' event is recorded and all
secrets are erased. A TKE workstation is typically required to put a card in this state
and to remove it from this state after the card is installed on the new hardware. This
return code and reason code pair applies only to IBM Z.

0 10001 (2711) A key encrypted under the old master key was used.

0 10002 (2712) A fully qualified dataset name is longer than 64 bytes and the environment variable
CSUxxxLD is not defined (where xxx is either AES, DES, or PKA). The current
directory has been abbreviated as a single dot (period).

0 10003 (2713) A fully qualified dataset name is longer than 64 bytes and the environment variable
CSUxxxLD is defined (where xxx is either AES, DES, or PKA). Only the dataset name
is returned. Use the CSUxxxLD environment variable to determine the fully qualified
dataset name.

826 Common Cryptographic Architecture Application Programmer's Guide

Reason codes that accompany return code 4
Reason codes that accompany return code 4

These codes are listed in Table 227.

Table 227. Reason codes for return code 4

Return
code,
decimal

Reason code,
decimal (hex) Description

4 001 (001) The verification test failed.

4 013 (00D) The key token has an initialization vector and the initialization_vector parameter value
is nonzero. The verb uses the value in the key token.

4 016 (010) The rule_array and the rule_array_count are too small to contain the complete result.

4 017 (011) The requested ID is not present in any profile in the specified cryptographic hardware
component.

4 019 (013) The financial PIN in a PIN block is not verified.

4 158 (09E) The verb did not process any key records.

4 166 (0A6) The control-vector is not valid because of parity bits, anti-variant bits, inconsistent
KEK bits or because bits 59 - 62 are not zero.

4 179 (0B3) The control-vector keywords in the rule_array are ignored.

4 195 (C3) The key or key-part rule keyword provided does not match the length of the key in
the enciphered key token. The output is based on the length specified, and not on the
actual key length.

4 283 (11B) The coprocessor battery is low.

4 287 (11F) The PIN-block format is not consistent.

4 429 (1AD) The digital signature is not verified. The verb completed its processing normally.

4 877 (36D) The sub-CA certificate loaded has a later expiration (validity:NotAfter field) than its
issuer certificate.

4 937 (3A9) The UTF8 name compare was done via memcmp.

4 945 (3B1) The requested hash method differs from the hash method used when the certificate
was loaded and activated.

4 963 (3C3) The OA request requires currently unavailable resources. This is a transient condition.
Please retry.

4 1024 (400) Sufficient shares have been processed to create a new master key.

4 2039 (7F7) At least one control vector bit cannot be parsed.

4 2042 (7FA) The supplied passphrase is not valid.

4 2133 (855) The verb_data value identifies one or more PIN decimalization tables to be deleted that
are not stored on the coprocessor. All PIN tables that were requested to be deleted are
removed.

4 2162 (872) At least two of the key parts of a new operational or master key have identical parts
and a warning has been requested by the setting of an appropriate access control
point.

Reason codes that accompany return code 8
Reason codes that accompany return code 8.

The codes are listed in Table 228 on page 828.

Chapter 18. Return and reason codes 827

|||
|

|||

|||
|

|||
|

Table 228. Reason codes for return code 8

Return
code,
decimal

Reason code,
decimal (hex) Description

8 012 (00C) The token-validation value in an external key token is not valid.

8 022 (016) The ID number in the request field is not valid.

8 023 (017) An access to the data area is outside the data-area boundary.

8 024 (018) The master key verification pattern is not valid.

8 025 (019) The value that the text_length parameter specifies is not valid.

8 026 (01A) The value of the PIN is not valid.

8 029 (01D) The token-validation value in an internal key token is not valid.

8 030 (01E) No record with a matching key label is in key storage.

8 031 (01F) The control vector does not specify a DATA key.

8 032 (020) A key label format is not valid.

8 033 (021) A rule_array or other parameter specifies a keyword that is not valid.

8 034 (022) A rule_array keyword combination is not valid.

8 035 (023) A rule_array_count is not valid.

8 036 (024) The action command must be specified in the rule_array.

8 037 (025) The object type must be specified in the rule_array.

8 039 (027) A control vector violation occurred. Check all control vectors employed with the verb.
For security reasons, no detail is provided.

8 040 (028) The service code does not contain numerical character data.

8 041 (029) The keyword supplied with the key_form parameter is not valid.

8 042 (02A) The expiration date is not valid.

8 043 (02B) The keyword supplied with the key_length or the key_token_length parameter is not
valid.

8 044 (02C) A record with a matching key label already exists in key storage.

8 045 (02D) The input character string cannot be found in the code table.

8 046 (02E) The card-validation value (CVV) is not valid.

8 047 (02F) A source key token is unusable because it contains data that is not valid or is
undefined.

8 048 (030) One or more keys has a master key verification pattern that is not valid.

8 049 (031) A key-token-version-number found in a key token is not supported.

8 050 (032) The key-serial-number specified in the rule_array is not valid.

8 051 (033) The value that the text_length parameter specifies is not a multiple of eight bytes.

8 054 (036) The value that the pad_character parameter specifies is not valid.

8 055 (037) The initialization vector in the key token is enciphered.

8 056 (038) The master key verification pattern in the OCV is not valid.

8 058 (03A) The parity of the operating key is not valid.

8 059 (03B) Control information (for example, the processing method or the pad character) in the
key token conflicts with that in the rule_array.

8 060 (03C) A cryptographic request with the FIRST or MIDDLE keywords and a text length less
than eight bytes is not valid.

8 061 (03D) The keyword supplied with the key_type parameter is not valid.

828 Common Cryptographic Architecture Application Programmer's Guide

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 062 (03E) The source key is not present.

8 063 (03F) A key token has an invalid token header (for example, not an internal token).

8 064 (040) The RSA key is not permitted to perform the requested operation. Likely cause is key
distribution usage is not enabled for the key.

8 065 (041) The key token failed consistency checking.

8 066 (042) The recovered encryption block failed validation checking.

8 067 (043) RSA encryption failed.

8 068 (044) RSA decryption failed.

8 070 (046) An invalid block identifier (identifier tag) was found. Either a block ID (identifier tag)
that was proprietary was found, a reserved block ID was used, a duplicate block ID
was found, or the specified optional block in the TR-31 key block could not be found.

8 072 (048) The value that the size parameter specifies is not valid (too small, too large, negative,
or zero).

8 085 (055) The date or the time value is not valid.

8 090 (05A) Access control checking failed. See the Required Commands descriptions for the failing
verb.

8 091 (05B) The time that was sent in your logon request was more than five minutes different
from the clock in the secure module.

8 092 (05C) The user profile is expired.

8 093 (05D) The user profile has not yet reached its activation date.

8 094 (05E) The authentication data (for example, passphrase) is expired.

8 095 (05F) Access to the data is not authorized.

8 096 (060) An error occurred reading or writing the secure clock.

8 100 (064) The PIN length is not valid.

8 101 (065) The PIN check length is not valid. It must be in the range from 4 to the PIN length
inclusive.

8 102 (066) The value of the decimalization table is not valid.

8 103 (067) The value of the validation data is not valid.

8 104 (068) The value of the customer-selected PIN is not valid or the PIN length does not match
the value supplied with the PIN_length parameter or defined by the PIN-block format
specified in the PIN profile.

8 105 (069) The value of the transaction_security parameter is not valid.

8 106 (06A) The PIN-block format keyword is not valid.

8 107 (06B) The format control keyword is not valid.

8 108 (06C) The value or the placement of the padding data is not valid.

8 109 (06D) The extraction method keyword is not valid.

8 110 (06E) The value of the PAN data is not numeric character data.

8 111 (06F) The sequence number is not valid.

8 112 (070) The PIN offset is not valid.

8 114 (072) The PVV value is not valid.

8 116 (074) The clear PIN value is not valid. For example, digits other than 0 - 9 were found.

Chapter 18. Return and reason codes 829

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 118 (76) The issuer domestic code is invalid. This value must be five alphanumeric characters.

8 120 (078) An origin or destination identifier is not valid.

8 121 (079) The value of the inbound_key or source_key parameter is not valid.

8 122 (07A) The value of the inbound_KEK_count or outbound_count parameter is not valid.

8 125 (07D) A PKA92-encrypted key having the same Environment Identifier (EID) as the local
node cannot be imported.

8 129 (081) Required rule-array keyword not found.

8 153 (099) The text length exceeds the system limits.

8 154 (09A) The key token the key_identifier parameter specifies is not an internal key-token or a
key label.

8 155 (09B) The value that the generated_key_identifier parameter specifies is not valid or it is not
consistent with the value that the key_form parameter specifies.

8 156 (09C) A keyword is not valid with the specified parameters.

8 157 (09D) The key-token type is not specified in the rule_array.

8 159 (09F) The keyword supplied with the option parameter is not valid.

8 160 (0A0) The key type and the key length are not consistent.

8 161 (0A1) The value that the dataset_name_length parameter specifies is not valid.

8 162 (0A2) The offset value is not valid.

8 163 (0A3) The value that the dataset_name parameter specifies is not valid.

8 164 (0A4) The starting address of the output area falls inside the input area.

8 165 (0A5) The carry_over_character_count specified in the chaining vector is not valid.

8 168 (0A8) A hexadecimal MAC value contains characters that are not valid or the MAC, on a
request or reply failed, because the user session key in the host and the adapter card
do not match.

8 169 (0A9) Specific to MDC Generate, indicates that the length of the text supplied is not correct,
either not long enough for the algorithm parameters used or not the correct multiple
(must be multiple of eight bytes).

8 170 (0AA) Special authorization through the operating system is required to use this verb.

8 171 (0AB) The control_array_count value is not valid.

8 175 (0AF) The key token cannot be parsed because no control vector is present.

8 180 (0B4) A key token presented for parsing is null.

8 181 (0B5) The key token is not valid. The first byte is not valid or an incorrect token type was
presented.

8 183 (0B7) The key type is not consistent with the key type of the control vector.

8 184 (0B8) An input pointer is null.

8 185 (0B9) A disk I/O error occurred: perhaps the file is in-use, does not exist, and so forth.

8 186 (0BA) The key-type field in the control vector is not valid.

8 187 (0BB) The requested MAC length (MACLEN4, MACLEN6, MACLEN8) is not consistent with
the control vector (key-A, key-B).

8 191 (0BF) The requested MAC length (MACLEN6, MACLEN8) is not consistent with the control
vector (MAC-LN-4).

830 Common Cryptographic Architecture Application Programmer's Guide

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 192 (0C0) A key-storage record contains a record validation value that is not valid.

8 194 (0C2) A private-key section length is invalid.

8 199 (0C7) A public exponent is invalid.

8 204 (0CC) A memory allocation failed. This can occur in the host and in the coprocessor. Try
closing other host tasks. If the problem persists, contact the IBM support center.

8 205 (0CD) The X9.23 ciphering method is not consistent with the use of the CONTINUE
keyword.

8 323 (143) The ciphering method the Decipher verb used does not match the ciphering method
the Encipher verb used.

8 335 (14F) Either the specified cryptographic hardware component or the environment cannot
implement this function.

8 340 (154) One of the input control vectors has odd parity.

8 343 (157) Either the data block or the buffer for the block is too small or a variable has caused
an attempt to create an internal data structure that is too large.

8 345 (159) Insufficient storage space exists for the data in the data block buffer.

8 374 (176) Less data was supplied than expected or less data exists than was requested.

8 377 (179) A key-storage error occurred.

8 382 (17E) A time-limit violation occurred.

8 385 (181) The cryptographic hardware component reported that the data passed as part of a
command is not valid for that command.

8 387 (183) The cryptographic hardware component reported that the user ID or role ID is not
valid.

8 393 (189) The command was not processed because the profile cannot be used.

8 394 (18A) The command was not processed because the expiration date was exceeded.

8 397 (18D) The command was not processed because the active profile requires the user to be
verified first.

8 398 (18E) The command was not processed because the maximum PIN or password failure limit
is exceeded.

8 407 (197) There is a PIN-block consistency-check-error.

8 439 (1B7) Key cannot be completed because all required key parts have not yet been
accumulated, or key is already complete.

8 441 (1B9) Key part cannot be added because key is complete. The key to be processed should be
partial, but the key is not partial according to the control vector or other control bits of
the key.

8 442 (1BA) DES keys with replicated halves are not allowed.

8 605 (25D) The number of output bytes is greater than the number that is permitted.

8 703 (2BF) A new master-key value is one of the weak DES keys.

8 704 (2C0) A new master key cannot have the same master key version number as the current
master-key.

8 705 (2C1) Both exporter keys specify the same key-encrypting key.

8 706 (2C2) Pad count in deciphered data is not valid.

8 707 (2C3) The master-key registers are not in the state required for the requested function.

Chapter 18. Return and reason codes 831

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 714 (2CA) A reserved parameter must be a null pointer or an expected value.

8 715 (2CB) A parameter that must have a value of zero is not valid.

8 718 (2CE) The hash value of the data block in the decrypted RSA-OAEP block does not match
the hash of the decrypted data block.

8 719 (2CF) The block format (BT) field in the decrypted RSA-OAEP block does not have the
correct value.

8 720 (2D0) The initial byte (I) in the decrypted RSA-OAEP block does not have a valid value.

8 721 (2D1) The V field in the decrypted RSA-OAEP does not have the correct value.

8 752 (2F0) The key-storage file path is not usable.

8 753 (2F1) Opening the key-storage file failed.

8 754 (2F2) An internal call to the key_test command failed.

8 756 (2F4) Creation of the key-storage file failed.

8 760 (2F8) An RSA-key modulus length in bits or in bytes is not valid.

8 761 (2F9) An RSA-key exponent length is not valid.

8 762 (2FA) A length in the key value structure is not valid.

8 763 (2FB) The section identification number within a key token is not valid.

8 770 (302) The PKA key token has a field that is not valid.

8 771 (303) The user is not logged on.

8 772 (304) The requested role does not exist.

8 773 (305) The requested profile does not exist.

8 774 (306) The profile already exists.

8 775 (307) The supplied data is not replaceable.

8 776 (308) The requested ID is already logged on.

8 777 (309) The authentication data is not valid.

8 778 (30A) The checksum for the role is in error.

8 779 (30B) The checksum for the profile is in error.

8 780 (30C) There is an error in the profile data.

8 781 (30D) There is an error in the role data.

8 782 (30E) The function-control-vector header is not valid.

8 783 (30F) The command is not permitted by the function-control-vector value.

8 784 (310) The operation you requested cannot be performed because the user profile is in use.

8 785 (311) The operation you requested cannot be performed because the role is in use.

8 786 (312) A profile load is being attempted for a profile that has the same authentication key as
another profile in the domain that already exists.

8 787 (313) A profile load is being attempted for a profile that has a key that is too weak for the
compliance level of the domain where the profile is being loaded.

8 816 (330) The public-key certificate length is invalid.

8 817 (331) The public key does not match.

8 818 (332) The signature of the input public-key certificate does not verify.

8 819 (333) The public-key certificate type is invalid or not allowed.

832 Common Cryptographic Architecture Application Programmer's Guide

|||
|

|||
|

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 821 (335) The subject name provided is either missing, malformed, or of invalid length.

8 822 (336) The issuer name provided is either missing, malformed, or of invalid length.

8 823 (337) The serial number provided is either unexpected, missing, malformed, or of invalid
length.

8 825 (339) The extension data provided is either unexpected, missing, malformed, or of invalid
length.

8 826 (33A) The expiration days value provided is either unexpected, missing, or out of range.

8 827 (33B) The pathLenConstraint provided is either unexpected, missing, or out of range.

8 829 (33D) Error in GSK/SSL/ASN.1 processing.

8 830 (33E) Error in ASN.1 processing. No more data.

8 831 (33F) Error in ASN.1 processing. Length value is not valid.

8 833 (341) Error in ASN.1 processing. Attribute value separator is missing.

8 834 (342) Error in ASN.1 processing. Unknown attribute identifier.

8 835 (343) Error in ASN.1 processing. Object identifier syntax error.

8 837 (345) Error in ASN.1 processing. Interval is not valid.

8 838 (346) Error in ASN.1 processing. X.500 name syntax error.

8 839 (347) Error in ASN.1 processing. Data type is not correct.

8 841 (349) Error in ASN.1 processing. Character string cannot be converted.

8 842 (34A) Error in ASN.1 processing. Indefinite-length encoding is not supported.

8 843 (34B) Error in ASN.1 processing. Data element must be constructed.

8 845 (34D) Error in ASN.1 processing. Data element must be an ASN.1 primitive.

8 846 (34E) Error in ASN.1 processing. Indefinite-length encoding is not allowed.

8 847 (34F) Error in ASN.1 processing. Data encoding is not valid.

8 849 (351) Error in ASN.1 processing. Data value overflow.

8 850 (352) Error in ASN.1 processing. Unused bit count is not valid.

8 851 (353) Error in ASN.1 processing. Unused bit count is not valid for a segmented bit string.

8 853 (355) Error in ASN.1 processing. Required data element is missing.

8 854 (356) Error in ASN.1 processing. Excess data found at end of data element.

8 855 (357) Error in ASN.1 processing. Parameter is not valid.

8 857 (359) Error in ASN.1 processing. Data value is not present.

8 858 (35A) Error in ASN.1 processing. Selection is not within the valid range.

8 859 (35B) Error in ASN.1 processing. No selection found.

8 861 (35D) Error in ASN.1 processing. Syntax already set.

8 862 (35E) Error in ASN.1 processing. Codeset is not allowed.

8 863 (35F) Error in ASN.1 processing. Attribute value is not valid.

8 865 (361) Error in ASN.1 processing. Attribute value is missing.

8 866 (362) Error in ASN.1 processing. Object identifier element count is not valid.

8 867 (363) Error in ASN.1 processing. Incorrect value for the first object identifier element.

8 869 (365) Error in ASN.1 processing. Incorrect value for the second object identifier element.

Chapter 18. Return and reason codes 833

|||

|||

|||
|

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 870 (366) Error in ASN.1 processing. Version is not supported.

8 871 (367) Error in Cert processing. Certificate contains a duplicate extension.

8 873 (369) The extension data provided conflicts with the rule array data provided.

8 874 (36A) Error in Cert processing. Elliptic Curve is not supported.

8 875 (36B) Error in Cert processing. Signature not supplied.

8 878 (36E) Error in Cert processing. Cryptographic algorithm is not supported.

8 879 (36F) Error in Cert processing. Incorrect Base64 encoding.

8 881 (371) Error in Cert processing. Unrecognized file or message encoding.

8 882 (372) The HSM internal clock has not been set.

8 883 (373) Error in Cert processing. Key not supported by encryption or signature algorithm.

8 885 (375) The X.509 certificate presented has an invalid, or missing KeyUsage extension.

8 886 (376) Error in Cert processing. Certificate extension is not supported.

8 887 (377) Error in Cert processing. Signature is not correct.

8 889 (379) Error in Cert processing. Input/Output request failed.

8 890 (37A) Error in Cert processing. Database is not valid.

8 891 (37B) Error in Cert processing. Handle is not valid.

8 893 (37D) Error in Cert processing. Certificate extension data has an incorrect critical indicator.

8 894 (37E) Error in Cert processing. Required certificate extension is missing.

8 895 (37F) Error in Cert processing. Certificate not valid for host.

8 897 (381) Error in Cert processing. Subject name is not valid.

8 898 (382) Error in Cert processing. Certificate extension data is incorrect.

8 899 (383) Error in Cert processing. Validation option is not valid.

8 901 (385) Error in Cert processing. Name constraints violated.

8 902 (386) Error in Cert processing. Record not found.

8 903 (387) Error in Cert processing. Certificate chain is not trusted.

8 905 (389) Error in Cert processing. Required basic constraints certificate extension is missing.

8 906 (38A) Error in Cert processing. An internal error has occurred.

8 907 (38B) Error in Cert processing. Issuer certificate not found.

8 909 (38D) Error in Cert processing. Name format is not supported.

8 910 (38E) Error in Cert processing. Self-signed certificate not in database.

8 911 (38F) Error in Cert processing. Certificate is expired.

8 913 (391) Error in Cert processing. Certificate is not yet valid.

8 914 (392) Error in Cert processing. Issuer name is not valid.

8 915 (393) Error in Cert processing. Certificate is revoked.

8 917 (395) Error in Cert processing. Numeric value is not valid.

8 918 (396) Error in Cert processing. Variable argument security level is not valid.

8 919 (397) Error in Cert processing. Variable argument validate root is not valid.

8 921 (399) Error in Cert processing. Variable argument count is not valid.

834 Common Cryptographic Architecture Application Programmer's Guide

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 922 (39A) Error in Cert processing. Extended key usage comparison failed.

8 923 (39B) Error in Cert processing. Certificate does not have an extended key usage extension.

8 925 (39D) Error in Cert processing. Extended key usage type is not supported for this operation.

8 926 (39E) Error in Cert processing. Extended key usage input is not supplied.

8 927 (39F) Error in Cert processing. Extended key usage input count is not valid.

8 929 (3A1) Error in Cert processing. Input certificate not supplied.

8 930 (3A2) Error in Cert processing. Incorrect key usage.

8 931 (3A3) Error in Cert processing. Cannot match CRL distribution points.

8 933 (3A5) Error in Cert processing. Acceptable policy intersection cannot be found.

8 934 (3A6) Error in Cert processing. Certification path is too long.

8 935 (3A7) Error in Cert processing. Issuer is not a certification authority.

8 939 (3AB) Certificate presented to load as a certification authority does not have a true value for
CA in basic constraints certificate extension.

8 941 (3AD) Certificate presented to use as an end entity has a true value for cA in basic constraints
certificate extension.

8 942 (3AE) Error in Cert processing. Label is not unique.

8 943 (3AF) Error in Cert processing. Certificate is not unique.

8 946 (3B2) The requested hash method differes from the hash method used when the certificate
was loaded.

8 947 (3B3) Error in Cert processing. Record label is not valid.

8 949 (3B5) Error in Cert processing. Multiple certificates exist for label.

8 950 (3B6) Error in Cert processing. Record deleted.

8 954 (3BA) Error in Cert processing. Subject name cannot be changed.

8 955 (3BB) Error in Cert processing. Public key cannot be changed.

8 957 (3BD) The Certificate presented is not in the proper state for the requested operation.

8 958 (3BE) The Certificate hash presented does not match the stored hash.

8 959 (3BF) Error in Cert processing. Database contains certificates signed by the certificate.

8 1025 (401) The registered public key or retained private key name already exists.

8 1026 (402) The key name (registered public key or retained private key) does not exist.

8 1027 (403) Environment identifier data is already set.

8 1028 (404) Master key share data is already set.

8 1029 (405) There is an error in the Environment Identifier (EID) data.

8 1030 (406) There is an error in using the master key share data.

8 1031 (407) There is an error in using registered public key or retained private key data.

8 1032 (408) There is an error in using registered public key hash data.

8 1033 (409) The public key hash was not registered.

8 1034 (40A) The public key was not registered.

8 1035 (40B) The public key certificate signature was not verified.

8 1037 (40D) There is a master key shares distribution error.

Chapter 18. Return and reason codes 835

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 1038 (40E) The public key hash is not marked for cloning.

8 1039 (40F) The registered public key hash does not match the registered hash.

8 1040 (410) The master key share enciphering key failed encipher.

8 1041 (411) The master key share enciphering key failed decipher.

8 1042 (412) The master key share digital signature generate failed.

8 1043 (413) The master key share digital signature verify failed.

8 1044 (414) There is an error in reading VPD data from the adapter.

8 1045 (415) Encrypting the cloning information failed.

8 1046 (416) Decrypting the cloning information failed.

8 1047 (417) There is an error loading the new master key from the master key shares.

8 1048 (418) The clone information has one or more sections that are not valid.

8 1049 (419) The master key share index is not valid.

8 1050 (41A) The public-key encrypted-key is rejected because the Environment Identifier (EID) with
the key is the same as the EID for this node.

8 1051 (41B) The private key is rejected because the key is not flagged for use in master-key
cloning.

8 1052 (41C) The token identifier of the trusted block's header section is in the range X'20' - X'FF'.
Check the token identifier of the trusted block.

8 1053 (41D) The active flag in the trusted block’s trusted block section X'14' is not disabled. Use the
Trusted Block Create verb to create an inactive/external trusted block.

8 1054 (41E) The token identifier of the trusted block’s header section is not X'1E' (external). Use the
Trusted Block Create verb to create an inactive/external trusted block.

8 1055 (41F) The active flag of the trusted block’s trusted block section X'14' is not enabled. Use the
Trusted Block Create verb to create an active/external trusted block.

8 1056 (420) The token identifier of the trusted block’s header section is not X'1F' (internal). Use the
PKA Key Import verb to import the trusted block.

8 1057 (421) The trusted block rule section X'12' rule ID does not match input parameter rule ID.
Verify that the trusted block used has the rule section specified.

8 1058 (422) The trusted block contains a value that is too small or too large.

8 1059 (423) A trusted block parameter that must have a value of zero (or a grouping of bits set to
zero) is invalid.

8 1060 (424) The trusted block public key section failed consistency checking.

8 1061 (425) The trusted block contains extraneous sections or subsections (TLVs). Check the trusted
block for undefined sections or subsections.

8 1062 (426) The trusted block contains missing sections or subsections (TLVs). Check the trusted
block for required sections and subsections applicable to the verb invoked.

8 1063 (427) The trusted block contains duplicate sections or subsections (TLVs). Check the trusted
block’s sections and subsections for duplicates. Multiple rule sections are allowed.

8 1064 (428) The trusted block expiration date has expired (as compared to the IBM 4764 clock).
Validate the expiration date in the trusted block’s trusted information section’s
Activation and Expiration Date TLV object

836 Common Cryptographic Architecture Application Programmer's Guide

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 1065 (429) The trusted block expiration date is at a date prior to the activation date. Validate the
expiration date in the trusted block’s trusted information section’s Activation and
Expiration Date TLV object.

8 1066 (42A) The trusted block public key modulus length in bits is not consistent with the byte
length. The bit length must be less than or equal to byte length * 8 and greater than
(byte length - 1) * 8.

8 1067 (42B) The trusted block public key modulus length in bits exceeds the maximum allowed bit
length, as defined by the Function Control Vector.

8 1068 (42C) One or more trusted block sections or TLV objects contained data that is invalid (an
example would be invalid label data in label section X'13').

8 1069 (42D) Trusted block verification was attempted by a verb other than CSNDDSV, CSNDKTC,
CSNDPKI, CSNDRKX, or CSNDTBC.

8 1070 (42E) The trusted block rule ID contained within a rule section has invalid characters.

8 1071 (42F) The source key's length or CV does not match what is expected by the rule section in
the trusted block that was selected by the rule ID input parameter.

8 1072 (430) The activation data is not valid. Validate the activation data in the trusted block’s
trusted information section’s Activation and Expiration Date TLV object.

8 1073 (431) The source-key label does not match the template in the export key DES token
parameters TLV object of the selected trusted block rule section.

8 1074 (432) The control-vector value specified in the common export key parameters TLV object in
the selected rule section of the trusted block contains a control vector that is not valid.

8 1075 (433) The source-key label template in the export key DES token parameters TLV object in
the selected rule section of the trusted block contains a label template that is not valid.

8 1077 (435) Key wrapping option input error.

8 1078 (436) Key wrapping Security Relevant Data Item (SRDI) error.

8 1079 (437) The format of the decrypted PIN block is not supported in this function.

8 1100 (44C) There is a general hardware device driver execution error.

8 1101 (44D) There is a hardware device driver parameter that is not valid.

8 1102 (44E) There is a hardware device driver non-valid buffer length.

8 1103 (44F) The hardware device driver has too many opens. The device cannot open now.

8 1104 (450) The hardware device driver is denied access.

8 1105 (451) The hardware device driver device is busy and cannot perform the request now.

8 1106 (452) The hardware device driver buffer is too small and the received data is truncated.

8 1107 (453) The hardware device driver request is interrupted and the request is aborted.

8 1108 (454) The hardware device driver detected a security tamper event.

8 1114 (45A) The communications manager detected that the host-supplied buffer for the reply
control block is too small.

8 1115 (45B) The communications manager detected that the host-supplied buffer for the reply data
block is too small.

8 1117 (45D) Hardware device driver operation not permitted.

8 1118 (45E) Hardware device driver received bad address.

8 1119 (45F) Hardware device driver hardware error.

8 1121 (461) Hardware device driver firmware error.

Chapter 18. Return and reason codes 837

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 1122 (462) Hardware device driver temperature of out range.

8 1123 (463) Hardware device driver received bad request.

8 1125 (465) Hardware device driver host timeout.

8 2034 (7F2) The environment variable that was used to set the default coprocessor is not valid, or
does not exist for a coprocessor in the system.

8 2036 (7F4) The contents of a chaining vector are not valid. Ensure the chaining vector was not
modified by your application program.

8 2038 (7F6) No RSA private key information is provided.

8 2041 (7F9) A default card environment variable is not valid.

8 2050 (802) The current key serial number field in the PIN profile variable is not valid (not
hexadecimal or too many one bits).

8 2051 (803) There is a non-valid message length in the OAEP-decoded information.

8 2053 (805) No message found in the OAEP-decoded data.

8 2054 (806) There is a non-valid RSA Enciphered Key cryptogram: OAEP optional encoding
parameters failed validation.

8 2055 (807) Based on the hash method and size of the symmetric key specified, the RSA public key
size is too small to format the symmetric key into a PKOAEP2 message.

8 2062 (80E) The active role does not permit you to change the characteristic of a double-length key
in the key_Part_Import parameter.

8 2065 (811) The specified key token is not null.

8 2080 (820) The group profile was not found.

8 2081 (821) The group has duplicate elements.

8 2082 (822) The group profile is not in the group.

8 2083 (823) The group has the wrong user ID count.

8 2084 (824) The group user ID failed.

8 2085 (825) The profile is not in the specified group.

8 2086 (826) The group role was not found.

8 2087 (827) The group profile has not been activated.

8 2088 (828) The expiration date of the group profile has been reached or exceeded.

8 2089 (829) The verb contains multiple keywords or parameters that indicate the algorithm to be
used, and at least one of these specifies a different algorithm from the others.

8 2090 (82A) A required SRDI was not found.

8 2091 (82B) A required CA SRDI was not found.

8 2093 (82D) Specific toIBM Z - an AES key is encrypted under a DES master key, which is not
acceptable for the requested operation.

8 2095 (82F) The key_form is incompatible with the key_type.

8 2097 (831) The key_length is incompatible with the key_type.

8 2098 (832) Either a key bit length that was not valid was found in an AES key token (length not
128, 192, or 256 bits) or a version X'01' DES token had a token-marks field that was not
valid.

8 2099 (833) Invalid encrypted key length in the AES token, when an encrypted key is present.

838 Common Cryptographic Architecture Application Programmer's Guide

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 2106 (83A) An input/output error occurred while accessing the logged on users table.

8 2110 (83E) Invalid wrapping type.

8 2111 (83F) Control vector enhanced bit (bit 56) conflicts with key wrapping keyword.

8 2113 (841) A key token contains invalid payload.

8 2114 (842) Clear-key bit length is out of range.

8 2115 (843) Input key token cannot have a key present when importing the first key part; skeleton
key token is required.

8 2118 (846) One or more invalid values in the TR-31 key block header.

8 2119 (847) The "mode" value in the TR-31 header is invalid or is not acceptable in the chosen
operation.

8 2121 (849) The "algorithm" value in the TR-31 header is invalid or is not acceptable in the chosen
operation.

8 2122 (84A) For import, the exportability byte in the TR-31 header contains a value that does not
support import of the key into CCA. For export, the requested exportability does not
match circumstances (for example, a 'B' Key Block Version ID key can be wrapped
only by a KEK that is wrapped in CBC mode, the ECB mode KEK violates ANSI
X9.24).

8 2123 (84B) The length of the cleartext key in the TR-31 block is invalid (for example, the
algorithm is 'D' for single-length DES, but the key length is not 64 bits).

8 2125 (84D) The Key Block Version ID in the TR-31 header contains an invalid value.

8 2126 (84E) The key-usage field in the TR-31 header contains a value that is not supported for
import of the key into CCA.

8 2127 (84F) The key-usage field in the TR-31 header contains a value that is not valid with the
other parameters in the header.

8 2129 (851) Either a parameter for building a TR-31 key block (a TR-31 key block or a component,
such as a tag for an optional block) contains one or more ASCII characters that are not
printable as described in TR-31, or a field contains ASCII characters that are not
allowed for that field.

8 2130 (852) The control vector carried in the optional blocks of the TR-31 key block is inconsistent
with other attributes of the key.

8 2131 (853) The TR-31 key-token failed the MAC validate step of the Key Block unwrap and verify
steps (for either Key Block Version ID method). MAC validation failed for a parameter
in a key block, such as a trusted block or a TR-31 key block. This might be the result
of tampering, corruption, or using a validation key that is different from the one use to
generate the MAC.

8 2134 (856) No valid PIN decimalization tables are present.

8 2135 (857) The PIN decimalization table provided as input is not allowed to be used because it
does not match any of the active tables stored on the coprocessor.

8 2137 (859) There is an error involving the PIN decimalization table input data. No PIN tables
have been changed.

8 2138 (85A) At least one of the PIN decimalization tables requested to be activated is empty or
already in the active state (not in the loaded state). No PIN tables have been activated.

8 2139 (85B) At least one PIN decimalization table provided as input to be activated does not match
the corresponding table that is loaded on the coprocessor. No PIN tables have been
changed from the loaded state to the active state.

8 2141 (84D) The key verification pattern for the key-encrypting key is not valid.

Chapter 18. Return and reason codes 839

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 2142 (85E) A key-usage field setting prevents operation.

8 2143 (85F) A key-management field setting prevents operation.

8 2145 (861) An attempt to wrap a stronger key with a weaker key was disallowed.

8 2147 (863) The key type to be generated is not valid.

8 2149 (865) The key to be generated is stronger than the input material.

8 2151 (867) At least one PIN decimalization table identifier provided as input is out of range or is
a duplicate. No PIN tables have been changed.

8 2153 (869) The input token is incompatible with the service (that is, clear key when encrypted
key was expected).

8 2154 (86A) At least one key token does not have the required key type for the specified function.

8 2158 (86E) There is a mismatch between ECC key tokens of curve types, key lengths, or both.
Curve types and key lengths must match.

8 2159 (86F) A key-encrypting key is invalid.

8 2161 (871) A wrap type, either requested or default, is in conflict with one or more input tokens.

8 2163 (873) At least two of the key parts of a new operational or master key have identical parts
and an error has been requested by the setting of an appropriate access control point.

8 2165 (875) An RSA key token contains a private section that is not valid with this command.

8 2167 (877) Invalid hash type in certificate.

8 2169 (879) Invalid signature type in certificate.

8 2170 (87A) Translation of text using an outbound key that has an effective key strength weaker
than the effective strength of the inbound key is not allowed.

8 2174 (87E) The provided data was not hexadecimal digits.

8 2175 (87F) A weak PIN was presented. The PIN change has been rejected.

8 2177 (881) The PAN presented to the PAN change verb was the same as the PAN in the
encrypted PIN block. The change has been rejected.

8 2178 (882) The PAN provided is inconsistent with a PAN incorporated in another piece of data.

8 2181 (885)

8 2183 (887) There is an error in the weak PIN entry structure input header length. No entries have
been changed.

8 2185 (889) For at least one of the inputs, the weak PIN entry requested to be activated is not in
the loaded state. No weak PIN entries have been activated.

8 2186 (88A) For at least one of the inputs, the weak PIN entry requested to be activated did not
match the weak PIN entry structure to be activated. No weak PIN entries have been
activated.

8 2187 (88B) One or more of the weak PIN entry ID numbers in the input verb data was invalid,
out or range, or a duplicate. No weak PIN entries have been changed.

8 2189 (88D) There is an error in the weak PIN entry structure input type. No entries have been
changed.

8 2190 (88E) There is an error in the weak PIN entry structure input header version. No entries
have been changed.

8 2191 (88F) There is an error in the weak PIN entry structure input header count. No entries have
been changed.

840 Common Cryptographic Architecture Application Programmer's Guide

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 2193 (891) The presented PIN is a duplicate of one already in the table. No entries have been
changed.

8 2194 (892) Invalid or out of range passphrase length.

8 2197 (895) The presented PIN failed verification. No processing has been done.

8 2198 (896) The presented CMAC failed verification. No processing has been done.

8 2199 (897) A variable-length symmetric key-token (version X'05') contains invalid key-usage field
data.

8 2201 (899) A variable-length symmetric key-token (version X'05') contains invalid
key-management field data.

8 2203 (89B) RSA engine check-sum error.

8 2227 (8B3) The triple-length key cannot be imported because the TR-31 key block does not
include a CCA control vector.

8 2229 (8B5) The type of the specified key is not valid because a diversified key-generating key
must be used to derive this symmetric key type.

8 2231 (8B7) There was a problem converting or formatting the PAN.

8 2232 (8B8) There was a problem converting or formatting the cardholder name.

8 2233 (8B9) There was a problem converting or formatting the track 1 data.

8 2235 (8BB) There was a problem converting or formatting the track 2 data.

8 2237 (8BD) Data presented for VFPE processing is not in VFPE enciphered.

8 2238 (8BE) An incorrect PIN profile is specified.

8 2239 (8BF) The check digit compliance indicator/keyword denotes compliant check digit but the
input PAN does not have a compliant check digit.

8 2243 (8C3) The key-derivation section is missing or the attributes in the key-derivation section do
not match those in the output skeleton token.

8 2245 (8C5) A randomly generated source key is required, but the pedigree of the source key
indicates that the key is not randomly generated.

8 2246 (8C6) A required tag-length-value (TLV) object is not present in the IBM Extended Associated
Data (IEAD) section.

8 2247 (8C7) Error in PSS signature salt length.

8 2254 (8CE) The SECURE LOG SRDI that is stored on the coprocessor is full, no auditable actions
are allowed.

8 2261 (8D5) Cannot adjust time twice within a 24 hour period.

8 2262 (8D6) Last adjustment time was > 24 hours; however, the amount of time to be adjusted is >
1 second.

8 2401 (961) Tried to enter compliance mode or change compliance state but not in correct starting
mode.

8 2402 (962) Tried to use a compliance-tagged key but domain is not in active compliance mode.

8 2403 (963) This verb is not allowed to use compliance-tagged key tokens.

8 2405 (965) This service of this verb is not allowed to use with compliance-tagged tokens.

8 2406 (966) This service has been passed 1 or more tokens that are compliance-tagged and 1 or
more tokens that are not compliance-tagged. All must match.

Chapter 18. Return and reason codes 841

|||

|||
|

|||

|||
|

|||
|

|||

|||

|||

|||
|

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 2407 (967) This service has been asked to generate or derive a comp-tagged key, or to check a key
token for compliance but the requested/given strength is too weak for the configured
compliance mode.

8 2409 (969) This service has been asked to generate or derive a comp-tagged key, or to check a key
token for compliance, but the requested/given key type or usage is non-compliant.

8 2410 (96A) This service has been asked to use or create a Key-Encrypting-Key (KEK) that has had
the NOCV flag set in token flags. Since the flags are not part of the CV it is possible
the flag was added on the host side. These types of KEKs are non-compliant.

8 2411 (96B) The requested service is only available when the domain is configured in migration
mode, and the domain is not in this mode now.

8 2413 (96D) The service has been asked to use a comp-tagged KEK to wrap or unwrap an external
token but the external token key type is non-compliant.

8 2414 (96E) The service for comp-tag migration checking or migration tagging has been given a
token type that is not currently supported.

8 2415 (96F) The service to enter imprint or compliance mode cannot complete because card cannot
support compliance mode.

8 2417 (971) A token passed in identifies a KDF for a compliance mode that is not the current
compliance mode.

8 2418 (972) A token passed into KTR2 already has a comp-tag in CV.

8 2419 (973) Failed to retrieve the compliance mode flags.

8 2421 (975) A CCA service was requested without the COMPMODE keyword for a domain that is
in imprint mode or a compliance mode that requires the COMPMODE keyword.

8 2422 (976) A CCA service was passed the COMPMODE keyword but the domain is not in
imprint mode or a compliance mode.

8 2423 (977) Cannot change default imprint mode role (INITADDM) while in imprint mode.

8 2425 (979) INIT-AC inactive and activate COMPMODE keywords were different

8 2426 (97A) Action is restricted because domain is in imprint mode. For example the default
domain-scope profile cannot update DFLTxxxx or its own role. Also, the CSNBMKP
and CSNDPIM verbs cannot be used in imprint mode.

8 2427 (97B) A compliance-tagged token was passed to the HSM while the HSM was in Migration
Mode. Compliance-tag token services are not available in migration mode.

8 2429 (97D) A CCA service was requested that, because of the compliance state of the domain,
requires a signed command from a TKE. However, the request was not received in this
format.

8 2430 (97E) A CCA service has been passed a key part to be ether the first key part or to be
combined with previously passed key parts for either the Master Key or an operational
key that is being built from parts. The key part passed may be long enough but is not
valid because it matches (bit for bit) one of the known weak key patterns (such as all
0x00 bytes) for that key algorithm.

8 2431 (97F) A CCA service has been passed an external token with the COMP-TAG marker or bit
set. This is bit 58 in the Control Vector (CV) for DES tokens.

8 2433 (981) The attempted operation must be performed as a dual-control operation when the
target domain is in compliance or imprint mode

8 2434 (982) The ACP list associated with the role-to-load violates the PCI-HSM complimentary
ACP restrictions.

8 2435 (983) The ACP quorum rules are not satisfied.

842 Common Cryptographic Architecture Application Programmer's Guide

|||
|
|

|||
|

|||
|
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||

|||

|||
|

|||
|

|||

|||

|||
|
|

|||
|

|||
|
|

|||
|
|
|
|

|||
|

|||
|

|||
|

|||

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 2437 (985) Provided PIN block formats do not match in compliance mode.

8 2438 (986) An attempt was made to update DFLTxxxx role with one or more ACPs from the
complimentary ACP list while in imprint- or compliance-mode.

8 2439 (987) An attempt to load DFLTxxxx from a card-scope domain when 'xxxx' is a
domain-scope domain.

8 2849 (B21) A verb data keyword specifies a keyword that is not valid.

8 2850 (B22) A verb data keyword combination is not valid.

8 2851 (B23) The verb data length value is not valid.

8 2945 (B81) A required verb data keyword is not found.

8 2946 (B82) Initialization vector length is too small, or text length exceeds maximum.

8 2947 (B83) The computed authentication tag does not match the data identified by the key_parms
parameter.

8 3001 (BB9) The RSA-OAEP block contains a PIN block and the verb did not request PINBLOCK
processing.

8 3002 (BBA) Specific to IBM Z - UDX already authorized.

8 3005 (BBD) Specific to IBM Z - UDX not in UDX Authorization Table (UAT).

8 3006 (BBE) Specific to IBM Z - UDX not authorized.

8 3007 (BBF) Specific to IBM Z - Failed to obtain semaphore that guards the UAT.

8 3009 (BC1) Specific to IBM Z - UDX Password hash mismatch.

8 3013 (BC5) The longitudinal redundancy check (LRC) checksum in the AES key-token does not
match the LRC checksum of the clear key.

8 3047 (BE7) Use of clear key provided is not allowed. A secure key is required.

8 6000 (1770) The specified device is already allocated.

8 6001 (1771) No device is allocated.

8 6002 (1772) The specified device does not exist.

8 6003 (1773) The specified device is an improper type.

8 6013 (177D) The length of the cryptographic resource name is not valid.

8 6014 (177E) The cryptographic resource name is not valid or does not refer to a coprocessor that is
available in the system.

8 6015 (177F) An ECC curve type is invalid or its usage is inconsistent.

8 6017 (1781) Curve size p is invalid or its usage is inconsistent.

8 6018 (1782) Error returned from CLiC module.

8 10028 (272C) Specific to IBM Z - Invalid control vector in key token supplied.

8 10036 (2734) Specific to IBM Z - Invalid control vectors (L-R) in key token supplied.

8 10044 (273C) Specific to IBM Z - The key_type parameter and the CV key type for the supplied key
token do not match.

8 10056 (2748) Specific to IBM Z - The key_type parameter contains TOKEN, which is invalid for the
requested operation.

8 10124 (278C) Specific to IBM Z - The key id cannot be exported because of prohibit export
restriction in the token supplied.

Chapter 18. Return and reason codes 843

|||

|||
|

|||
|

Table 228. Reason codes for return code 8 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

8 10128 (2790) Specific to IBM Z - The NOCV-KEK or CV-KEK rule_array keyword does not apply in
this case. Check other keywords passed.

8 10129 (2791) Specific to IBM Z - The NOCV-KEK importer key or transport key is not allowed in
the Remote Key Export operation requested.

Reason codes that accompany return code 12
Reason codes that accompany return code 12

The codes are listed in Table 229.

Table 229. Reason codes for return code 12

Return
code,
decimal

Reason code,
decimal (hex) Description

12 097 (061) File space in key storage is insufficient to complete the operation.

12 196 (0C4) The device driver, the security server, or the directory server is not installed or is not
active. File permissions are not valid for your application.

12 197 (0C5) There is a key-storage file I/O error or the file is not found.

12 206 (0CE) The key-storage file is not valid or the master-key verification failed. There is an
unlikely, but possible, synchronization problem with the Master Key Process verb.

12 207 (0CF) The verification method flags in the profile are not valid.

12 319 (13F) Passed to the CVV Verify or CVV Generate verb, the Verb Unique data corresponds to
a PAN length of 19, but the overall length is wrong. This indicates that the host code is
out of date.

12 324 (144) There is insufficient memory available to process your request, either memory in the
host computer or memory inside the coprocessor including the flash EPROM used to
store keys, profiles, and other application data.

12 338 (152) This cryptographic hardware device driver is not installed or is not responding, or the
CCA code is not loaded in the coprocessor.

12 764 (2FC) The master keys are not loaded and, therefore, a key cannot be recovered or
enciphered.

12 768 (300) One or more paths for key-storage directory operations are improperly specified.

12 769 (301) An internal error has occurred with the parameters to a cryptographic algorithm.

12 2007 (7D7) The change type in the Pending Change Buffer is not recognized.

12 2015 (7DF) The domain stored in the domain mask does not match what was included as the
domain in the CPRB.

12 2017 (7E1) The operation is attempting to call 'SET' for a master key, but has passed an invalid
Master Key Verification Pattern.

12 2021 (7E5) The card is disabled in the TKE path.

12 2037 (7F5) Invalid domain specified.

12 2043 (7FB) In the course of TKE communication through the host library to an adapter, a
particular requested OA certificate was not found. A small number of these errors are
typical when communication with a TKE is initiated.

12 2045 (7FD) The CCA software is unable to claim a semaphore. The system might be short of
resources.

844 Common Cryptographic Architecture Application Programmer's Guide

Table 229. Reason codes for return code 12 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

12 2046 (7FE) The CCA software is unable to list all the keys. The limit of 500,000 keys might have
been reached.

12 2049 (801) An error occurred while unlocking a semaphore in order to release the exclusive
control of that semaphore.

12 2073 (819) TKE command received when TKE disabled.

12 2074 (81A) Invalid version found in Connectivity Programming Request/Reply Block (CPRB).

12 2101 (835) Invalid AES flags in the function control vector (FCV).

12 2117 (845) Thread specific CLiC objects are not in proper state.

12 2155 (86B) The length of the fully qualified dataset name exceeds the maximum size that the verb
can process.

12 2225 (8B1) An internal outbound authentication manager error occurred, or the OA manager is
disabled.

12 3046 (BE6) The wrong usage was attempted in an operation with a retained key.

12 2242 (8C2) The reply message block is too long for the host buffer.

Reason codes that accompany return code 16
Reason codes that accompany return code 16.

These codes are listed in Table 230.

Table 230. Reason codes for return code 16

Return
code,
decimal

Reason code,
decimal (hex) Description

16 099 (063) An unrecoverable error occurred in the security server; contact the IBM support center.

16 336 (150) An error occurred in a cryptographic hardware or software component.

16 337 (151) A device software error occurred.

16 339 (153) A system error occurred in the interprocess communication routine.

16 444 (1BC) The verb-unique-data has an invalid length.

16 556 (22C) The request parameter block failed consistency checking.

16 708 (2C4) The cryptographic engine is returning inconsistent data.

16 709 (2C5) Cryptographic engine internal error. Could not access the master-key data.

16 710 (2C6) An unrecoverable error occurred while attempting to update master-key data items.

16 712 (2C8) An unexpected error occurred in the master-key manager.

16 800 (320) A problem occurred in internal SHA operation processing.

16 2022 (7E6) TKE-related internal file open error.

16 2047 (7FF) Unable to transfer request data from host to coprocessor.

16 2057 (809) Internal error: memory allocation failure.

16 2058 (80A) Internal error: unexpected return code from OAEP routines.

16 2059 (80B) Internal error: OAEP SHA-1 request failure.

16 2061 (80D) Internal error in Symmetric Key Import, OAEP-decode: enciphered message too long.

Chapter 18. Return and reason codes 845

Table 230. Reason codes for return code 16 (continued)

Return
code,
decimal

Reason code,
decimal (hex) Description

16 2063 (80F) The reply message too long for the requestor's command reply buffer.

16 2107 (83B) Internal files failed verification check when loading from encrypted storage.

16 2150 (866) An error occurred while attempting to open or save the DECTABLE SRDI that is
stored on the coprocessor.

16 2195 (893) An error occurred reading the weak PIN file stored on the coprocessor.

846 Common Cryptographic Architecture Application Programmer's Guide

Chapter 19. Key token formats

The key token formats can be useful for debugging purposes.

This information unit provides the formats for:
v “AES internal fixed-length key token”
v “DES internal key token” on page 849
v “DES external key token” on page 850
v “External RKX DES key tokens” on page 851
v “DES null key token” on page 852
v “RSA public key token” on page 853
v “RSA private key token” on page 853
v “ECC key token” on page 874
v “PKA key tokens” on page 880
v “HMAC key token” on page 888
v “Variable-length symmetric key tokens” on page 889
v “TR-31 optional block data” on page 967
v “Trusted blocks” on page 968

AES internal fixed-length key token
The format for an AES internal fixed-length key token.

Table 231 on page 848 shows the format for an AES internal fixed-length key token.

CCA AES fixed-length key-token data structures are 64 bytes in length, and are
made up of an internal key-token identifier and a token version number, reserved
fields, a flag byte containing various flag bits, and a token-validation value.

Depending on the flag byte, the key token either contains an encrypted key, a clear
key, or the key is absent. An encrypted key is encrypted under an AES master key
identified by a master-key verification pattern (MKVP) in the key token. The key
token contains a two-byte integer that specifies the length of the clear-key value in
bits, valued to 0, 128, 192, or 256, and a two-byte integer that specifies the length
of the encrypted-key value in bytes, valued to 0 or 32. An LRC checksum byte of
the clear-key value is also in the key token.

All AES keys contained in fixed-length key tokens are DATA keys. If the flag byte
indicates a control vector (CV) is present, it must be all binary zeros. An all-zero
CV represents the CV value of an AES DATA key. If a key is present without a
control vector in a key token, that is accepted and the key is interpreted as an AES
DATA key. The AES internal fixed-length key-token, version X'04', is the structure
used to hold AES keys that are either encrypted with the AES master-key, or in
cleartext format.

For an AES symmetric variable-length key token, see “AES CIPHER variable-length
symmetric key token” on page 904.

© Copyright IBM Corp. 2007, 2018 847

|

|

|

|

|

Table 231. AES Internal fixed-length key token format, version X'04'

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1 - 3 Implementation-dependent bytes, must be X'000000'.

4 Key token version number, X'04'

5 Reserved (X'00')

6 Flag byte. See “AES internal fixed-length key-token flag byte.”

7 Longitudinal redundancy check (LRC) checksum of clear-key value (LRC is the XOR of each byte in
the clear-key value).

8 - 15 Master key verification pattern (MKVP)

Contains the master-key verification pattern of the AES master-key used to encrypt the key contained
in the token, or binary zeros if the token does not contain a key or the key is in the clear. The MKVP is
calculated as the leftmost eight bytes of the SHA-256 hash of the string formed by pre-pending the
byte X'01' to the cleartext master-key value.

16 - 47 Key value, if present. Contains either:
v A 256-bit encrypted-key value. The clear key value is padded on the right with binary zeros, and the

entire 256-bit value is encrypted under the AES master-key using AES CBC mode with an
initialization vector of binary zeros.

v A 128-bit, 192-bit, or 256-bit clear-key value left-aligned and padded on the right with binary zeros
for the entire 256-bit field.

48 - 55 Control Vector (CV)

This value must be binary zeros for all AES key tokens that have a control vector present.

56 - 57 Clear-key bit length

An integer specifying the length in bits of the clear-key value. If no key is present in a completed
token, this length is zero. In a skeleton token, this is the length of the key to be created in the token
when used as input to the Key Generate verb.

58 - 59 Encrypted-key byte length

An integer specifying the length in bytes of the encrypted-key value. This value is zero if the token
does not contain a key or the key is in the clear.

60 - 63 Token validation value (TVV).

AES internal fixed-length key-token flag byte
The format for an AES internal fixed-length key token flag byte.

Table 232 shows the format for an AES internal fixed-length key token flag byte.

Table 232. AES internal fixed-length key-token flag byte

Bits (MSB...LSB)1 Description

1xxx xxxx Key is encrypted under the AES master-key (ignored if no key present).

0xxx xxxx Key is in the clear (ignored if no key present).

x1xx xxxx Control vector (CV) is present.

x0xx xxxx Control vector (CV) is not present.

xx1x xxxx No key and no MKVP present.

xx0x xxxx Encrypted or clear key present, MKVP present if key is encrypted.

Note: All undefined bits are reserved and must be 0.

Key token formats

848 Common Cryptographic Architecture Application Programmer's Guide

|

|

|

|

|

|

||

Token validation value
CCA uses the token validation value (TVV) to verify that a token is valid.

The TVV prevents a key token that is not valid or that is overlaid from being
accepted by CCA. It provides a checksum to detect a corruption in the key token.

When an CCA verb generates a key token, it generates a TVV and stores the TVV
in bytes 60-63 of the key token. When an application program passes a key token
to a verb, CCA checks the TVV. To generate the TVV, CCA performs a twos
complement ADD operation (ignoring carries and overflow) on the key token,
operating on four bytes at a time, starting with bytes 0-3 and ending with bytes
56-59.

DES internal key token

The format for a DES internal key token. DES key tokens are almost always in a
fixed-length token, except for a DESUSECV key type in a variable-length
symmetric key token.

Table 233 shows the format for a DES internal key token.

Table 233. DES internal key token format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1 - 3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte 1

Bit Meaning When Set On
0 Encrypted key and master key verification pattern (MKVP) are present.
1 Control vector (CV) value in this token has been applied to the key.
2 Key is used for no control vector (NOCV) processing. Valid for transport keys only.
3 Key is an ANSI key-encrypting key (AKEK).
4 AKEK is a double-length key (16 bytes).

Note: When bit 3 is on and bit 4 is off, AKEK is a single-length key (eight bytes).
5 AKEK is partially notarized.
6 Key is an ANSI partial key.
7 Export prohibited.

7 Flag byte 2

Bit Meaning When Set On
0-2

B'000' The encrypted key, if present, is wrapped using the legacy (WRAP-ECB) method.
B'001' The encrypted key is wrapped using the enhanced WRAP-ENH) method.

All other bit combinations are reserved. Undefined bits must be zero.

8 - 15 Non-compliant-tagged tokens: Master Key Verification Pattern (MKVP).
Compliant-tagged tokens: A 5-byte MKVP followed by 3-bytes internal compliance information.

16 - 23 A single-length key, the left half of a double-length key, or Part A of a triple-length key. The value is
encrypted under the master key.

24 - 31 X'0000000000000000' if a single-length key, the right half of a double-length operational key, or Part B
of a triple-length operational key. The right half of the double-length key or Part B of the triple-length
key is encrypted under the master key.

Key token formats

Chapter 19. Key token formats 849

|
|
|

||

||
|
||
||

|

||
|

Table 233. DES internal key token format (continued)

Bytes Description

32 - 39 The control vector (CV) for a single-length key or the left half of the control vector for a
double-length key.

40 - 47 X'0000000000000000' if a single-length key or the right half of the control vector for a double-length
operational key.

48 - 55 X'0000000000000000' if a single-length key or double-length key, or Part C of a triple-length
operational key. Part C of a triple-length key is encrypted under the master key.

56 - 58 Reserved (X'000000')

59 bits 0 and
1 Value Description

B'10' Indicates KEK.
B'00' Indicates DES for DATA keys or the system default algorithm for a KEK.
B'01' Indicates DES for a KEK.

59 bits 2 and
3 Value Description

B'00' Indicates single-length key (version 0 only).
B'01' Indicates double-length key (version 1 only).
B'10' Indicates triple-length key (version 1 only).

59 bits 4 - 7 B'0000'

60 - 63 Token validation value (TVV).

Note: AKEKs are not supported by this version of CCA. Key tokens from other
CCA systems, however, could have the AKEK flag bits set in a key token.

DES external key token

The format for a DES external key token. DES key tokens are almost always in a
fixed-length token, except for a DESUSECV key type in a variable-length
symmetric key token.

Table 234 shows the format for a DES external key token.

Table 234. DES external key token format

Bytes Description

0 X'02' (flag indicating an external key token)

1 Reserved (X'00')

2 - 3 Implementation-dependent bytes (X'0000' for CCA)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On
0 Encrypted key is present.
1 Control vector (CV) value has been applied to the key.

Other bits are reserved and are binary zeros.

7 Reserved (X'00')

8 - 15 Reserved (X'0000000000000000')

16 - 23 Single-length key or left half of a double-length key, or Part A of a triple-length key. The value is
encrypted under a transport key.

Key token formats

850 Common Cryptographic Architecture Application Programmer's Guide

|
|
|

Table 234. DES external key token format (continued)

Bytes Description

24 - 31 X'0000000000000000' if a single-length key or right half of a double-length key, or Part B of a
triple-length key. The right half of a double-length key or Part B of a triple-length key is encrypted
under a transport (key-encrypting key) for export or import.

32 - 39 Control vector (CV) for single-length key or left half of CV for double-length key

40 - 47 X'0000000000000000' if single-length key or right half of CV for double-length key

48 - 55 X'0000000000000000' if a single-length key, double-length key, or Part C of a triple-length key.

56 - 58 Reserved (X'000000')

59 bits 0 and
1

B'00'

59 bits 2 and
3 Value Description

B'00' Indicates single-length key (version 0 only).
B'01' Indicates double-length key (version 1 only).
B'10' Indicates triple-length key (version 1 only).

59 bits 4 - 7 B'0000'

60 - 63 Token validation value (see “Token validation value” on page 849 for a description).

External RKX DES key tokens
The Remote Key Export (CSNDRKX) verb and DES key-storage verbs use a special
RKX key token.

Table 235 defines an external fixed-length DES key-token called an RKX key-token.
An RKX key-token is a special token used exclusively by the Remote Key Export
(CSNDRKX) verb and DES key-storage verbs (for example, DES Key Record Write).
No other verbs use or reference an RKX key-token or key-token record. For
additional information about the usage of RKX key tokens, see “Remote key
loading” on page 53. Verbs other than Remote Key Export and the DES key-storage
do not support RKX key tokens or RKX key token records.

As can be seen in the table, RKX key tokens are 64 bytes in length, have a token
identifier flag (X'02'), a token version number (X'10'), and room for encrypted keys,
same as normal fixed-length DES key tokens. Unlike normal fixed-length DES key
tokens, RKX key tokens do not have a control vector, flag bits, and a
token-validation value. In addition, RKX key tokens have a confounder value, a
MAC value, and room for a third encrypted key.

Table 235. External RKX DES key-token format, version X'10'

Offset Length Description

00 1 X'02' (a token identifier flag that indicates an external key-token)

01 3 Reserved, binary zero

04 1 Token version number (X'10')

05 2 Reserved, binary zero

07 1 Key length in bytes, including confounder

08 8 Confounder

16 8 Key left

24 8 Key middle (binary zero if not used)

Key token formats

Chapter 19. Key token formats 851

Table 235. External RKX DES key-token format, version X'10' (continued)

Offset Length Description

32 8 Key right (binary zero if not used)

40 8 Rule ID

The trusted block rule identifier used to create this key token. A subsequent call to Remote
Key Export (CSNDRKX) can use this token with a trusted block rule that references the
rule ID that was used to create this token. The trusted block rule can be compared with
this rule ID for verification purposes.

The Rule ID is an 8-byte string of ASCII characters, left-aligned and padded on the right
with space characters. Acceptable characters are A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F').
All other characters are reserved for future use.

48 8 Reserved, binary zero

56 8 MAC value

ISO 16609 CBC-mode Triple-DES MAC, computed over the 56 bytes starting at offset 0
and including the encrypted key value and the rule ID using the same MAC key that is
used to protect the trusted block itself.

This MAC value guarantees that the key and the rule ID cannot be modified without
detection, providing integrity and binding the rule ID to the key itself. This MAC value
must verify with the same trusted block used to create the key, thus binding the key
structure to that specific trusted block.

Note:

1. A fixed, randomly derived variant is exclusive-ORed with the MAC key before
it is used to encipher the generated or exported key and confounder.

2. The MAC key is located within a trusted block (internal format) and can be
recovered by decipherment under a variant of the PKA master key.

3. The trusted block is originally created in external form by the Trusted Block
Create verb, and then converted to internal form by the PKA Key Import verb
prior to the Remote Key Export call.

DES null key token

The format for a DES null key token. DES key tokens are almost always in a
fixed-length token, except for a DESUSECV key type in a variable-length
symmetric key token.

Table 236 shows the format for a DES null key token.

Table 236. DES null key token format

Bytes Description

0 X'00' (flag indicating this is a null key token).

1 - 15 Reserved (set to binary zeros).

16 - 23 Single-length encrypted key, left half of double-length encrypted key, or Part A of triple-length
encrypted key.

24 - 31 X'0000000000000000' if a single-length encrypted key, the right half of double-length encrypted key, or
Part B of triple-length encrypted key.

32 - 39 X'0000000000000000' if a single-length encrypted key or double-length encrypted key.

40 - 47 Reserved (set to binary zeros).

Key token formats

852 Common Cryptographic Architecture Application Programmer's Guide

|
|
|

Table 236. DES null key token format (continued)

Bytes Description

48 - 55 Part C of a triple-length encrypted key.

56 - 63 Reserved (set to binary zeros).

RSA public key token
The sections of an RSA public key token.

An RSA public key token contains the following sections.
v A required token header, starting with the token identifier X'1E'
v A required RSA public key section, starting with the section identifier X'04'

Table 237 presents the format of an RSA public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390® format).

Table 237. RSA Public Key Token format

Offset
(decimal)

Length
(bytes) Description

Token Header (Required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be 0.

RSA Public Key Section (Required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12 + xxx + yyy

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public modulus field length in bytes, yyy.
Note: If the token contains an RSA private key section, this field length, yyy, should be 0.
The RSA private key section contains the modulus.

012 xxx Public exponent, e. (This field length is typically 1, 3, or 64 - 512 bytes). e must be odd
and 1 ≤ e < n (e is frequently valued to 3, 5, 17, 257, or 65537. Otherwise e is of the same
order of magnitude as the modulus).

12 + xxx yyy Modulus, n. n = pq, where p and q are prime and 2512 ≤ n < 24096. This field is absent when
the modulus is contained in the private-key section. If present, the field length range is
64 - 512 bytes.

RSA private key token
The contained subtopics describe the RSA private key tokens for both the external
and internal format combined into one table for each token type.

Key token formats

Chapter 19. Key token formats 853

|||
|
|

|||
|
|

|||
|
|

First, the topics “RSA private external key token” and “RSA private internal key
token” on page 855 describe the general structure of private external and internal
key tokens. The subsequent information units then present the detailed formats of
the available key token types.

RSA private external key token
Read the contained information about the basic structure of RSA private external
key tokens.

An RSA private external key token contains the following sections:
v a required PKA token header starting with the token identifier X'1E'
v a required RSA private key section, one of those shown in Table 238, each

starting with a certain section identifiers
v a required RSA public key section, starting with the section identifier X'04'
v an optional private key name section, starting with the section identifier X'10'.

Table 238 presents the basic record format of an RSA private external key token. All
length fields are in binary. All binary fields (exponents, lengths, and so on) are
stored with the high-order byte first (big-endian format). All binary fields
(exponents, modulus, and so on) in the private sections of tokens are right-aligned
and padded with zeros to the left.

Table 238. RSA private external key token basic record format

Offset
(decimal)

Length
(bytes) Description

Token Header (Required)

000 001 Token identifier. X'1E' indicates an external token. The private key is either in cleartext or
enciphered with a transport key-encrypting key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Private Key Section (Required)

See the following sections:

v “RSA private key token, 1024-bit Modulus-Exponent” on page 857

v “RSA private key token, 1024-bit Modulus-Exponent format with OPK section” on page 859

v “RSA private key token, 4096-bit Modulus-Exponent” on page 861

v “RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section” on page 863

v “RSA private key, 4096-bit Chinese Remainder Theorem with OPK” on page 867

v “RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section” on page 869

RSA Public Key Section (Required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12 + xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

Key token formats

854 Common Cryptographic Architecture Application Programmer's Guide

Table 238. RSA private external key token basic record format (continued)

Offset
(decimal)

Length
(bytes) Description

010 002 RSA public key modulus field length in bytes, which is zero for a private token.
Note: In an RSA private key token, this field should be zero. The RSA private key
section contains the modulus.

012 xxx Public key exponent, e (this is generally a 1, 3, or 64 - 256-byte quantity). e must be odd
and 1 < e < n. (Frequently, the value of e is 216 + 1 (= 65,537).
Note: You can import an RSA public key having an exponent valued to two (2). Such a
public key can correctly validate an ISO 9796-1 digital signature. However, the current
product implementation does not generate an RSA key with a public exponent valued to
two (a Rabin key).

Private Key Name (Optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-aligned, padded with space characters (X'20'). An access
control system can use the private key name to verify the calling application is entitled to
use the key. When generating an RSA retained private key, the name supplied in this part
of the skeleton key-token is subsequently used in the coprocessor to locate the retained
key.

RSA private internal key token
Read the contained information about the basic structure of RSA private internal
key tokens.

An RSA private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v Basic record format of an RSA private internal key token. All length fields are in

binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, big-endian format). All binary fields
(exponents, modulus, and so on) in the private sections of tokens are
right-aligned and padded with zeros to the left.

Table 239 shows the format.

Table 239. RSA private internal key token basic record format

Offset
(decimal)

Length
(bytes) Description

Token Header (Required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is enciphered with a
PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information section.

004 004 Ignored; should be zero.

Key token formats

Chapter 19. Key token formats 855

|
|
|

Table 239. RSA private internal key token basic record format (continued)

Offset
(decimal)

Length
(bytes) Description

RSA Private Key Section and Secured Subsection (Required)

See the following sections:

v “RSA private key token, 1024-bit Modulus-Exponent” on page 857.

v “RSA private key token, 1024-bit Modulus-Exponent format with OPK section” on page 859

v “RSA private key token, 4096-bit Modulus-Exponent” on page 861.

v “RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section” on page 863

v “RSA private key, 4096-bit Chinese Remainder Theorem with OPK” on page 867

v “RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section” on page 869

v “RSA private key token, 1024-bit Modulus-Exponent internal format for cryptographic coprocessor feature” on
page 872.

RSA Public Key Section (Required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12 + xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, xxx.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private token.

012 xxx Public key exponent (this is generally a 1, 3, or 64 - 256-byte quantity), e. e must be odd
and 1 < e < n. (Frequently, the value of e is 216 + 1 (= 65,537).
Note: You can import an RSA public key having an exponent valued to two (2). Such a
public key can correctly validate an ISO 9796-1 digital signature. However, the current
product implementation does not generate an RSA key with a public exponent valued to
two (a Rabin key).

Private Key Name (Optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-aligned, padded with space characters (X'20'). An access
control system can use the private key name to verify the calling application is entitled to
use the key.

Internal Information Section (Required)

000 004 Eye catcher 'PKTN'.

004 004 PKA token type.

Bit Meaning When Set On
0 RSA key.
2 Private key.
3 Public key.
4 Private key name section exists.
5 Private key unenciphered.
6 Blinding information present.
7 Retained private key.

008 004 Address of token header.

012 002 Total length of total structure including this information section.

Key token formats

856 Common Cryptographic Architecture Application Programmer's Guide

Table 239. RSA private internal key token basic record format (continued)

Offset
(decimal)

Length
(bytes) Description

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 001 Domain of retained key.

033 008 Serial number of processor holding retained key.

041 007 Reserved.

RSA private key token, 1024-bit Modulus-Exponent
This RSA private key token is supported starting with CEX3C. It is supported as
the external X'02' and the internal X'06' token format.

Table 240 shows the external and internal format.

Table 240. RSA private key, 1024-bit Modulus-Exponent format section (X'02')

Offset
(decimal)

Length
(bytes) Description

000 001 X'02', section identifier, RSA private key, Modulus-Exponent format (RSA-PRIV) for the
external format

001 001 X'00', version.

002 002 External format: Length of the RSA private key section X'016C' (364 decimal).

Internal format: Length of the RSA private key section X'0198' (408 decimal) + rrr + iii +
xxx.

004 020 External format: SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is deciphered for
use.

Internal format: SHA-1 hash value of the private key subsection cleartext, offset 28 to and
including the modulus at offset 236.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

External format:
X'00' Unencrypted RSA private key subsection identifier.
X'82' Encrypted RSA private key subsection identifier.

Internal format:
X'02' RSA private key

029 001 External format: Reserved, binary zero.

Internal format: Format of external key from which this token was derived:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following optional sections. If
there are no optional sections, this field is set to binary zeros.

Key token formats

Chapter 19. Key token formats 857

Table 240. RSA private key, 1024-bit Modulus-Exponent format section (X'02') (continued)

Offset
(decimal)

Length
(bytes) Description

050 001 Key use flag bits.
B'11xx xxxx'

Only key unwrapping (KM-ONLY)
B'10xx xxxx'

Both signature generation and key unwrapping (KEY-MGMT)
B'01xx xxxx'

Undefined
B'00xx xxxx'

Only signature generation (SIG-ONLY)

Translation control flag bits:
B'xxxx xx1x'

Private key translation is allowed (XLATE-OK)
B'xxxx xx0x'

Private key translation is not allowed (NO-XLATE)

All other bits reserved, set to binary zero.

051 009 Reserved; set to binary zero.

External format: 060 - 235

060 024 Reserved; set to binary zero.

084 Start of the optionally-encrypted secure subsection.

084 024 Random number, confounder.

108 128 Private-key exponent, d. d = e-1 mod((p-1)(q-1)), and 1 < d < n where e is the public
exponent.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent field
are enciphered for key confidentiality when the key format and security flags (offset 28) indicate the
private key is enciphered. They are enciphered under a double-length transport key using the ede2
algorithm.

236 128 Modulus, n. n = pq where p and q are prime and 1 < n < 21024.

External format ends here.

Internal format: 060 - 235

060 048 Object Protection Key (OPK) encrypted under the Asymmetric Keys Master Key using
the ede3 algorithm.

108 128 Private key exponent d, encrypted under the OPK using the ede5 algorithm. d =
e-1mod((p-1)(q-1)), and 1 < d < n where e is the public exponent.

236 128 Modulus, n. n = pq where p and q are prime and 1 < n < 21024.

Internal format only, until end of table

364 016 Asymmetric-Keys Master Key hash pattern.

380 020 SHA-1 hash value of the blinding information subsection cleartext, offset 400 to the end
of the section.

400 002 Length of the random number r, in bytes: rrr

402 002 Length of the random number r–1, in bytes: iii

404 002 Length of the padding field, in bytes: xxx

406 002 Reserved; set to binary zeros.

408 Start of the encrypted blinding subsection

408 rrr Random number r (used in blinding).

Key token formats

858 Common Cryptographic Architecture Application Programmer's Guide

|||
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|||

|

Table 240. RSA private key, 1024-bit Modulus-Exponent format section (X'02') (continued)

Offset
(decimal)

Length
(bytes) Description

408 + rrr iii Random number r–1 (used in blinding).

408 + rrr +
iii

xxx X'00' padding of length xxx bytes such that the length from the start of the encrypted
blinding subsection to the end of the padding field is a multiple of eight bytes.

End of the encrypted blinding subsection; all of the fields starting with the random number r and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) algorithm.

RSA private key token, 1024-bit Modulus-Exponent format with
OPK section

View a table describing the RSA private key token format with section identifier
X'06'. For this key token, there is only an internal format available.

Table 241. RSA private key, 1024-bit Modulus-Exponent format with OPK section (X'06')

Offset (bytes) Length (bytes) Description

000 001 Section identifier:
X'06' RSA private key, 1024-bit maximum Modulus-Exponent format

This section type is created by the IBM Version 2 and later CCA Support
Program. This section type provides compatibility and interchangeability with
the CCF hardware in z/OS processors.

001 001 Section version number (X'00').

002 002 Section length in bytes (X'0198').

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 up to and
including the modulus that ends at offset 363.

024 004 Reserved, binary zero.

028 001 Key format and security flag byte.

Internal key-token:
X'02' Encrypted RSA private key with OPK subsection identifier

All other values are reserved and undefined.

029 001 Private key source flag byte:
X'21' Imported from cleartext
X'22' Imported from ciphertext
X'23' Generated using regeneration data
X'24' Randomly generated

030 020 SHA-1 hash of all optional sections that follow the public-key section, if any, else
20 bytes of X'00'.

Key token formats

Chapter 19. Key token formats 859

Table 241. RSA private key, 1024-bit Modulus-Exponent format with OPK section (X'06') (continued)

Offset (bytes) Length (bytes) Description

050 001 Key-usage and translation control flag byte.

Key usage:
B'11xx xxxx'

Only key unwrapping (KM-ONLY)
B'10xx xxxx'

Both signature generation and key unwrapping (KEY-MGMT)
B'01xx xxxx'

Undefined
B'00xx xxxx'

Only signature generation (SIG-ONLY)

Translation control:
B'xxxx xx1x'

Private key translation is allowed (XLATE-OK)
B'xxxx xx0x'

Private key translation is not allowed (NO-XLATE)

All other bits are reserved and must be zero.

051 001 Format restriction for digital-signature hash-formatting method:

Value Meaning
B'0000 0000'

No format restriction
B'0000 0001'

ISO-9796 only
B'0000 0010'

PKCS-1.0 only
B'0000 0011'

PKCS-1.1 only
B'0000 0100'

PKCS-PSS only
B'0000 0101'

X9.31 only
B'0000 0110'

ZERO-PAD only

All other values are reserved and undefined.

052 002 Reserved, binary zero.

054 006 Reserved, binary zero.

060 048 Object Protection Key (OPK) data. 8-byte confounder, three 8-byte DES keys,
and two 8-byte initialization vector values.

External key-token: Reserved, binary zero.

Internal key-token: The asymmetric master key encrypts the OPK data using the
EDE3 algorithm. See “Triple-DES ciphering algorithms” on page 1030.

108 128 Private-key exponent, d. d = e-1mod((p-1)(q-1)), 1 < d < n, and where e is the
public exponent.

The OPK encrypts the private key exponent using the EDE5 algorithm. See
“Triple-DES ciphering algorithms” on page 1030.

236 128 Modulus, n. n = pq, where p and q are prime and 2512 ≤ n < 21024.

364 016 Asymmetric-keys master-key verification pattern.

380 020 SHA-1 hash value of the subsection cleartext, offset 400 to the section end. This
hash value is checked after an enciphered private key is deciphered for use.

Key token formats

860 Common Cryptographic Architecture Application Programmer's Guide

|
|

|||

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|||

Table 241. RSA private key, 1024-bit Modulus-Exponent format with OPK section (X'06') (continued)

Offset (bytes) Length (bytes) Description

400 002 Reserved, binary zero.

402 002 Reserved, binary zero.

404 002 Reserved, binary zero.

406 002 Reserved, binary zero.

RSA private key token, 4096-bit Modulus-Exponent
This RSA private key token is supported on a CCA Crypto Express coprocessor
(external and internal X'09' token).

Table 242. RSA Private Key Token, 4096-bit Modulus-Exponent

Offset
(decimal)

Number of
bytes Description

000 001 X'09', section identifier, RSA private key, modulus-exponent format (RSAMEVAR).

This format is used for a clear or an encrypted RSA private-key in an external
key-token up to a modulus size of 4096 bits.

001 001 Section version number (X'00').

002 002 Length of the RSA private key section: 132+ddd+nnn+xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the section end.
This hash value is checked after an enciphered private key is deciphered for use.

024 002 External fomat:

Length of the encrypted private key section 8+ddd+xxx.

Internal fomat:

Length in bytes of the optionally encrypted secure subsection, or X'0000' if the
subsection is not encrypted.

026 002 Reserved; set to binary zero.

028 001 Key format and security flags:

External token:
X'00' Unencrypted RSA private-key subsection identifier
X'82' Encrypted RSA private-key subsection identifier

All other values are reserved and undefined.

029 001 External format:

Reserved, set to binary zero.

Internal format:

Private key source flag:
X'00' Generation method unknown

030 020 SHA-1 hash of the optional key-name section. If there is no key-name section, then 20
bytes of X'00'.

Key token formats

Chapter 19. Key token formats 861

Table 242. RSA Private Key Token, 4096-bit Modulus-Exponent (continued)

Offset
(decimal)

Number of
bytes Description

050 001 Key-usage and translation control flag byte.

Key usage:
B'11xx xxxx'

Only key unwrapping (KM-ONLY)
B'10xx xxxx'

Both signature generation and key unwrapping (KEY-MGMT)
B'01xx xxxx'

Undefined
B'00xx xxxx'

Undefined

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

All other bits are reserved and must be zero.

051 065 Reserved; set to binary zero.

116 002 Private-key exponent field length, in bytes: ddd.

118 002 Private-key modulus field length, in bytes: nnn.

120 002 Length of padding field, in bytes: xxx.

Padding of X'00' bytes for a length of xxx bytes such that the length from the start of
the confounder at offset 124 to the end of the padding field is a multiple of 8 bytes.

122 002 Reserved; set to binary zero.

Start of the (optionally) encrypted subsection; all of the fields starting with the confounder field and ending with
the variable-length pad field are enciphered for key confidentiality when the key format and security flags (offset
28) indicate that the private key is enciphered.

124 008 Confounder.

This is an eight-byte random number.

Data encrypted with two-part key-encrypting key.

132 ddd Private-key exponent, d:

d = e-1 mod((p - 1)(q - 1))

where 1 < d < n, and e is the public exponent.

The transport key encrypts the private key exponent using the EDE2 algorithm.

132 + ddd xxx Pad of X'00' bytes.

End of the optionally encrypted subsection.

132 + ddd +
xxx

nnn Private-key modulus.

Key token formats

862 Common Cryptographic Architecture Application Programmer's Guide

RSA private key, 4096-bit Modulus-Exponent format with AES
encrypted OPK section

View the RSA private key token, 4096-bit Modulus-Exponent format with AES
encrypted OPK section in external and internal format (X'30').

Table 243. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external and
internal form

Offset
(bytes)

Length
(bytes) Description

000 001 Section identifier:

X'30' RSA private key, 4096-bit Modulus-Exponent format (RSA-AESM) with AES
encrypted OPK.

001 001 Section version number (X'00').

002 002 Section length: 122 + nnn + ppp

004 002 Length of Associated Data section

006 002 Length of payload data: ppp

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'02' Version 2

011 001 Key format and security flag:

External format:

X'00' Unencrypted ME RSA private-key subsection identifier

X'82' Encrypted ME RSA private-key subsection identifier

Internal format:

X'02' Encrypted ME RSA private-key subsection identifier

012 001 Key source flag:

External key-token:

Reserved, binary zero.

Internal key-token:

X'21' Imported from cleartext

X'22' Imported from ciphertext

X'23' Generated using regeneration data

X'24' Randomly generated

All other values are reserved and undefined.

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'02' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any; else 32
bytes of X'00'.

047 003 Reserved, binary zero.

Key token formats

Chapter 19. Key token formats 863

Table 243. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external and
internal form (continued)

Offset
(bytes)

Length
(bytes) Description

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Format restriction for digital-signature hash-formatting method:

Value Meaning
B'0000 0000'

No format restriction
B'0000 0001'

ISO-9796 only
B'0000 0010'

PKCS-1.0 only
B'0000 0011'

PKCS-1.1 only
B'0000 0100'

PKCS-PSS only
B'0000 0101'

X9.31 only
B'0000 0110'

ZERO-PAD only

All other values are reserved and undefined.

052 002 Length of modulus: nnn bytes

054 002 Length of private exponent: ddd bytes

End of Associated Data

056 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

External key-token: Encrypted with an AES key-encrypting key.

Internal key-token: Encrypted with the APKA master key.

Key token formats

864 Common Cryptographic Architecture Application Programmer's Guide

|||

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 243. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external and
internal form (continued)

Offset
(bytes)

Length
(bytes) Description

104 016 Key verification pattern

External key-token:

Encrypted private key
Key-encrypting key verification pattern

Clear private key
Binary zero

Skeleton
Binary zero

Internal key-token:

Encrypted private key
APKA master-key verification pattern

Skeleton
Binary zero

120 002 Reserved, binary zeros.

122 nnn Modulus

122+nnn ppp Payload starts here and includes:

When this section is unencrypted:

v Clear private exponent d.

v Length ppp bytes : ddd + 0

When this section is encrypted:

v Private exponent d within the AESKW-wrapped payload.

v Length ppp bytes : ddd + AESKW format overhead

RSA private key, 2048-bit Chinese Remainder Theorem
View the RSA private key token, 2048-bit Chinese Remainder Theorem (X'05'). This
is an asymmetric key token.

Table 244. RSA private key, 2048-bit Chinese Remainder Theorem format section (X'05')

Offset (decimal)
Number of
bytes Description

000 001 X'05', section identifier, RSA private key, 2048-bit maximum CRT (replaced
by RSA-CRT) format

This section type is no longer created by CCA.

001 001 Section version number (X'00').

002 002 Section length in bytes (76 + ppp + qqq + rrr + sss + ttt + uuu + xxx +
nnn).

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
end of the modulus.

024 002 Length in bytes of the optionally encrypted secure subsection, or X'0000' if
the subsection is not encrypted.

026 002 Master-key verification pattern in an internal key-token, else X'0000'.

Key token formats

Chapter 19. Key token formats 865

|

|
|

||

|
|
||

|||
|

|

|||

|||
|

|||
|

|||
|

|||

Table 244. RSA private key, 2048-bit Chinese Remainder Theorem format section (X'05') (continued)

Offset (decimal)
Number of
bytes Description

028 001 Key format and security flag byte.

External key-token:

X'40' Unencrypted RSA private-key subsection identifier,
Chinese-Remainder Theorem format

Internal key-token:

X'42' Encrypted RSA private-key subsection identifier,
Chinese-Remainder Theorem format

All other values are reserved and undefined.

029 001 Reserved, binary zero.

030 020 SHA-1 hash of the optional key-name section; if there is no name section,
then 20 bytes of X'00'.

050 001 Key-usage flag byte.

Key usage:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Undefined

All other bits are reserved and must be zero.

051 001 Reserved, binary zero.

052 Start of the optionally encrypted subsection.

Private key encryption:

v External token: EDE2 process using the double-length transport key

v Internal token: EDE3 process using the asymmetric master key.

See “Triple-DES ciphering algorithms” on page 1030.

052 008 Random number, confounder.

060 002 Length of prime number, p, in bytes: ppp.

062 002 Length of prime number, q, in bytes: qqq.

064 002 Length of dp, in bytes: rrr.

066 002 Length of dq, in bytes: sss.

068 002 Length of Ap, in bytes: ttt.

070 002 Length of Aq, in bytes: uuu.

072 002 Length of modulus, n, in bytes: nnn.

074 002 Length of padding field, in bytes: xxx.

076 ppp Prime number, p.

076+ppp qqq Prime number, q.

076+ppp+qqq rrr dp = d mod(p - 1).

Key token formats

866 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
||

|||

|

||
|

|

||
|

|

|||

|||
|

|||

|

|
|

|
|

|
|

|
|
|

|||

||

|

|

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 244. RSA private key, 2048-bit Chinese Remainder Theorem format section (X'05') (continued)

Offset (decimal)
Number of
bytes Description

076+ppp+qqq+rrr sss dq = d mod(q - 1).

076+ppp+qqq
+rrr+sss

ttt Ap = qp-1 mod(n).

076+ppp+qqq+rrr
+sss+ttt

uuu Aq (n + 1 - Ap).

076+ppp+qqq+rrr
+sss+ttt+uuu

xxx X'00' padding of length xxx bytes such that the length from the start of the
random number above to the end of the padding field is a multiple of 8
bytes.

End of the optionally encrypted subsection; all of the fields starting with the confounder field and ending with the
variable-length pad field are enciphered for key confidentiality when the key-format-and-security flag byte (offset
28) indicates that the private key is enciphered.

076+ppp+qqq
+rrr+sss+ttt
+uuu+xxx

nnn Modulus, n. n = pq, where p and q are prime and 2512 ≤ n < 22048.

RSA private key, 4096-bit Chinese Remainder Theorem with
OPK

This RSA private key token with up to 4096-bit modulus is supported on the
System z9®,z10™, or later machines with the Nov. 2007 or later version of the
licensed internal code installed on the CCA Crypto Express coprocessor.

Table 245. RSA private key token, 4096-bit Chinese Remainder Theorem with OPK section (X'08')

Offset (decimal)
Number of
bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)
with OPK

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss
+ uuu + xxx + nnn.

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28
to the end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security flag:

External key token:
X'40' Unencrypted RSA private-key subsection identifier
X'42' Encrypted RSA private-key subsection identifier

Internal key token:
X'08' Encrypted RSA private-key subsection identifier, Chinese

Remainder form.

All other values are reserved and undefined.

Key token formats

Chapter 19. Key token formats 867

|

|
|
||

|||

|
|
||

|
|
||

|
|
||
|
|

|
|
|

|
|
|

||

|

|

Table 245. RSA private key token, 4096-bit Chinese Remainder Theorem with OPK section (X'08') (continued)

Offset (decimal)
Number of
bytes Description

029 001 Key source flag byte:

External key tokens: Reserved, binary zero.

Internal key tokens:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following
sections. If there are no optional sections, then 20 bytes of X'00'.

050 001 Key use and translation control flag byte.

Key usage:
B'11xx xxxx'

Only key unwrapping (KM-ONLY)
B'10xx xxxx'

Both signature generation and key unwrapping
(KEY-MGMT)

B'01xx xxxx'
Undefined

B'00x xxxx'
Undefined

Translation control:
B'xxxx xx1x'

Private key translation is allowed (XLATE-OK)
B'xxxx xx0x'

Private key translation is not allowed (NO-XLATE)

All other bits reserved, set to binary zero.

051 003 Reserved, binary zero.

054 002 Length of prime number p in bytes: ppp.

056 002 Length of prime number q in bytes: qqq.

058 002 Length of dp in bytes: rrr.

060 002 Length of dq in bytes: sss.

062 002 Length of U in bytes: uuu.

064 002 Length of modulus n in bytes: nnn.

066 002 Reserved, binary zero.

068 002 Reserved, binary zero.

070 002 Length of padding field in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 External key token: Reserved, binary zero.

Internal key token: Asymmetric master-key verification pattern.

Key token formats

868 Common Cryptographic Architecture Application Programmer's Guide

|

|

|||

|

Table 245. RSA private key token, 4096-bit Chinese Remainder Theorem with OPK section (X'08') (continued)

Offset (decimal)
Number of
bytes Description

092 032 External key token: Reserved, binary zero.

Internal key token:

Object Protection Key (OPK) data, 8-byte confounder and three
8-byte DES keys used in the Triple-DES CBC process to encrypt
the private key and blinding information. These 32 bytes are
Triple-DES CBC encrypted by the asymmetric master key.

124 Start of the (optionally) encrypted subsection.

External key token:
v When offset 028 is X'40', the subsection is not encrypted.
v When offset 028 is X'42', the subsection is encrypted by the double-length transport

key using the Triple-DES CBC process.

Internal key token:
v When offset 028 is X'08', the subsection is encrypted by the triple-length OPK

using the Triple-DES CBC process.

124 008 Random number confounder.

132 ppp Prime number p.

132 + ppp qqq Prime number q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq + rrr sss dq = d mod(q - 1)

132 + ppp + qqq + rrr + sss uuu U = q**-1 mod(p).

132 + ppp + qqq + rrr + sss
+ uuu

xxx X'00' padding of length xxx bytes such that the length from the
start of the confounder at offset 124 to the end of the padding field
is a multiple of eight bytes.

End of the encrypted secure subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are encrypted under the OPK
using TDES (CBC outer chaining) for key confidentiality.

132 + ppp + qqq + rrr + sss
+ uuu + xxx

nnn Modulus n. n = pq where p and q are prime and 2512 ≤ n < 24096.

RSA private key, 4096-bit Chinese Remainder Theorem format
with AES encrypted OPK section

View the format of an RSA private key token, 4096-bit Chinese Remainder
Theorem, with AES encrypted OPK section (X'31'), in internal and external format.

Table 246. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')

Offset
(bytes)

Length
(bytes) Description

000 001 Section identifier:

X'31' RSA private key, 4096-bit Chinese-Remainder Theorem format with AES
encrypted OPK (RSA-AESC)

001 001 Section version number (X'00').

002 002 Section length: 134 + nnn + xxx

004 002 Length in bytes of Associated Data section

Key token formats

Chapter 19. Key token formats 869

|

|
|
|
|

|
|
|

|
|

|
|

Table 246. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section
(X'31') (continued)

Offset
(bytes)

Length
(bytes) Description

006 002 Length in bytes of payload data: xxx

008 002 Reserved, binary zero.

Start of Associated Data section

010 001 Associated Data version:

X'03' Version 3

011 001 Key format and security flag:

External key-token:

X'40' Unencrypted RSA private-key subsection identifier

X'42' Encrypted RSA private-key subsection identifier

Internal key-token:

X'08' Encrypted RSA private-key subsection identifier

All other values are reserved and undefined.

012 001 Key source flag:

External key-token: Reserved, binary zero.

Internal key-token:
X'21' Imported from cleartext
X'22' Imported from ciphertext
X'23' Generated using regeneration data
X'24' Randomly generated

All other values are reserved and undefined.

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'02' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any. Otherwise
32 bytes of X'00'.

047 003 Reserved, binary zero.

Key token formats

870 Common Cryptographic Architecture Application Programmer's Guide

Table 246. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section
(X'31') (continued)

Offset
(bytes)

Length
(bytes) Description

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control flag:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Format restriction for digital-signature hash-formatting method:

Value Meaning
B'0000 0000'

No format restriction
B'0000 0001'

ISO-9796 only
B'0000 0010'

PKCS-1.0 only
B'0000 0011'

PKCS-1.1 only
B'0000 0100'

PKCS-PSS only
B'0000 0101'

X9.31 only
B'0000 0110'

ZERO-PAD only

All other values are reserved and undefined.

052 002 Length of the prime number, p, in bytes: ppp.

054 002 Length of the prime number, q, in bytes: qqq

056 002 Length of dp : rrr.

058 002 Length of dq : sss.

060 002 Length of U: uuu.

062 002 Length of modulus n: nnn.

064 004 Reserved, binary zero.

End of Associated Data

068 048 Object Protection Key (OPK) data: 16-byte confounder followed by 32-byte AES key.

External key-token: Encrypted with an AES key-encrypting key (AES KEK)

Internal key-token: Encrypted with the APKA master key.

Key token formats

Chapter 19. Key token formats 871

|||

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

Table 246. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section
(X'31') (continued)

Offset
(bytes)

Length
(bytes) Description

116 016 Key verification pattern

External key-token:

Encrypted private key
Key-encrypting key verification pattern

Clear private key
Binary zero

Skeleton
Binary zero

Internal key-token:

Encrypted private key
APKA master-key verification pattern

Skeleton
Binary zero

132 002 Reserved, binary zeros

134 nnn Modulus, n, n=pq, where p and q are prime.

134+nnn xxx Payload starts here and includes:

When this section is unencrypted:

v Clear prime number p

v Clear prime number q

v Clear dp

v Clear dq

v Clear U

v Length xxx bytes: ppp + qqq + rrr + sss +uuu + 0

When this section is encrypted:

It contains key within the AESKW-wrapped payload. The encrypted-key section is a blob
that will never be revealed in the clear, and therefore is not defined here.

RSA private key token, 1024-bit Modulus-Exponent internal
format for cryptographic coprocessor feature

The format of the RSA private key token, 1024-bit Modulus-Exponent internal
format for cryptographic coprocessor feature.

Table 247 shows the format of the RSA private key token, 1024-bit
Modulus-Exponent internal format for cryptographic coprocessor feature.

Table 247. RSA private internal key token, 1024-bit Modulus-Exponent format for cryptographic coprocessor feature

Offset
(decimal)

Length
(bytes) Description

000 001 X'02', section identifier, RSA private key.

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

Key token formats

872 Common Cryptographic Architecture Application Programmer's Guide

Table 247. RSA private internal key token, 1024-bit Modulus-Exponent format for cryptographic coprocessor
feature (continued)

Offset
(decimal)

Length
(bytes) Description

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the section end.
This hash value is checked after an enciphered private key is deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02' RSA private key.

029 001 Format of external key from which this token was derived:

Value Description
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public key section. If no
sections follow, this field is set to binary zeros.

050 001 Key use flag bits.
B'11xx xxxx'

Only key unwrapping (KM-ONLY)
B'10xx xxxx'

Both signature generation and key unwrapping (KEY-MGMT)
B'01xx xxxx'

Undefined
B'00xx xxxx'

Only signature generation (SIG-ONLY)

All other bits reserved, set to binary zero.

051 009 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under a PKA master key—can be under the
Signature Master Key (SMK) or Key Management Master Key (KMMK) depending on
key use.

108 128 Secret key exponent d, encrypted under the OPK. d = e-1 mod((p-1)(q-1))

236 128 Modulus, n. n = pq where p and q are prime and 1 < n < 2 1024.

RSA variable Modulus-Exponent token
A description of the fields in the new variable length Modulus-Exponent token.
RSA variable Modulus-Exponent token.

Table 248 describes the fields in the new variable length Modulus-Exponent token.
Currently, only the external form of the token will be used. There are no blinding
values for the token. The latest level hardware makes this unnecessary.

Table 248. RSA variable Modulus-Exponent token format

Number If External Key
New version '09'
field If Internal Key

Length
in bytes

1 '09' sectionId '09' 1

2 '00' version '00' 1

3 132 + dLength + nLength +
padLength

sectionLength 132 + dLength + nLength +
padLength

2

4 Hash over fields 7 - end of section
(clear values)

sha1Hash Hash over fields 7 - end of section 20

Key token formats

Chapter 19. Key token formats 873

Table 248. RSA variable Modulus-Exponent token format (continued)

Number If External Key
New version '09'
field If Internal Key

Length
in bytes

5 8 + dLength + padLength encrypted
sectionLength

8 + dLength + padLength 2

6 This is actually a reserved field, not
a pad '0000'

pad '0000' 2

7 '82' encrypted external key or
'00' clear external key

keyFormat '02' encrypted operational key 1

8 '00' pedigree '21', '22', '23', or '24' as '06' token 1

9 Hash over sections which follow the
public key section, or '00'

sha1Key
NameHash

Hash over sections which follow the
public key section, or '00'

20

10 ’02’ indicates that the key is
translatable

keyUsageFlag same as in '06' 1

11 '00' reserved1 '00' 1

12 Binary zeroes OPK 8 byte confounder + 40-byte (5-part)
DES key, encrypted with the PKA
master key

48

13 Binary zeroes mkHash Pattern 16 byte MKVP 16

14 Length of private exponent dLength Length of private exponent 2

15 Length of modulus nLength Length of modulus 2

16 Length required to pad dLength to a
multiple of 8

padLength Length required to pad dLength to a
multiple of 8

2

17 '0000' reserved2 '0000' 2

18 Random value - encrypted data
(with PKA MK) begins here

confounder encrypted data (with 5-part OPK)
begins here

8

19 <d follows, then
pad, then n>

1

ECC key token
The format of ECC public and private key tokens.

Table 253 on page 878 and Table 251 on page 875 show the format of ECC public
and private key tokens.

CCA allows a choice between two types of elliptic curves when generating an ECC
key. One is Brainpool, and the other is Prime. Table 249 and Table 250 on page 875
show the size and name of each supported elliptic curve, along with its object
identifier (OID) in dot notation.

Table 249. Supported Prime elliptic curves by size, name, and object identifier

Size of prime p in
bits (key length) OID in dot notation

ANSI X9.62 ECDSA
prime curve ID

NIST-recommended
elliptic curve ID

SEC 2 recommended
elliptic curve domain
parameter

192 1.2.840.10045.3.1.1 prime192v1 P-192 secp192r1

224 1.3.132.0.33 N/A P-224 secp224r1

256 1.2.840.10045.3.1.7 prime256v1 P-256 secp256r1

384 1.3.132.0.34 N/A P-384 secp384r1

Key token formats

874 Common Cryptographic Architecture Application Programmer's Guide

Table 249. Supported Prime elliptic curves by size, name, and object identifier (continued)

Size of prime p in
bits (key length) OID in dot notation

ANSI X9.62 ECDSA
prime curve ID

NIST-recommended
elliptic curve ID

SEC 2 recommended
elliptic curve domain
parameter

521 1.3.132.0.35 N/A P-521 secp521r1

Table 250. Supported Brainpool elliptic curves by size, name, and object identifier

Size of prime p in bits (key length) OID in dot notation Brainpool elliptic curve ID

160 1.3.36.3.3.2.8.1.1.1 brainpoolP160r1

192 1.3.36.3.3.2.8.1.1.3 brainpoolP192r1

224 1.3.36.3.3.2.8.1.1.5 brainpoolP224r1

256 1.3.36.3.3.2.8.1.1.7 brainpoolP256r1

320 1.3.36.3.3.2.8.1.1.9 brainpoolP320r1

384 1.3.36.3.3.2.8.1.1.11 brainpoolP384r1

512 1.3.36.3.3.2.8.1.1.13 brainpoolP512r1

Table 251. ECC private-key section (X'20')

Offset (bytes) Length (bytes) Description

000 001 Section identifier:
X'20' ECC private key (ECC-PAIR)

001 001 Section version number:

Value Meaning
X'00' Legacy section version, no pedigree field, no IBM Extended Associated

Data (IEAD), no support for ECC key-derivation information section
(X'23').
Note: Use of this section version is provided for backward compatibility.
Version 1 has additional security features and should be used instead.

X'01' Latest section version. Includes pedigree field, IEAD, SHA-256 hash of all
optional sections to IEAD, supports ECC key-derivation information
section (X'23').

002 002 Length of section in bytes.

004 001 Wrapping method:
X'00' Section is unencrypted (clear)
X'01' AESKW (ANS X9.102)

005 001 Algorithm used to hash associated data section:
X'00' None (no key present or key is clear key)
X'02' SHA-256
Note: The message digest is calculated on the associated data section, offset 76 to
offset 92 + kl + lead + uad. The message digest becomes part of the payload prior
to its encryption.

006 002 Reserved, binary zero.

Key token formats

Chapter 19. Key token formats 875

|

|

|
||
||
|
|
|

Table 251. ECC private-key section (X'20') (continued)

Offset (bytes) Length (bytes) Description

008 001 Key-usage flag.

Management of symmetric keys and generation of digital signatures:
B'11xx xxxx'

Only key establishment (KM-ONLY)
B'10xx xxxx'

Both signature generation and key establishment (KEY-MGMT)
B'01xx xxxx'

Undefined
B'00xx xxxx'

Only signature generation (SIG-ONLY)

Translation control:
B'xxxx xx1x'

Private key translation is allowed (XLATE-OK)
B'xxxx xx0x'

Private key translation is not allowed (NO-XLATE)

009 001 Curve type:
X'00' Prime
X'01' Brainpool

010 001 Key format and security flag:
X'08' Encrypted internal ECC private key
X'40' Unencrypted external ECC private key
X'42' Encrypted external ECC private key

011 001 Section version X'00' (see offset 001):

Reserved, binary zero

Section version X'01' (see offset 001):

Pedigree/Key source flag byte

External key-token:

Value Meaning
X'00' None/Clear
X'24' Randomly generated

Internal key-token:

Value Meaning
X'00' None/Clear
X'21' Imported from cleartext
X'22' Imported from ciphertext
X'24' Randomly generated

012 002 Length of prime p in bits. See Table 249 on page 874 and Table 250 on page 875.
X'00A0' 160 (Brainpool)
X'00C0' 192 (Brainpool, Prime)
X'00E0' 224 (Brainpool, Prime)
X'0100' 256 (Brainpool, Prime)
X'0140' 320 (Brainpool)
X'0180' 384 (Brainpool, Prime)
X'0200' 512 (Brainpool)
X'0209' 521 (Prime)

014 002 Length in bytes of IBM associated data.

Key token formats

876 Common Cryptographic Architecture Application Programmer's Guide

Table 251. ECC private-key section (X'20') (continued)

Offset (bytes) Length (bytes) Description

016 008 Key verification pattern.

External key-token
v For an encrypted private key, KEK verification pattern (KVP)
v For a clear private key, binary zeros
v For a skeleton, binary zeros

Internal key-token
v For encrypted private key, master-key verification pattern (MKVP)
v For a skeleton, binary zeros

024 048 Object Protection Key (OPK).

External key-token: Reserved, binary zero.

Internal key token:

OPK data consists of an 8-byte integrity check value (ICV) and length indicators,
an 8-byte confounder, and a 256-bit AES key used with the AESKW algorithm to
encrypt the ECC private key contained in an AESKW formatted section.
Note: The OPK is encrypted by the APKA master key using AESKW (ANS
X9.102). The OPK has no associated data.

072 002 Length in bytes of associated data.

074 002 Length in bytes of formatted section, bb.

Associated data section

Start of IBM associated data

076 001 Associated data section version number.

Includes IBM associated data and user-definable associated data.

Value Meaning

X'00' Legacy associated data section version. Only defined for section version
number X'00' (see offset 001).

X'01' Latest associated data section version. Only defined for section version
number X'01' (see offset 001).

077 001 Length in bytes of the key label: kl (0 - 64).

078 002 Length in bytes of the IBM associated data (AD), including key label and IBM
extended associated data.

AD data section version number (see offset 076)

Length of AD

X'00' ≥ 16

X'01' ≥ 52

080 002 Length in bytes of the IBM extended associated data: iead.

AD data section version number (see offset 076)

Length of AD

X'00' iead = 0

X'01' iead = 36

082 001 Length in bytes of the user-definable associated data: uad (0 - 100).

083 001 Curve type (see offset 009).

Key token formats

Chapter 19. Key token formats 877

Table 251. ECC private-key section (X'20') (continued)

Offset (bytes) Length (bytes) Description

084 002 Length of p in bits (see offset 012).

086 001 Key-usage flag (see offset 008).

087 001 Key format and security flag (see offset 010).

088 001 AD section version number X'00' (see offset 001):
Reserved, binary zero

AD section version number X'01' (see offset 001):
Pedigree/Key source flag byte (see offset 011)

089 003 Reserved, binary zero.

092 kl Optional key label.

092 + kl iead Optional IBM extended associated data. For AD section version number X'01' (see
offset 076):

Consists of a single section hash tag-length-value (TLV) object with TLV tag
identifier X'60'. Refer to Table 252.
Note: A section hash TLV object cannot be present in section version number
X'00', and will always be present in section version number of X'01'. When present,
it contains the SHA-256 hash digest of all the optional sections that follow the
public key section, if any. Otherwise, it contains binary zeros.

End of IBM associated data

092 + kl + iead uad Optional user-definable associated data.

End of associated data section

092 + kl + iead
+ uad

bb Formatted section (payload), which includes private key d:
v Clear-key section contains d.
v Encrypted-key section contains d within the AESKW-wrapped payload.

Table 252. ECC section hash TLV object (X'60') of Version 1 ECC private-key section (X'20')

Offset (bytes) Length (bytes) Description

000 001 Tag identifier:

X'60' ECC section hash TLV object

001 001 TLV object version number (X'00').

002 002 TLV object length in bytes (X'0024').

004 032 SHA-256 hash of all the optional sections that follow the public-key section, if any.
Otherwise binary zeros.
Note: A section hash TLV object will always be present in a PKA key token that
has an ECC private key section (X'20') with a section version number of X'01'.

Table 253. ECC public key section (X'21')

Offset (bytes) Length (bytes) Description

000 001 Section identifier:
X'21' ECC public key (ECC-PUBL)

001 001 Section version number (X'00').

002 002 Section length in bytes.

004 004 Reserved, binary zero.

Key token formats

878 Common Cryptographic Architecture Application Programmer's Guide

Table 253. ECC public key section (X'21') (continued)

Offset (bytes) Length (bytes) Description

008 001 Curve type:
X'00' Prime
X'01' Brainpool

009 001 Reserved, binary zero

010 002 Length of prime p in bits. See Table 249 on page 874 and Table 250 on page 875.
X'00A0' 160 (Brainpool)
X'00C0' 192 (Brainpool, Prime)
X'00E0' 224 (Brainpool, Prime)
X'0100' 256 (Brainpool, Prime)
X'0140' 320 (Brainpool)
X'0180' 384 (Brainpool, Prime)
X'0200' 512 (Brainpool)
X'0209' 521 (Prime)

012 002 Length of public key q in bytes. Value includes key material length plus a one-byte
flag to indicate if the key material is compressed.

014 cc Public key q.

Table 254. ECC key-derivation information section (X'23')

Offset
(bytes) Length (bytes) Description

000 001 Section identifier:
X'23' ECC key-derivation information

001 001 Section version number (X'00')

002 002 Section length in bytes (8)

004 001 Algorithm of key to be derived:

Value Algorithm
X'01' DES
X'02' AES

005 001 Type of key to be derived:

Value Meaning
X'01' DATA
X'02' EXPORTER
X'03' IMPORTER
X'04' CIPHER
X'05' DECIPHER
X'06' ENCIPHER
X'07' CIPHERXI
X'08' CIPHERXL
X'09' CIPHERXO

006 002 Key-bit length:

Value Meaning
X'0040' (64)

DES
X'000' (128)

AES, DES
X'00C0' (192)

AES
X'0100' (256)

AES
Note: Bit length of DES keys includes parity bits.

Key token formats

Chapter 19. Key token formats 879

PKA key tokens
PKA key tokens contain RSA or ECC private or public keys.

PKA tokens are variable length because they contain either RSA or ECC key
values, which are variable in length. Consequently, length parameters precede all
PKA token parameters. The maximum allowed size is 3500 bytes. PKA key tokens
consist of a token header, any required sections, and any optional sections.
Optional sections depend on the token type. PKA key tokens can be public or
private, and private key tokens can be internal or external. Therefore, there are
three basic types of tokens, each of which can contain either RSA or ECC
information:
v A public key token
v A private external key token
v A private internal key token

Public key tokens contain only the public key. Private key tokens contain the
public and private key pair. Table 255 summarizes the sections in each type of
token.

Table 255. Summary of PKA key token sections

Section
Public external
key token

Private external
key token

Private internal
key token

Header X X X

RSA or ECC private key
information

X X

RSA or ECC public key
information

X X X

Key name (optional) X X

Internal information X

As with DES key tokens, the first byte of a PKA key token contains the token
identifier which indicates the type of token.

A first byte of X'1E' indicates an external token with a cleartext public key and
optionally a private key that is either in cleartext or enciphered by a transport
key-encrypting key. An external key token is in importable key form. It can be sent
on the link.

A first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered by the PKA master key and ready for internal use.
An internal key token is in operational key form. A PKA private key token must be
in operational form for the coprocessor to use it. (PKA public key tokens are used
directly in the external form.)

Formats for public and private external and internal RSA and ECC key tokens
begin in “RSA public key token” on page 853.

PKA null key token
The format for a PKA null key token.

Table 256 on page 881 shows the format for a PKA null key token.

Key token formats

880 Common Cryptographic Architecture Application Programmer's Guide

Table 256. PKA null key token format

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'.

2 - 3 X'0008' Length of the key token structure.

4 - 7 Ignored (should be zero).

PKA key token sections
A PKA key token is either for an ECC key or an RSA key. In either case, it is the
concatenation of an ordered set of sections.

PKA key tokens can be built with the PKA Key Token Build verb. Either RSA or
ECC key tokens can be built.

An RSA key-token is a concatenation of these ordered sections:
v A token header:

– An external header (first byte X'1E')
– An internal header (first byte X'1F')

v An optional RSA private-key section in one of the token types shown in
Table 257:

Table 257. Optional RSA private key sections

Private key
section
identifier (token
type)

Modulus bit
length and key
format

RSA key not
protected by an
object
protection key
(OPK)

RSA key
protected by
OPK that is
wrapped by
DES KEK or
PKA MK

RSA key
protected by
OPK that is
wrapped by an
AES key

External RSA key tokens (first byte of PKA key-token header X'1E')

X'02' (RSA-PRIV) 512 - 1024 M-E
(Modulus-
Exponent)

Private key in
the clear or
wrapped by DES
KEK

N/A N/A

X'05' (input only,
replaced by
X'08')

512 - 2048 CRT
(Chinese-
Remainder
Theorem)

Private key in
the clear

N/A N/A

X'08' (RSA-CRT) 512 - 4096 CRT N/A Private key in
the clear or
wrapped by
OPK, with OPK
data wrapped by
DES KEK

N/A

X'09'
(RSAMEVAR)

512 - 4096 M-E Private key in
the clear or
wrapped by DES
KEK

N/A N/A

Key token formats

Chapter 19. Key token formats 881

Table 257. Optional RSA private key sections (continued)

Private key
section
identifier (token
type)

Modulus bit
length and key
format

RSA key not
protected by an
object
protection key
(OPK)

RSA key
protected by
OPK that is
wrapped by
DES KEK or
PKA MK

RSA key
protected by
OPK that is
wrapped by an
AES key

X'30'
(RSA-AESM)

512 - 4096 M-E N/A N/A Private key in
the clear or
wrapped by
OPK, with OPK
data wrapped by
AES KEK

X'31'
(RSA-AESC)

512 - 4096 CRT N/A N/A Private key in
the clear or
wrapped by
OPK, with OPK
data wrapped by
AES KEK

Internal RSA key tokens (first byte of PKA key-token header X'1F')

X'05' (input only,
replaced by
X'08')

512 - 2048 CRT Private key
wrapped by
PKA MK

N/A N/A

X'06' (old
RSA-PRIV)

512 - 1024 M-E N/A Private key
wrapped by
OPK, with OPK
data wrapped by
PKA MK

N/A

X'08' (RSA-CRT) 512 - 4096 CRT N/A Private key
wrapped by
OPK, with OPK
data wrapped by
PKA MK

N/A

X'30'
(RSA-AESM)

512 - 4096 M-E N/A N/A Private key in
the clear or
wrapped by
OPK, with OPK
data wrapped by
APKA MK

X'31'
(RSA-AESC)

512 - 4096 CRT N/A N/A Private key in
the clear or
wrapped by
OPK, with OPK
data wrapped by
APKA MK

v a required RSA public-key section (section identifier X'04')
v an optional PKA private-key name section (section identifier X'10')
v for internal key-tokens with private keys in X'02' or X'05' sections, a required

RSA private-key blinding section (section identifier X'FF'), otherwise not allowed

Key token formats

882 Common Cryptographic Architecture Application Programmer's Guide

Table 258. RSA private-key blinding information

Offset
(bytes)

Length
(bytes) Description

000 001 Section identifier:

X'FF' RSA private-key blinding information

Used with internal key tokens created by the CCA Support
Program, Version 1 (having section identifiers X'02' or X'05').

001 001 Section version number (X'00').

002 002 Section length in bytes (34+rrr+iii+xxx).

004 020 SHA-1 hash value of the internal information subsection
cleartext, offset 28 to the section end. This hash value is
checked after an enciphered private key is deciphered for use.

024 002 Length in bytes of the encrypted secure subsection.

026 002 Reserved, binary zero.

Start of the encrypted secure information subsection. An internal token with section
identifiers X'02' or X'05' uses the asymmetric master key and the EDE3 algorithm. See
“Triple-DES ciphering algorithms” on page 1030.

028 002 Length of the random number r, in bytes: rrr.

030 002 Length of the random number multiplicative inverse r-1, in
bytes: iii.

032 002 Length of the padding field, in bytes xxx.

034 rrr Random number r (used in blinding).

034 + rrr iii Random number r-1 (used in blinding).

034 + rrr +
iii

xxx X'00' padding of length xxx bytes such that the length from the
start of the encrypted subsection to the end of the padding
field is a multiple of 8 bytes.

End of the encrypted secure information subsection.

v an optional PKA public-key certificate section (section identifier X'40' with
subsidiary sections).

An ECC key-token is a concatenation of these ordered sections:
v a required PKA key-token header:

– an external header (first byte X'1E')
– an internal header (first byte X'1F')
– an optional ECC private-key section in the token type shown in Table 259.

Table 259. Optional ECC private key sections

Private key section
identifier (token
type)

ECC curve type: length of prime p
in bits

ECC key protected by OPK
that is wrapped by an AES
key

External ECC key tokens (first byte of PKA key-token header X'1E')

X'20' (ECC-PAIR) Brainpool:
160, 192, 224, 256, 320, 384, or 512

Prime:
192, 224, 256, 384, or 521

Private key in the clear or
wrapped by OPK, with OPK
and its data wrapped by AES
KEK

Internal ECC key tokens (first byte of PKA key-token header X'1F')

Key token formats

Chapter 19. Key token formats 883

|

Table 259. Optional ECC private key sections (continued)

Private key section
identifier (token
type)

ECC curve type: length of prime p
in bits

ECC key protected by OPK
that is wrapped by an AES
key

X'20' (ECC-PAIR) Brainpool:
160, 192, 224, 256, 320, 384, or 512

Prime:
192, 224, 256, 384, or 521

Private key wrapped by
OPK, with OPK and its data
wrapped by APKA MK

v a required ECC public-key section (section identifier X'21')
v an optional PKA private-key name section (section identifier X'10')
v an optional PKA public-key certificate section (section identifier X'40')
v an optional ECC key-derivation information section (section identifier X'23').

Integrity of PKA private key sections containing an encrypted
RSA key

With the exception of RSA key tokens containing an AES encrypted OPK (sections
X'30' and X'31'), if an RSA key-token contains information for an encrypted
private-key, then the integrity of the information within the token can be verified
by computing and comparing the SHA-1 message digest values that are found at
offsets 4 and 30 within the private-key section.

The SHA-1 message digest at offset 4 requires access to the cleartext values of the
private-key components. The cryptographic engine verifies this hash quantity
whenever it retrieves the secret key for productive use.

A second SHA-1 message digest, located at offset 30 (excluding sections X'30' and
X'31'), is computed on optional, designated key-token information following the
public-key section. The value of this SHA-1 message digest is included in the
computation of the message digest at offset 4. As with the offset 4 value, the
message digest at offset 30 is validated whenever a private key is recovered from
the token for productive use.

CCA provides PKA private key sections X'30' and X'31'. These sections can contain
an AESKW-wrapped (ANS X9.102) RSA private key (wrapped by the OPK) and an
AES encrypted OPK. When the RSA key with an AES encrypted OPK is wrapped,
a message digest is calculated over the associated data section contained in the
private-key section. The calculated message digest becomes part of the payload
before it is wrapped. There is no way for a user to retrieve this value to validate it.
The same is true for ECC private keys, which are AESKW-wrapped.

In addition to the hash checks, various token-format and content checks are
performed to validate the key values.

The optional PKA private-key name section can be used by access-monitor systems
to ensure that the application program is entitled to employ the particular private
key.

Number representation in PKA key tokens
View tables that present information about number representations in the available
formats of PKA key tokens.

Key token formats

884 Common Cryptographic Architecture Application Programmer's Guide

v All length fields are in binary.
v All binary fields (exponents, lengths, and so forth) are stored with the

high-order byte first. Thus the least significant bits are to the right and preceded
with zero-bits to the width of a field.

v In variable-length binary fields that have an associated field-length value,
leading bytes that would otherwise contain X'00' can be dropped and the field
shortened to contain only the significant bits.

Table 260. PKA key token header

Offset (bytes) Length (bytes) Description

000 001 Token identifier (a flag that indicates token type)
X'00' PKA null key-token
X'1E' PKA external key-token; the optional private-key is either in cleartext or

enciphered by a transport key-encrypting key
X'1F' PKA internal key-token; the private key is enciphered by a master key

001 001 Token version number (X'00').

002 002 Length in bytes of the token structure (big endian).

004 004 Reserved, binary zero.

PKA public-key certificate section
A PKA public-key certificate section can be optionally included in a PKA key
token. The section is composed of a series of subsections and optional
tag-length-value (TLV) objects to form a self-defining data structure. One or more
TLV objects can be included in the variable portion of a higher-level TLV object.
The section and subsections must occur in the following order:
v A required PKA public-key certificate (section identifier X'40')
v A required public-key subsection:

– For an ECC key, an ECC public-key subsection (subsection identifier X'22')
– For an RSA key, an RSA public-key subsection (subsection identifier X'41')

v An optional PKA certificate information subsection (subsection identifier X'42')
which includes one, two, or three TLV objects:
1. PKA user-data TLV object (tag identifier X'50')
2. PKA private key ID object (tag identifier X'51')
3. PKA serial number TLV object (tag identifier X'52')

v A required PKA signature subsection (subsection identifier X'45'), followed by
any number of optional PKA signature subsections

The PKA public-key certification section is described followed by descriptions of
the related subsections and TLV objects that can be concatenated to the section.

Table 261. PKA public-key certificate section (X'40')

Offset (bytes) Length (bytes) Description

000 001 Section identifier:
X'40' PKA public-key certificate

001 001 Section version number (X'00').

002 002 Section length in bytes. Includes:
v Section header
v Public key subsection
v Information subsection (optional)
v Signature subsections

Key token formats

Chapter 19. Key token formats 885

Table 262. ECC public-key subsection (X'22') of PKA public-key certificate section (X'40')

Offset (bytes) Length (bytes) Description

000 001 Subsection identifier:
X'22' ECC public-key

001 001 Subsection version number (X'00')

002 002 Subsection length in bytes (14 + xxx)

004 004 Reserved, binary zero.

008 001 Curve type:
Value Meaning
X'00' Prime
X'01' Brainpool

009 001 Reserved, binary zero.

010 002 Length of prime p in bits. Refer to Table 250 on page 875, and Table 249 on page
874.
Value Length (bits)
X'00A0' 160 (Brainpool)
X'00C0' 192 (Brainpool, Prime)
X'00E0' 224 (Brainpool, Prime)
X'0100' 256 (Brainpool, Prime)
X'0140' 320 (Brainpool)
X'0180' 384 (Brainpool, Prime)
X'0200' 512 (Brainpool)
X'0209' 521 (Prime)

012 002 Length of public key q in bytes. Value includes length key material plus one (to
include a one-byte flag that indicates if the key material is compressed).

014 xxx Public key q.

Table 263. RSA public-key subsection (X'41') of PKA public-key certificate section (X'40')

Offset (bytes) Length (bytes) Description

000 001 Subsection identifier:
X'41' RSA public-key

001 001 Subsection version number (X'00').

002 002 Subsection length in bytes (12 + xxx + yyy).

004 002 Reserved, binary zero.

006 002 RSA public-key exponent field length in bytes, xxx.

008 002 Public-key modulus length in bits.

010 002 RSA public-key modulus field length in bytes, yyy.

012 xxx Public-key exponent, e (this field length is typically 1, 3, or 64 - 512 bytes). e must
be odd, and 1 ≤ e < n.

012+xxx yyy Modulus, n. n = pq, where p and q are prime and 2512 ≤ n < 24096. This field is
absent when the modulus is contained in the private-key section. If present, the
field length is 64 - 512 bytes.

Table 264. PKA certificate-information subsection (X'42') of PKA public-key certificate section (X'40')

Offset (bytes) Length (bytes) Description

000 001 Subsection identifier:
X'42' PKA certificate information

001 001 Subsection version number (X'00').

Key token formats

886 Common Cryptographic Architecture Application Programmer's Guide

Table 264. PKA certificate-information subsection (X'42') of PKA public-key certificate section (X'40') (continued)

Offset (bytes) Length (bytes) Description

002 002 Subsection length in bytes (4+iii), where iii is:

length of TLV object X'50' +
length of TLV object X'51' +
length of TLV object X'52'.

004 iii The information field that contains any of the optional TLV objects:

Tag Description
X'50' User data
X'51' Private key EID
X'52' Serial number

Table 265. PKA user-data TLV object (X'50') of PKA certificate-information subsection (X'42')

Offset (bytes) Length (bytes) Description

000 001 Tag identifier:
X'50' PKA user-data TLV object

001 001 TLV object version number (X'00').

002 002 TLV object length in bytes (4+uuu; 0≤uuu≤64).

004 uuu User-provided data.

Table 266. PKA private-key EID TLV object (X'51') of PKA certificate-information subsection (X'42')

Offset (bytes) Length (bytes) Description

000 001 Tag identifier:
X'51' PKA private-key EID TLV object

001 001 TLV object version number (X'00').

002 002 TLV object length in bytes (X'0014').

004 016 EID string of the CCA node that generated the public and private key. This TLV
must be provided in a skeleton key-token with usage of the PKA Key Generate
verb. The verb fills in the EID string prior to certifying the public key. The EID
value is encoded using the ASCII character set.

Table 267. PKA serial number TLV object (X'52') of PKA certificate-information subsection (X'42')

Offset (bytes) Length (bytes) Description

000 001 Tag identifier:
X'52' PKA serial number TLV object

001 001 TLV object version number (X'00').

002 002 TLV object length in bytes (X'000C').

004 008 Serial number of the coprocessor that generated the public and private key. This
TLV must be provided in a skeleton key-token with usage of the PKA Key
Generate verb. The verb fills in the serial number prior to certifying the public key.

Table 268. PKA signature subsection (X'45') of PKA public-key certificate section (X'40')

Offset (bytes) Length (bytes) Description

000 001 Subsection identifier:
X'45' PKA signature

001 001 Subsection version number (X'00').

Key token formats

Chapter 19. Key token formats 887

Table 268. PKA signature subsection (X'45') of PKA public-key certificate section (X'40') (continued)

Offset (bytes) Length (bytes) Description

002 002 Subsection length in bytes (70+sss).

004 001 Hash algorithm identifier:

For RSA public-key (X'04') with PKA public-key certificate (X'40'):
Value Meaning
X'01' SHA-1

For ECC public-key (X'21') with PKA public-key certificate (X'40'):
X'03' SHA-256
X'04' SHA-512

005 001 Signature formatting identifier:

For RSA public-key (X'04') with PKA public-key certificate (X'40'):
Value Meaning
X'01' ISO/IEC 9796-1 process

For ECC public-key (X'21') with PKA public-key certificate (X'40'):
Value Meaning
X'05' ANS X9.62 ECDSA

006 064 Signature-key identifier; the key label of the key used to generate the signature.

070 sss The signature field:

The signature is calculated on data that begins with the signature section identifier
(X'40') through the byte immediately preceding this signature field.

Note: More than one signature subsection can be included in a signature section. This accommodates the possibility
of a self-signature as well as a device-key signature.

HMAC key token
The two formats of the HMAC key token.

HMAC key tokens have two formats, “HMAC MAC variable-length symmetric key
token” on page 920 and “HMAC symmetric null key token.”

HMAC symmetric null key token

Table 269 shows the format of the HMAC symmetric null key token.

Table 269. HMAC symmetric null key token format

Offset (bytes))
Length
(bytes) Description

Header

0 1 X'00' Token identifier, which indicates that this is a null key token.

1 1 X'00' Version

2 - 3 2 X'0008' Length of the key token structure.

4 - 7 4 Ignored (zero).

Key token formats

888 Common Cryptographic Architecture Application Programmer's Guide

Variable-length symmetric key tokens
CCA supports a variable-length symmetric key-token. This key token has a version
number of X'05' (offset 4). Use the Key Token Build2 (CSNBKTB2) verb to build
skeleton variable-length symmetric key tokens used as input by the Key Generate2
(CSNBKGN2) or Key Part Import2 (CSNBKPI2) verbs, which return these key
tokens with encrypted keys in the key-token payload.

Table 270 shows the general format of the token version number X'05' key token.

Table 271 on page 904 shows the format of the CIPHER variable-length symmetric
key-token that can be used with the AES algorithm. An AES CIPHER key-token is
used by the Symmetric_Algorithm_Decipher (CSNBSAD) and
Symmetric_Algorithm_Encipher (CSNBSAE) verbs to decipher or encipher data
with the AES algorithm.

Table 272 on page 912 shows the format of the MAC variable-length symmetric
key-token that can be used with the AES algorithm.

Table 273 on page 920 shows the format of the MAC variable-length symmetric
key-token that can be used with the HMAC algorithm. An HMAC MAC key-token
is used by the HMAC_Generate (CSNBHMG) and HMAC_Verify (CSNBHMV)
verbs to generate or verify keyed hash message authentication codes.

Table 274 on page 928 shows the format of the EXPORTER and IMPORTER
variable-length symmetric key tokens that can be used with the AES algorithm. An
EXPORTER operational key-token is used by the Symmetric_Key_Export
(CSNDSYX) verb to export an internal AES or HMAC variable-length symmetric
key-token into an external variable-length symmetric key-token, either into an
AESKW or PKOAEP2 wrapped payload. An IMPORTER operational key-token is
used by the Symmetric_Key_Import2 (CSNDSYI2) verb to import an external AES
or HMAC variable-length symmetric key-token, containing either an AESKW or
PKOAEP2 wrapped payload, into an internal variable-length symmetric key-token.

Table 275 on page 938 shows the format of the PINPROT, PINCALC, and PINPRW
variable-length symmetric key tokens that can be used with the AES algorithm.

Table 276 on page 947 shows the format of the DESUSECV variable-length
symmetric key tokens that can be used with the AES algorithm.

“AES DKYGENKY variable-length symmetric key token” on page 951 shows the
format of the DKYGENKY variable-length symmetric key tokens that can be used
with the AES algorithm.

Table 278 on page 960 shows the format of the SECMSG variable-length symmetric
key tokens that can be used with the AES algorithm.

General format of a variable-length symmetric key-token
View a table showing the general format of a variable-length symmetric key-token.

Table 270. General format of a variable-length symmetric key-token, version X'05'

Offset (bytes)
Length
(bytes) Description

Header

Key token formats

Chapter 19. Key token formats 889

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

000 01 Token identifier:

Value Meaning
X'00' Null key-token.
X'01' Internal key-token (encrypted key is wrapped with the master key, the key

is clear, or there is no payload).
X'02' External key-token (encrypted payload is wrapped with a transport key,

the payload is clear, or there is no payload). A transport key can be a
key-encrypting key or an RSA public-key.

All unused values are reserved and undefined.

001 01 Reserved, binary zero.

002 02 Length in bytes of the overall token structure. For a null key-token, the value is 8.
Otherwise, the length is calculated as:

46 + (2 * kuf) + (2 * kmf) + kl + iead + uad + tlvs + ((pl + 7) / 8)

Value Meaning
kuf See key usage fields count at offset 44.
kmf See key management fields count at offset 45 + (2 * kuf).
kl See key label length at offset 46 + (2 * kuf) + (2 * kmf).
iead See IBM extended associated data length at offset 46 + (2 * kuf) + (2 * kmf)

+ kl.
uad See user associated data length at offset 46 + (2 * kuf) + (2 * kmf) + kl +

iead.
tlvs This value is currently 0. Tag-length-value data is defined for future use.
pl See payload length in bits at offset 38.

004 01 Token version number (identifies the format of this key token):

Value Meaning
X'05' Version 5 format of the key token (variable-length symmetric key-token)

005 03 Reserved, binary zero.

End of header

Wrapping information section (all data related to wrapping the key)

008 01 Key material state:

Value Meaning
X'00' No key is present. This is called a skeleton key-token. The key token is

external or internal.
X'01' Key is clear. Only valid with AES CIPHER or HMAC MAC. The key token

is external or internal.
X'02' Key is wrapped with a transport key. When the encrypted section

key-wrapping method is AESKW (value at offset 26 is X'02'), the transport
key is an AES key-encrypting key. When it is PKOAEP2 (value at offset 26
is X'03'), the transport key is an RSA public-key. The key token is external.

X'03' Key is wrapped with the AES master-key. The encrypted section
key-wrapping method is AESKW. The key token is internal.

All unused values are reserved and undefined.

Key token formats

890 Common Cryptographic Architecture Application Programmer's Guide

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

009 01 Key verification pattern (KVP) type:

Value Meaning
X'00' No KVP (no key present, key is clear, or key is wrapped with an RSA

public-key). The key token is external or internal.
X'01' AESMK (8 leftmost bytes of SHA-256 hash: X'01 { clear AES MK). The

key token is internal.
X'02' Key-encrypting key (8 leftmost bytes of SHA-256 hash: X'01 { clear KEK).

The key token is external.

All unused values are reserved and undefined.

010 16 KVP of the key used to wrap the payload (value depends on value of key material
state, that is, the value at offset 8):

Value at offset 8
Value of KVP

X'00' The key-material state is no key present. The field should be filled with
binary zeros. The key token is external or internal.

X'01' The key-material state is key is clear. The field should be filled with binary
zeros. The key token is external or internal.

X'02' The key material state is the key is wrapped with a transport key. The
value of the KVP depends on the value of the encrypted section
key-wrapping method:
v When the key-wrapping method is AESKW (value at offset 26 is X'02'),

the field contains the KVP of the key-encrypting key used to wrap the
key. The 8-byte KEK KVP is left-aligned in the field and padded on the
right low-order bytes with binary zeros.

v When the key-wrapping method is PKOAEP2 (value at offset 26 is
X'03'), the value should be filled with binary zeros. The encoded
message, which contains the key, is wrapped with an RSA public-key.

The key token is external.
X'03' The key-material state is the key is wrapped with the AES master-key. The

field contains the MKVP of the AES master-key used to wrap the key. The
8-byte MKVP is left-aligned in the field and padded on the right low-order
bytes with binary zeros. The key token is internal.

Key token formats

Chapter 19. Key token formats 891

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

026 01 Encrypted section key-wrapping method (indicates the key-wrapping method used
to protect the data in the encrypted section):

Value Meaning
X'00' No key-wrapping method (no key present or key is clear). The key token

is external or internal.
X'02' AESKW (ANS X9.102). The key token is external with a key wrapped by

an AES key-encrypting key, or the key token is internal with a key
wrapped by the AES master-key.

X'03' PKOAEP2. Message M, which contains the key, is encoded using the
RSAES-OAEP scheme of the RSA PKCS #1 v2.1 standard. The encoded
message (EM) is produced using the given hash algorithm by encoding
message M using the Bellare and Rogaway Optimal Asymmetric
Encryption Padding (OAEP) method for encoding messages. For
PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] { [2 bytes: bit length of the clear key] { [clear key]

where hAD is the message digest of the associated data, and is calculated
using the SHA-256 algorithm on the data starting at offset 30 for the
length in bytes of all the associated data for the key token (length value at
offset 32).

EM is wrapped with an RSA public-key. The key token is external.

All unused values are reserved and undefined.

Key token formats

892 Common Cryptographic Architecture Application Programmer's Guide

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

027 01 Hash algorithm used for wrapping key or encoding message. Meaning depends on
whether the encrypted section key-wrapping method (value at offset 26) is no
key-wrapping method, AESKW, or PKOAEP2:

No key-wrapping method (value at offset 26 is X'00')

Hash algorithm used for wrapping key when encrypted section key-wrapping
method is no key-wrapping method:

Value Meaning
X'00' No hash (no key present or key is clear).

All unused values are reserved and undefined. The key token is external or
internal.

AESKW key-wrapping method (value at offset 26 is X'02')

Hash algorithm used for wrapping key when encrypted section key-wrapping
method is AESKW. The value indicates the algorithm used to calculate the message
digest of the associated data. The message digest is included in the wrapped
payload and is calculated starting at offset 30 for the length in bytes of all the
associated data for the key token (length value at offset 32).

Value Meaning
X'01' SHA-224 (not used)
X'02' SHA-256
X'04' SHA-384 (defined for future use)
X'08' SHA-512 (defined for future use)

All unused values are reserved and undefined. The key token is external or
internal.

PKOAEP2 key-wrapping method (value at offset 26 is X'03')

Hash algorithm used for encoding message when encrypted section key-wrapping
method is PKOAEP2. The value indicates the given hash algorithm used for
encoding message M using the RSAES-OAEP scheme of the RSA PKCS #1 v2.1
standard.

Value Meaning
X'01' SHA-1
X'02' SHA-256
X'04' SHA-384
X'08' SHA-512

All unused values are reserved and undefined. The key token is external.

Key token formats

Chapter 19. Key token formats 893

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

028 01 Payload format version (identifies format of the payload):

Value Meaning
X'00' V0 payload (V0PYLD). V0 payload is only supported on HMAC MAC and

AES CIPHER, EXPORTER, and IMPORTER key types.

The payload format depends on the encrypted section key-wrapping
method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there
is no payload. When the key is clear (AES CIPHER and HMAC
MAC only), the payload is unformatted. The key token is external
or internal.

X'02' The key-wrapping method is AESKW and the payload is variable
length. The payload is formatted with the minimum size possible
to contain the key material. The payload length varies for a given
algorithm and key type. The key length can be inferred by the
size of the payload. The key token is external or internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is
equal to the modulus size in bits of the RSA transport key used to
wrap the encoded message. The key token is external. When the
external key is exported, the internal target key will have the
same V0 payload format.

X'01' V1 payload (V1PYLD). V1 payload is supported on all key types except
HMAC MAC.

The payload format depends on the encrypted section key-wrapping
method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there
is no payload. When the key is clear (AES CIPHER only), the
payload is unformatted. The key token is external or internal.

X'02' The key-wrapping method is AESKW and the payload is fixed
length based on the maximum possible key size of the algorithm
for the key. The key is padded with random data to the size of
the largest key for that algorithm. This helps to deter attacks on
keys known to be weaker. The key length cannot be inferred by
the size of the payload. The key token is external or internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is
equal to the modulus size in bits of the RSA transport key used to
wrap the encoded message. The key token is external. When the
external key is exported, the internal target key will have the
same V1 payload format.

All unused values are reserved and undefined.

029 01 Reserved, binary zero.

End of wrapping information section

Clear key, AESKW, or PKOAEP2 components: (1) associated data sections and (2) optional clear key payload,
wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload (no payload if no key present)

Associated data sections: (1) required associated data section and (2) optional associated data sections

Required associated data section

Key token formats

894 Common Cryptographic Architecture Application Programmer's Guide

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

030 01 Associated data section version:

Value Meaning
X'01' Version 1 format of associated data

031 01 Reserved, binary zero.

032 02 Length in bytes of all the associated data for the key token: ≥ 16.

034 01 Length in bytes of the optional key label (kl): 0 or 64.

035 01 Length in bytes of the optional IBM extended associated data (iead): 0 - 255.

036 01 Length in bytes of the optional user-definable associated data (uad): 0 - 255.

037 01 Reserved, binary zero.

038 02 Length in bits of the clear or wrapped payload (pl): ≥ 0.

v For no key-wrapping method (no key present or key is clear), pl is the length in
bits of the key. For no key present, pl is 0. For key is clear (AES CIPHER and
HMAC MAC only), pl can be 128, 192, or 256 for an AES key, or 80 - 2048 for an
HMAC key.

v For PKOAEP2 encoded payloads, pl is the length in bits of the modulus size of
the RSA key used to wrap the payload. This can be 512 - 4096.

v For an AESKW formatted payload, pl is based on the key size of the algorithm
type (DES, AES, or HMAC) and the payload format version:

DES algorithm (value at offset 41 is X'01')

A DES key can have a length of 8, 16, or 24 bytes (64, 128, 192 bits). A DES key
in an AESKW formatted payload is always wrapped with a V1 payload and has
a fixed length payload of 576 bits.

v AES algorithm (value at offset 41 is X'02'). An AES key can have a length of 16,
24, or 32 bytes (128, 192, or 256 bits). A V0 payload is only valid for HMAC
MAC and AES CIPHER, EXPORTER, and EXPORTER keys. A V1 payload is not
valid for an HMAC MAC key. The following table shows the payload length for
a given AES key size and payload format:

Bit length of Bit length of
V0 payload (value at V1 payload (value at

AES key size offset 28 is X’00’) offset 28 is X’01’)
16 bytes (128 bits) 512 640
24 bytes (192 bits) 576 640
32 bytes (256 bits) 640 640

HMAC algorithm (value at offset 41 is X'03'). An HMAC key can have a length of
80 - 2048 bits. An HMAC key in an AESKW formatted payload is always wrapped
with a V0 payload.

040 01 Reserved, binary zero.

Key token formats

Chapter 19. Key token formats 895

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

041 01 Algorithm type (algorithm for which the key can be used):

Value Meaning Supported key types by release
X’01’ DES Release 4.4 or later: DESUSECV
X’02’ AES Release 4.2 or later: CIPHER

Release 4.4 or later: MAC
Release 4.2 or later: EXPORTER
Release 4.2 or later: IMPORTER
Release 4.4 or later: PINPROT
Release 4.4 or later: PINCALC
Release 4.4 or later: PINPRW
Release 4.4 or later: DKYGENKY
Release 4.4.55 or later: SECMSG

X’03’ HMAC Release 4.1 or later: MAC

All unused values are reserved and undefined.

042 02 Key type (general class of the key):

Value Meaning
X'0001' CIPHER
X'0002' MAC
X'0003' EXPORTER
X'0004' IMPORTER
X'0005' PINPROT
X'0006' PINCALC
X'0007' PINPRW
X'0008' DESUSECV
X'0009' DKYGENKY
X'000A' SECMSG (Release 4.4.55 or later)

All unused values are reserved and undefined.

044 01 Key usage fields count (kuf): 0 - 255. Key-usage field information defines
restrictions on the use of the key.

Each key type can have a variable number of key usage fields from none to a
maximum of 255. Each key-usage field is 2 bytes in length. The value in this field
indicates how many 2-byte key usage fields follow.

045, for kuf > 0 01 Optional key-usage field 1, high-order byte.

Defined based on algorithm type (value at offset 41) and key type (value at offset
42).

All unused bits are reserved and must be zero.

Key token formats

896 Common Cryptographic Architecture Application Programmer's Guide

|

||

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

046, for kuf > 0 01 Optional key-usage field 1, low-order byte (user-defined extension control):

Value Meaning
B'xxxx 1xxx'

Key can only be used in UDXs (UDX-ONLY).
B'xxxx 0xxx'

Key can be used in UDXs and CCA.
B'xxxx x1uu'

UDX-defined bit reserved for UDXs (UDX-100).
B'xxxx xu1u'

UDX-defined bit reserved for UDXs (UDX-010).
B'xxxx xuu1'

UDX-defined bit reserved for UDXs (UDX-001).
Note: This byte is common for all key types except for DES DESUSECV in which
case this byte is reserved and must zero.

All unused bits are reserved and must be zero.

047, for kuf > 1 01 Optional key-usage field 2, high-order byte.

048, for kuf > 1 01 Optional key-usage field 2, low-order byte.

.

.

.

043 + (2 * kuf), for kuf
> 0

01 Optional key-usage field kuf, high-order byte.

044 + (2 * kuf), for kuf
> 0

01 Optional key-usage field kuf, low-order byte.

045 + (2 * kuf) 01 Key management fields count (kmf): 0 - 255. Key-management field information
describes how the data is to be managed or helps with management of the key
material.

Each key type can have a variable number of key management fields from none to
a maximum of 255. Each key-management field is 2 bytes in length. The value in
this field indicates how many 2-byte key management fields follow.

Key token formats

Chapter 19. Key token formats 897

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

046 + (2 * kuf), for
kmf > 0

01 Optional key-management field 1, high-order byte (export control):

Symmetric-key export control:

Value Meaning
B'1xxx xxxx'

Allow export using symmetric key (XPRT-SYM).
B'0xxx xxxx'

Prohibit export using symmetric key (NOEX-SYM).

Unauthenticated asymmetric-key export control:

Value Meaning
B'x1xx xxxx'

Allow export using unauthenticated asymmetric key (XPRTUASY). Not a
trusted block.

B'x0xx xxxx'
Prohibit export using unauthenticated asymmetric key (NOEXUASY). Not
a trusted block.

Authenticated asymmetric-key export control:

Value Meaning
B'xx1x xxxx'

Allow export using authenticated asymmetric key (XPRTAASY). Not a
trusted block.

B'xx0x xxxx'
Prohibit export using authenticated asymmetric key (NOEXAASY). Not a
trusted block.

RAW-key export control:

Value Meaning
B'xxx1 xxxx'

Allow export using RAW key (XPRT-RAW). Defined for future use.
Currently ignored.

B'xxx0 xxxx'
Prohibit export using RAW key (NOEX-RAW). Defined for future use.
Currently ignored.

Note: This byte is common for all key types. Except for DES DESUSECV, this byte
is reserved and must zero.

All unused bits are reserved and must be zero.

Key token formats

898 Common Cryptographic Architecture Application Programmer's Guide

|
|

|
|

|
|

|
|

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

047 + (2 * kuf), for
kmf > 0

01 Optional key-management field 1, low-order byte (export control by algorithm):

DES-key export control:

Value Meaning
B'1xxx xxxx'

Prohibit export using DES key (NOEX-DES).
B'0xxx xxxx'

Allow export using DES key (XPRT-DES).

AES-key export control:

Value Meaning
B'x1xx xxxx'

Prohibit export using AES key (NOEX-AES).
B'x0xx xxxx'

Allow export using AES key (XPRT-AES).

RSA-key export control:

Value Meaning
B'xxxx 1xxx'

Prohibit export using RSA key (NOEX-RSA).
B'xxxx 0xxx'

Allow export using RSA key (XPRT-RSA).
Note: This byte is common for all key types except for DES DESUSECV in which
case this byte is undefined.

All unused bits are reserved and must be zero.

048 + (2 * kuf), for
kmf > 1

01 Optional key-management field 2, high-order byte (key completeness):

Value Meaning
B'11xx xxxx'

Key is incomplete. Key requires at least 2 more parts (MIN3PART).
B'10xx xxxx'

Key is incomplete. Key requires at least 1 more part (MIN2PART).
B'01xx xxxx'

Key is incomplete. Key can be completed or have more parts added
(MIN1PART).

B'00xx xxxx'
Key is complete or no key present. If key is present, no more parts can be
added (KEYCMPLT).

Note: This byte is common for all key types except for DES DESUSECV in which
case this byte is undefined.

All unused bits are reserved and must be zero.

Key token formats

Chapter 19. Key token formats 899

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

049 + (2 * kuf), for
kmf > 1

01 Optional key-management field 2, low-order byte (security history). Used to reflect
the overall history of the key, not just the history at the most recent import or other
operation.

Value Meaning
B'xxx1 xxxx'

Previously encrypted with an untrusted KEK (UNTRUSTD).
B'xxxx 1xxx'

Previously in a format without type or usage attributes (WOTUATTR).
B'xxxx x1xx'

Previously encrypted with a key weaker than itself (WWEAKKEY).
B'xxxx xx1x'

Previously in a non-CCA format (NOTCCAFM).
B'xxxx xxx1'

Previously encrypted in ECB mode (WECBMODE).
Note: This byte is common for all key types except for DES DESUSECV in which
case this byte is undefined.

All unused bits are reserved and must be zero.

050 + (2 * kuf), for
kmf > 2

01 Optional key-management field 3, high-order byte (pedigree original). Used to
indicate how the key was originally created and how it got into the current system.

Value Meaning
X'00' Unknown (POUNKNWN).
X'01' Other method than those defined here, probably used in UDX

(POOTHER).
X'02' Randomly generated (PORANDOM).
X'03' Established by key agreement such as Diffie-Hellman (POKEYAGR).
X'04' Created from cleartext key components (POCLRKC).
X'05' Entered as a cleartext key value (POCLRKV).
X'06' Derived from another key (PODERVD).
X'07' Cleartext keys or key parts that were entered at a TKE and secured from

there to the target card (POKPSEC).
Note: This byte is common for all key types except for DES DESUSECV in which
case this byte is undefined.

All unused values are reserved and must be zero.

Key token formats

900 Common Cryptographic Architecture Application Programmer's Guide

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

051 + (2 * kuf), for
kmf > 2

01 Optional key-management field 3, low-order byte (pedigree current). Used to
indicate how the key was originally created and how it got into the current system.

Value Meaning
X'00' Unknown (PCUNKNWN).
X'01' Other method than those defined here, probably used in UDX

(PCOTHER).
X'02' Randomly generated (PCRANDOM).
X'03' Established by key agreement such as Diffie-Hellman (PCKEYAGR).
X'04' Created from cleartext key components (PCCLCOMP).
X'05' Entered as a cleartext key value (PCCLVAL).
X'06' Derived from another key (PCDERVD).
X'07' Imported from CCA Version X'05' variable-length symmetric key-token

with pedigree field (PCMVARWP).
X'08' Imported from CCA Version X'05' variable-length symmetric key-token

with no pedigree field (PCMVARNP).
X'09' Imported from CCA key-token that contained a nonzero control vector

(PCMWCV).
X'0A' Imported from CCA key-token that either had no control vector or

contained a zero control vector (PCMNOCV).
X'0B' Imported from a TR-31 key block that contained a control vector

(ATTR-CV option) (PCMT31WC).
X'0C' Imported from a TR-31 key block that did not contain a control vector

(PCMT31NC).
X'0D' Imported using PKCS 1.2 RSA encryption (PCMPK1-2).
X'0E' Imported using PKCS OAEP encryption (PCMOAEP).
X'0F' Imported using PKA92 RSA encryption (PCMPKA92).
X'10' Imported using RSA ZERO-PAD encryption (PCMZ-PAD).
X'11' Converted from a CCA key-token that contained a nonzero control vector

(PCCNVTWC).
X'12' Converted from a CCA key-token that either had no control vector or

contained a zero control vector (PCCNVTNC).
X'13' Cleartext keys or key parts that were entered at a TKE and secured from

there to the target card (PCKPSEC).
X'14' Exported from CCA Version X'05' variable-length symmetric key-token

with pedigree field (PCXVARWP).
X'15' Exported from CCA Version X'05' variable-length symmetric key-token

with no pedigree field (PCXVARNP).
X'16' Exported using PKCS OAEP encryption (PCXOAEP).
Note: This byte is common for all key types except for DES DESUSECV in which
case this byte is undefined.

All unused values are reserved and must be zero.

.

.

.

044 + (2 * kuf) + (2 *
kmf), for kmf > 0

01 Optional key-usage field kmf, high-order byte.

045 + (2 * kuf) + (2 *
kmf), for kmf > 0

01 Optional key-usage field kmf, low-order byte.

046 + (2 * kuf) + (2 *
kmf)

kl Optional key label.

046 + (2 * kuf) + (2 *
kmf) + kl

iead Optional IBM extended associated data.

Key token formats

Chapter 19. Key token formats 901

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

046 + (2 * kuf) + (2 *
kmf) + kl + iead

uad Optional user-defined associated data.

End of required associated data section

Optional associated data sections (defined for future use)

Optional tag-length-value (TLV) fields.

The length of tlvn is in bytes and is calculated as follows:

tlvn = size of TLVn tag + size of tlvn length field + size of the TLV n value in bytes

for n > 0, where n = number of TLV fields.

The summation of TLV lengths is in bytes and is calculated as follows:
n

tlvs = ∑ tlvi

i=1

for n > 0, where n = number of TLV fields. For n = 0, tlvs = 0.

046 + (2 * kuf) + (2 *
kmf) + kl + iead + uad,
for tlv1 > 0

01 Optional tag-length-value 1 (TLV1) tag.

047 + (2 * kuf) + (2 *
kmf) + kl + iead + uad,
for tlv1 > 0

02 Optional TLV1 length: tlv1.

049 + (2 * kuf) + (2 *
kmf) + kl + iead + uad,
for tlv1 > 0

tlv1 - 3 Optional TLV1 value.

046 + (2 * kuf) + (2 *
kmf) + kl + iead + uad
+ tlv1, for n > 1

01 Optional tag-length-value 2 (TLV2) tag.

047 + (2 * kuf) + (2 *
kmf) + kl + iead + uad
+ tlv1, for n > 1

02 Optional TLV2 length: tlv2.

049 + (2 * kuf) + (2 *
kmf) + kl + iead + uad
+ tlv1, for n > 1

tlv2 - 3 Optional TLV2 value.

.

.

.

046 + (2 * kuf) + (2 *
kmf) + kl + iead + uad
+ tlvs - tlv n, for n >
0

01 Optional TLVn tag.

047 + (2 * kuf) + (2 *
kmf) + kl + iead + uad
+ tlvs - tlv n, for n >
0

02 Optional TLVn length: tlv n

049 + (2 * kuf) + (2 *
kmf) + kl + iead + uad
+ tlvs - tlv n, for n >
0

tlv n - 3 Optional TLVn value.

Key token formats

902 Common Cryptographic Architecture Application Programmer's Guide

Table 270. General format of a variable-length symmetric key-token, version X'05' (continued)

Offset (bytes)
Length
(bytes) Description

End of TLV fields

End of optional associated data sections

End of associated data sections

Optional clear key payload, wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload (no
payload if no key present)

046 + (2 * kuf) + (2 *
kmf) + kl + iead + uad
+ tlvs

(pl + 7)
/ 8

Contents of payload (pl is in bits) depending on the encrypted section
key-wrapping method (value at offset 26):

Value at
offset 26

Encrypted section
key-wrapping method

Meaning

X'00' No key-wrapping
method. Only applies
when key is clear, that
is, when key material
state (value at offset 8)
is X'01'.

Only the key material will be in the
payload. The key token is external or
internal.

X'02' AESKW An encrypted AESKW payload which the
Segment 2 code creates by wrapping the
unencrypted AESKW formatted payload.
The payload is made up of the integrity
check value, pad length, length of hash
options and hash, hash options, hash of
the associated data, key material, and
padding. The key token is internal.

X'03' PKOAEP2 An encrypted PKOAEP2 payload which
the Segment 2 code creates using the
RSAES-OAEP scheme of the PKCS #1 v2.1
standard. The message M is encoded for a
given hash algorithm using the Bellare and
Rogaway Optimal Asymmetric Encryption
Padding (OAEP) method for encoding
messages. For PKAOEP2, M is defined as
follows:

M = [32 bytes: hAD] { [2 bytes: bit length
of the clear key] { [clear key]

where hAD is the message digest of the
associated data, and is calculated using the
SHA-256 algorithm starting at offset 30 for
the length in bytes of all the associated
data for the key token (length value at
offset 32). The encoded message is
wrapped with an RSA public-key
according to the standard. The key token
is external.

End of optional clear key payload, wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload

End of clear key, AESKW, or PKOAEP2 components

Note: All numbers are in big endian format.

Key token formats

Chapter 19. Key token formats 903

AES CIPHER variable-length symmetric key token
View a table showing the format of the CIPHER variable-length symmetric
key-token that, beginning with Release 4.2, can be used with the AES algorithm.
An AES CIPHER key-token is used by the Symmetric_Algorithm_Decipher
(CSNBSAD) and Symmetric_Algorithm_Encipher (CSNBSAE) verbs to decipher or
encipher data with the AES algorithm.

Table 271. AES CIPHER variable-length symmetric key-token, version X'05'

Offset
(bytes)

Length
(bytes) Description

000 01 Token identifier:

Value Meaning
X'01' Internal key-token (encrypted key is wrapped with the master key, the key is clear, or

there is no payload).
X'02' External key-token (encrypted payload is wrapped with a transport key, the payload is

clear, or there is no payload). A transport key can be a key-encrypting key or an RSA
public-key.

All unused values are reserved and undefined.

001 01 Reserved, binary zero.

002 02 Length in bytes of the overall token structure:

46 + (2 * kuf) + (2 * kmf) + kl + iead + uad + ((pl + 7) / 8)

Key token
Minimum token length

Skeleton
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + 0 = 56

Clear V0 payload
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + ((128 + 7) / 8) = 72

Encrypted V0 payload
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + ((512 + 7) / 8) = 120

Encrypted V1 payload
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + ((640 + 7) / 8) = 136

Key token
Maximum token length

External*
46 + (2 * 2) + (2 * 3) + 64 + 0 + 255 + ((4096 + 7) / 8) = 887

Internal
46 + (2 * 2) + (2 * 3) + 64 + 0 + 255 + ((640 + 7) / 8) = 455

*This assumes a PKOAEP2 key-wrapping method using a 4096-bit RSA transport key.

004 01 Token version number (identifies the format of this key token):

Value Meaning
X'05' Version 5 format of the key token (variable-length symmetric key-token)

005 03 Reserved, binary zero.

End of header

Wrapping information section (all data related to wrapping the key)

Key token formats

904 Common Cryptographic Architecture Application Programmer's Guide

Table 271. AES CIPHER variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

008 01 Key material state:

Value Meaning
X'00' No key is present. This is called a skeleton key-token. The key token is external or

internal.
X'01' Key is clear. The key token is external or internal.
X'02' Key is wrapped with a transport key. When the encrypted section key-wrapping

method is AESKW (value at offset 26 is X'02'), the transport key is an AES
key-encrypting key. When it is PKOAEP2 (value at offset 26 is X'03'), the transport key
is an RSA public-key. The key token is external.

X'03' Key is wrapped with the AES master-key. The encrypted section key-wrapping method
is AESKW. The key token is internal.

All unused values are reserved and undefined.

009 01 Key verification pattern (KVP) type:

Value Meaning
X'00' No KVP (no key present, key is clear, or key is wrapped with an RSA public-key). The

key token is external or internal.
X'01' AESMK (8 leftmost bytes of SHA-256 hash: X'01 { clear AES MK). The key token is

internal.
X'02' KEK (8 leftmost bytes of SHA-256 hash: X'01 { clear KEK). The key token is external.

All unused values are reserved and undefined.

010 16 KVP (value depends on value of key material state, that is, the value at offset 8):

Value at offset 8
Value of KVP

X'00' The key-material state is no key present. The field should be filled with binary zeros.
The key token is external or internal.

X'01' The key-material state is key is clear. The field should be filled with binary zeros. The
key token is external or internal.

X'02' The key material state is the key is wrapped with a transport key. The value of the KVP
depends on the value of the encrypted section key-wrapping method:
v When the key-wrapping method is AESKW (value at offset 26 is X'02'), the field

contains the KVP of the key-encrypting key used to wrap the key. The 8-byte KEK
KVP is left-aligned in the field and padded on the right low-order bytes with binary
zeros.

v When the key-wrapping method is PKOAEP2 (value at offset 26 is X'03'), the value
should be filled with binary zeros. The encoded message, which contains the key, is
wrapped with an RSA public-key.

The key token is external.
X'03' The key-material state is the key is wrapped with the AES master-key. The field

contains the MKVP of the AES master-key used to wrap the key. The 8-byte MKVP is
left-aligned in the field and padded on the right low-order bytes with binary zeros. The
key token is internal.

Key token formats

Chapter 19. Key token formats 905

Table 271. AES CIPHER variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

026 01 Encrypted section key-wrapping method (how data in the encrypted section is protected):

Value Meaning
X'00' No key-wrapping method (no key present or key is clear). The key token is external or

internal.
X'02' AESKW (ANS X9.102). The key token is external with a key wrapped by an AES

key-encrypting key, or the key token is internal with a key wrapped by the AES
master-key.

X'03' PKOAEP2. Message M, which contains the key, is encoded using the RSAES-OAEP
scheme of the RSA PKCS #1 v2.1 standard. The encoded message (EM) is produced
using the given hash algorithm by encoding message M using the Bellare and Rogaway
Optimal Asymmetric Encryption Padding (OAEP) method for encoding messages. For
PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] { [2 bytes: bit length of the clear key] { [clear key]

where hAD is the message digest of the associated data, and is calculated using the
SHA-256 algorithm on the data starting at offset 30 for the length in bytes of all the
associated data for the key token (length value at offset 32).

EM is wrapped with an RSA public-key. The key token is external.

All unused values are reserved and undefined.

Key token formats

906 Common Cryptographic Architecture Application Programmer's Guide

Table 271. AES CIPHER variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

027 01 Hash algorithm used for wrapping key or encoding message. Meaning depends on whether the
encrypted section key-wrapping method (value at offset 26) is no key-wrapping method,
AESKW, or PKOAEP2:

No key-wrapping method (value at offset 26 is X'00')

Hash algorithm used for wrapping key when encrypted section key-wrapping method is no
key-wrapping method:

Value Meaning
X'00' No hash (no key present or key is clear).

All unused values are reserved and undefined. The key token is external or internal.

AESKW key-wrapping method (value at offset 26 is X'02')

Hash algorithm used for wrapping key when encrypted section key-wrapping method is
AESKW. The value indicates the algorithm used to calculate the message digest of the associated
data. The message digest is included in the wrapped payload and is calculated starting at offset
30 for the length in bytes of all the associated data for the key token (length value at offset 32).

Value Meaning
X'02' SHA-256

All unused values are reserved and undefined. The key token is external or internal.

PKOAEP2 key-wrapping method (value at offset 26 is X'03')

Hash algorithm used for encoding message when encrypted section key-wrapping method is
PKOAEP2. The value indicates the given hash algorithm used for encoding message M using the
RSAES-OAEP scheme of the RSA PKCS #1 v2.1 standard.

Value Meaning
X'01' SHA-1
X'02' SHA-256
X'04' SHA-384
X'08' SHA-512

All unused values are reserved and undefined. The key token is external.

Key token formats

Chapter 19. Key token formats 907

Table 271. AES CIPHER variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

028 01 Payload format version (identifies format of the payload). Release 4.4 or later, otherwise
undefined.

Value Meaning
X'00' V0 payload (V0PYLD). The payload format depends on the encrypted section

key-wrapping method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there is no
payload. When the key is clear, the payload is unformatted. The key token is
external or internal.

X'02' The key-wrapping method is AESKW and the payload is variable length. The
payload is formatted with the minimum size possible to contain the key
material. The payload length varies for a given algorithm and key type. The
key length can be inferred by the size of the payload. The key token is external
or internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is equal to the
modulus size in bits of the RSA transport key used to wrap the encoded
message. The key token is external. When the external key is exported, the
internal target key will have the same V0 payload format.

X'01' V1 payload (Release 4.4 or later). The payload format depends on the encrypted section
key-wrapping method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there is no
payload. When the key is clear, the payload is unformatted. The key token is
external or internal.

X'02' The key-wrapping method is AESKW and the payload is fixed length based on
the maximum possible key size of the algorithm for the key. The key is padded
with random data to the size of the largest key for that algorithm. This helps
to deter attacks on keys known to be weaker. The key length cannot be
inferred by the size of the payload. The key token is external or internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is equal to the
modulus size in bits of the RSA transport key used to wrap the encoded
message. The key token is external. When the external key is exported, the
internal target key will have the same V1 payload format.

All unused values are reserved and undefined.

029 01 Reserved, binary zero.

End of wrapping information section

Clear key, AESKW, or PKOAEP2 components: (1) associated data section and (2) optional clear key payload,
wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload (no payload if no key present)

Associated data section

030 01 Associated data section version:

Value Meaning
X'01' Version 1 format of associated data

031 01 Reserved, binary zero.

032 02 Length in bytes of all the associated data for the key token: 26 - 345.

034 01 Length in bytes of the optional key label (kl): 0 or 64.

035 01 Length in bytes of the optional IBM extended associated data (iead): 0.

036 01 Length in bytes of the optional user-definable associated data (uad): 0 - 255.

Key token formats

908 Common Cryptographic Architecture Application Programmer's Guide

Table 271. AES CIPHER variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

037 01 Reserved, binary zero.

038 02 Length in bits of the clear or wrapped payload (pl): 0, 128, 192, 256, 512 - 4096.

v For no key-wrapping method (no key present or key is clear), pl is the length in bits of the
key. For no key present, pl is 0. For key is clear, pl can be 128, 192, or 256.

v For PKOAEP2 encoded payloads, pl is the length in bits of the modulus size of the RSA key
used to wrap the payload. This can be 512 - 4096.

v For an AESKW formatted payload, pl is based on the key size of the algorithm type and the
payload format version:

AES algorithm (value at offset 41 is X'02')

An AES key can have a length of 16, 24, or 32 bytes (128, 192, or 256 bits). The following table
shows the payload length for a given AES key size and payload format:

Bit length of V0 payload Bit length of V1 payload
AES key size (value at offset 28 is X’00’ (value at offset 28 is X’01’)
16 bytes (128 bits) 512 640
24 bytes (192 bits) 576 640
32 bytes (256 bits) 640 640

040 01 Reserved, binary zero.

041 01 Algorithm type (algorithm for which the key can be used):

Value Meaning
X'02' AES

All unused values are reserved and undefined.

042 02 Key type (general class of the key):

Value Meaning
X'0001' CIPHER

All unused values are reserved and undefined.

044 01 Key usage fields count (kuf): 2. Key-usage field information defines restrictions on the use of the
key.

Each key-usage field is 2 bytes in length. The value in this field indicates how many 2-byte key
usage fields follow.

Key token formats

Chapter 19. Key token formats 909

Table 271. AES CIPHER variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

045 01 Key-usage field 1, high-order byte (encryption and translation control):

Value Meaning
B'1xxx xxxx'

Key can be used for encryption (ENCRYPT).
B'0xxx xxxx'

Key cannot be used for encryption.
B'x1xx xxxx'

Key can be used for decryption (DECRYPT).
B'x0xx xxxx'

Key cannot be used for decryption.
B'xx1x xxxx'

Key can be used for data translate (C-XLATE).
B'xx0x xxxx'

Key cannot be used for data translate.
B'00xx xxxx'

Undefined or not used.
B'000x xxxx'

Undefined or not used.

All unused bits are reserved and must be zero.

046 01 Key-usage field 1, low-order byte (user-defined extension control). Refer to Table 270 on page
889.

047 01 Key-usage field 2, high-order byte (encryption mode):

Value Meaning
X'00' Key can be used for Cipher Block Chaining (CBC).
X'01' Key can be used for Electronic Code Book (ECB).
X'02' Key can be used for Cipher Feedback (CFB).
X'03' Key can be used for Output Feedback (OFB).
X'04' Key can be used for Galois/Counter Mode (GCM).
X'05' Key can be used for Xor-Encrypt-Xor-based Tweaked Stealing (XTS).
X'FF' Key can be used for any encryption mode (ANY-MODE).

All unused values are reserved and undefined.

048 01 Key-usage field 2, low-order byte (reserved). All bits are reserved and must be zero.

049 01 Key management fields count (kmf): 3. Key-management field information describes how the
data is to be managed or helps with management of the key material.

Each key-management field is 2 bytes in length. The value in this field indicates how many
2-byte key management fields follow.

050 01 Key-management field 1, high-order byte (symmetric-key export control). Refer to Table 270 on
page 889.

051 01 Key-management field 1, low-order byte (export control by algorithm). Refer to Table 270 on
page 889.

052 01 Key-management field 2, high-order byte (key completeness). Refer to Table 270 on page 889.

053 01 Key-management field 2, low-order byte (security history). Refer to Table 270 on page 889.

054 01 Key-management field 3, high-order byte (pedigree original). Refer to Table 270 on page 889.

055 01 Key-management field 3, low-order byte (pedigree current). Refer to Table 270 on page 889.

056 kl Optional key label.

056 + kl iead Optional IBM extended associated data.

Key token formats

910 Common Cryptographic Architecture Application Programmer's Guide

|
|

|
|

||

Table 271. AES CIPHER variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

056 + kl
+ iead

uad Optional user-defined associated data.

End of associated data section

Optional clear key payload, wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload (no
payload if no key present)

056 + kl
+ iead +
uad

(pl + 7)
/ 8

Contents of payload (pl is in bits) depending on the encrypted section key-wrapping method
(value at offset 26):

Value at
offset 26

Encrypted section
key-wrapping method

Meaning

X'00' No key-wrapping
method. Only applies
when key is clear, that
is, when key material
state (value at offset 8)
is X'01'.

Only the key material will be in the payload. The key
token is external or internal.

X'02' AESKW An encrypted payload which the Segment 2 code
creates by wrapping the unencrypted AESKW
formatted payload. The payload is made up of the
integrity check value, pad length, length of hash
options and hash, hash options, hash of the associated
data, key material, and padding. The key token is
internal.

X'03' PKOAEP2 An encrypted PKOAEP2 encoded payload created
using the RSAES-OAEP scheme of the PKCS #1 v2.1
standard. The message M is encoded for a given hash
algorithm using the Bellare and Rogaway Optimal
Asymmetric Encryption Padding (OAEP) method for
encoding messages. For PKAOEP2, M is defined as
follows:

M = [32 bytes: hAD] { [2 bytes: bit length of the clear
key] { [clear key]

where hAD is the message digest of the associated
data, and is calculated using the SHA-256 algorithm
starting at offset 30 for the length in bytes of all the
associated data for the key token (length value at offset
32). The encoded message is wrapped with an RSA
public-key according to the standard. The key token is
external.

End of optional clear key payload, wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload

End of clear key, AESKW, or PKOAEP2 components

Note: All numbers are in big endian format.

AES MAC variable-length symmetric key token
View a table showing the format of an AES MAC variable-length symmetric key
token.

Key token formats

Chapter 19. Key token formats 911

Table 272. AES MAC variable-length symmetric key-token, version X'05'.

Offset (bytes)
Length
(bytes) Description

Header

000 01 Token identifier:

Value Meaning
X'01' Internal key-token (encrypted key is wrapped with the master key or there

is no payload).
X'02' External key-token (encrypted payload is wrapped with a transport key or

there is no payload). A transport key can be a key-encrypting key or an
RSA public-key.

All unused values are reserved and undefined.

001 01 Reserved, binary zero.

002 02 Length in bytes of the overall token structure:

46 + (2 * kuf) + (2 * kmf) + kl + iead + uad + ((pl + 7) / 8)

Key token
Minimum token length without DK enabled

Skeleton
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + 0 = 56

Encrypted V1 payload
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + ((640 + 7) / 8) = 136

Key token
Minimum token length with DK enabled

Skeleton
46 + (2 * 3) + (2 * 3) + 0 + 0 + 0 + 0 = 58

Encrypted V1 payload
46 + (2 * 3) + (2 * 3) + 0 + 0 + 0 + ((640 + 7) / 8) = 138

Key token
Maximum token length without DK enabled

External*
46 + (2 * 2) + (2 * 3) + 64 + 0 + 255 + ((4096 + 7) / 8) = 887

Internal
46 + (2 * 2) + (2 * 3) + 64 + 0 + 255 + ((640 + 7) / 8) = 455

Key token
Maximum token length with DK enabled

External*
46 + (2 * 3) + (2 * 3) + 64 + 0 + 255 + ((4096 + 7) / 8) = 889

Internal
46 + (2 * 3) + (2 * 3) + 64 + 0 + 255 + ((640 + 7) / 8) = 457

*This assumes a PKOAEP2 key-wrapping method using a 4096-bit RSA transport
key.

004 01 Token version number (identifies the format of this key token):

Value Meaning
X'05' Version 5 format of the key token (variable-length symmetric key-token)

005 03 Reserved, binary zero.

End of header

Wrapping information section (all data related to wrapping the key)

Key token formats

912 Common Cryptographic Architecture Application Programmer's Guide

Table 272. AES MAC variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

008 01 Key material state:

Value Meaning
X'00' No key is present. This is called a skeleton key-token. The key token is

external or internal.
X'02' Key is wrapped with a transport key. When the encrypted section

key-wrapping method is AESKW (value at offset 26 is X'02'), the transport
key is an AES key-encrypting key. When it is PKOAEP2 (value at offset 26
is X'03'), the transport key is an RSA public-key. The key token is external.

X'03' Key is wrapped with the AES master-key. The encrypted section
key-wrapping method is AESKW. The key token is internal.

All unused values are reserved and undefined.

009 01 Key verification pattern (KVP) type:

Value Meaning
X'00' No KVP (no key present or key is wrapped with an RSA public-key). The

key token is external or internal.
X'01' AESMK (8 leftmost bytes of SHA-256 hash: X'01 { clear AES MK). The

key token is internal.
X'02' KEK (8 leftmost bytes of SHA-256 hash: X'01 { clear KEK). The key token

is external.

All unused values are reserved and undefined.

010 16 KVP (value depends on value of key material state, that is, the value at offset 8):

Value at offset 8
Value of KVP

X'00' The key-material state is no key present. The field should be filled with
binary zeros. The key token is external or internal.

X'02' The key material state is the key is wrapped with a transport key. The
value of the KVP depends on the value of the encrypted section
key-wrapping method:
v When the key-wrapping method is AESKW (value at offset 26 is X'02'),

the field contains the KVP of the key-encrypting key used to wrap the
key. The 8-byte KEK KVP is left-aligned in the field and padded on the
right low-order bytes with binary zeros.

v When the key-wrapping method is PKOAEP2 (value at offset 26 is
X'03'), the value should be filled with binary zeros. The encoded
message, which contains the key, is wrapped with an RSA public-key.

The key token is external.
X'03' The key-material state is the key is wrapped with the AES master-key. The

field contains the MKVP of the AES master-key used to wrap the key. The
8-byte MKVP is left-aligned in the field and padded on the right low-order
bytes with binary zeros. The key token is internal.

All unused values are reserved and undefined.

Key token formats

Chapter 19. Key token formats 913

Table 272. AES MAC variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

026 01 Encrypted section key-wrapping method (how data in the encrypted section is
protected):

Value Meaning
X'00' No key-wrapping method (no key present). The key token is external or

internal.
X'02' AESKW (ANS X9.102). The key token is external with a key wrapped by

an AES key-encrypting key, or the key token is internal with a key
wrapped by the AES master-key.

X'03' PKOAEP2. Message M, which contains the key, is encoded using the
RSAES-OAEP scheme of the RSA PKCS #1 v2.1 standard. The encoded
message (EM) is produced using the given hash algorithm by encoding
message M using the Bellare and Rogaway Optimal Asymmetric
Encryption Padding (OAEP) method for encoding messages. For
PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] { [2 bytes: bit length of the clear key] { [clear key]

where hAD is the message digest of the associated data, and is calculated
using the SHA-256 algorithm on the data starting at offset 30 for the
length in bytes of all the associated data for the key token (length value at
offset 32).

EM is wrapped with an RSA public-key. The key token is external.

All unused values are reserved and undefined.

Key token formats

914 Common Cryptographic Architecture Application Programmer's Guide

Table 272. AES MAC variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

027 01 Hash algorithm used for wrapping key or encoding message. Meaning depends on
whether the encrypted section key-wrapping method (value at offset 26) is no
key-wrapping method, AESKW, or PKOAEP2:

No key-wrapping method (value at offset 26 is X'00')

Hash algorithm used for wrapping key when encrypted section key-wrapping
method is no key-wrapping method:

Value Meaning
X'00' No hash (no key present)

All unused values are reserved and undefined. The key token is external or
internal.

AESKW key-wrapping method (value at offset 26 is X'02')

Hash algorithm used for wrapping key when encrypted section key-wrapping
method is AESKW. The value indicates the algorithm used to calculate the message
digest of the associated data. The message digest is included in the wrapped
payload and is calculated starting at offset 30 for the length in bytes of all the
associated data for the key token (length value at offset 32).

Value Meaning
X'02' SHA-256

All unused values are reserved and undefined. The key token is external or
internal.

PKOAEP2 key-wrapping method (value at offset 26 is X'03')

Hash algorithm used for encoding message when encrypted section key-wrapping
method is PKOAEP2. The value indicates the given hash algorithm used for
encoding message M using the RSAES-OAEP scheme of the RSA PKCS #1 v2.1
standard.

Value Meaning
X'01' SHA-1
X'02' SHA-256
X'04' SHA-384
X'08' SHA-512

All unused values are reserved and undefined. The key token is external.

Key token formats

Chapter 19. Key token formats 915

Table 272. AES MAC variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

028 01 Payload format version (identifies format of the payload):

Value Meaning
X'01' V1 payload (V1PYLD). The payload format depends on the encrypted

section key-wrapping method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there
is no payload. The key token is external or internal.

X'02' The key-wrapping method is AESKW and the payload is fixed
length based on the maximum possible key size of the algorithm
for the key. The key is padded with random data to the size of
the largest key for that algorithm. This helps to deter attacks on
keys known to be weaker. The key length cannot be inferred by
the size of the payload. The key token is external or internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is
equal to the modulus size in bits of the RSA transport key used to
wrap the encoded message. The key token is external. When the
external key is exported, the internal target key will have the
same V1 payload format.

All unused values are reserved and undefined.

029 01 Reserved, binary zero.

End of wrapping information section

AESKW or PKOAEP2 components: (1) associated data section and (2) optional wrapped AESKW formatted payload
or wrapped PKOAEP2 encoded payload (no payload if no key present)

Associated data section

030 01 Associated data section version:

Value Meaning
X'01' Version 1 format of associated data

031 01 Reserved, binary zero.

032 02 Length in bytes of all the associated data for the key token: 26 - 347.

034 01 Length in bytes of the optional key label (kl): 0 or 64.

035 01 Length in bytes of the optional IBM extended associated data (iead): 0.

036 01 Length in bytes of the optional user-definable associated data (uad): 0 - 255.

037 01 Reserved, binary zero.

Key token formats

916 Common Cryptographic Architecture Application Programmer's Guide

Table 272. AES MAC variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

038 02 Length in bits of the wrapped payload (pl): 0, 512 - 4096.

v For no key-wrapping method (no key present), pl is 0.

v For PKOAEP2 encoded payloads, pl is the length in bits of the modulus size of
the RSA key used to wrap the payload. This can be 512 - 4096.

v For an AESKW formatted payload, pl is based on the key size of the algorithm
type and the payload format version:

AES algorithm (value at offset 41 is X'02')

An AES key can have a length of 16, 24, or 32 bytes (128, 192, or 256 bits). The
following table shows the payload length for a given AES key size and payload
format:

Bit length of Bit length of
V0 payload (value at V1 payload (value at

AES key size offset 28 is X’00’) offset 28 is X’01’)
16 bytes (128 bits) Not applicable 640
24 bytes (192 bits) Not applicable 640
32 bytes (256 bits) Not applicable 640

040 01 Reserved, binary zero.

041 01 Algorithm type (algorithm for which the key can be used):

Value Meaning
X'02' AES

All unused values are reserved and undefined.

042 02 Key type (general class of the key):

Value Meaning
X'0002' MAC

All unused values are reserved and undefined.

044 01 Key usage fields count (kuf): 2 - 3. Key-usage field information defines restrictions
on the use of the key.

Count is based on whether the key is DK enabled or not:

DK enabled
kuf

No 2
Yes 3

Each key-usage field is 2 bytes in length. The value in this field indicates how
many 2-byte key usage fields follow. Key-usage field information defines
restrictions on the use of the key.

Key token formats

Chapter 19. Key token formats 917

Table 272. AES MAC variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

045 01 Key-usage field 1, high-order byte (MAC operation).

Value Meaning
B'11xx xxxx'

For kuf > 2, if DK enabled (value at offset 50 = X'01') then this value is
undefined or not used. Otherwise, key can be used for generate; key can
be used for verify (GENERATE).

B'10xx xxxx'
Key can be used for generate; key cannot be used for verify (GENONLY).

B'01xx xxxx'
Key cannot be used for generate; key can be used for verify (VERIFY).

B'00xx xxxx'
Undefined or not used.

All unused bits are reserved and must be zero.

046 01 Key-usage field 1, low-order byte (user-defined extension control).

047 01 Key-usage field 2, high-order byte (MAC mode).

Value Meaning
X'01' CMAC mode (CMAC). NIST SP 800-38B.

All unused values are reserved and undefined.

048 01 Key-usage field 2, low-order byte (reserved).

All bits are reserved and must be zero.

049, for kuf > 2 01 Key-usage field 3, high-order byte. The meaning is determined by the field format
identifier (value at offset 50). Currently the only field format identifier is DK
enabled:

DK enabled (value at offset 50 is X'01')

Common control:

Value Meaning
X'01' PIN_OP (DKPINOP)
X'03' PIN_AD1 (DKPINAD1)
X'04' PIN_AD2 (DKPINAD2)

All unused values are reserved and undefined.

050, for kuf > 2 01 Key-usage field 3, low-order byte (field format identifier). Identifies the format of
key-usage field 3, high-order byte (value at offset 49):

Value Meaning
X'01' DK enabled (set when DKPINOP, DKPINAD1, or DKPINAD2 keyword

is used)

All unused values are reserved and undefined.

045 + (2 * kuf) 01 Key management fields count (kmf): 3. Key-management field information describes
how the data is to be managed or helps with management of the key material.

Each key-management field is 2 bytes in length. The value in this field indicates
how many 2-byte key management fields follow.

046 + (2 * kuf) 01 Key-management field 1, high-order byte (symmetric-key export control).

047 + (2 * kuf) 01 Key-management field 1, low-order byte (export control by algorithm).

048 + (2 * kuf) 01 Key-management field 2, high-order byte (key completeness).

Key token formats

918 Common Cryptographic Architecture Application Programmer's Guide

Table 272. AES MAC variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

049 + (2 * kuf) 01 Key-management field 2, low-order byte (security history).

050 + (2 * kuf) 01 Key-management field 3, high-order byte (pedigree original).

051 + (2 * kuf) 01 Key-management field 3, low-order byte (pedigree current).

052 + (2 * kuf) kl Optional key label.

052 + (2 * kuf) + kl iead Optional IBM extended associated data (unused).

052 + (2 * kuf) + kl +
iead

uad Optional user-defined associated data.

End of associated data section

Optional wrapped AESKW formatted payload or wrapped PKOAEP2 encoded payload (no payload if no key
present)

052 + (2 * kuf) + kl +
iead + uad

(pl + 7)
/ 8

Contents of payload (pl is in bits) depending on the encrypted section
key-wrapping method (value at offset 26):

Value at
offset 26

Encrypted section
key-wrapping method Meaning

X'02' AESKW An encrypted payload which the Segment
2 code creates by wrapping the
unencrypted AESKW formatted payload.
The payload is made up of the integrity
check value, pad length, length of hash
options and hash, hash options, hash of
the associated data, key material, and
padding. The key token is internal.

X'03' PKOAEP2 An encrypted PKOAEP2 encoded payload
created using the RSAES-OAEP scheme of
the PKCS #1 v2.1 standard. The message
M is encoded for a given hash algorithm
using the Bellare and Rogaway Optimal
Asymmetric Encryption Padding (OAEP)
method for encoding messages. For
PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] { [2 bytes: bit length
of the clear key] { [clear key]

where hAD is the message digest of the
associated data, and is calculated using the
SHA-256 algorithm starting at offset 30 for
the length in bytes of all the associated
data for the key token (length value at
offset 32). The encoded message is
wrapped with an RSA public-key
according to the standard. The key token
is external.

End of optional wrapped AESKW formatted payload or wrapped PKAOEP2 encoded payload

End of AESKW or PKOAEP2 components

Note: All numbers are in big endian format.

Key token formats

Chapter 19. Key token formats 919

HMAC MAC variable-length symmetric key token
View a table showing the format of the HMAC variable-length symmetric
key-token.

Table 273 shows the format of the HMAC MAC variable-length symmetric
key-token. An HMAC token is used by the HMAC Generate(CSNBHMG) and
HMAC Verify(CSNBHMV) verbs to generate and verify keyed hash Message
Authentication Codes.

Table 273. HMAC MAC variable-length symmetric key-token, version X'05' (CCA 4.1.0 or later)

Offset
(bytes)

Length
(bytes) Description

Header

000 01 Token identifier:

Value Meaning
X'01' Internal key-token (encrypted key is wrapped with the master key, the key is

clear, or there is no payload).
X'02' External key-token (encrypted payload is wrapped with a transport key, the

payload is clear, or there is no payload). A transport key can be a key-encrypting
key or an RSA public-key.

All unused values are reserved and undefined.

001 01 Reserved, binary zero.

002 02 Length in bytes of the overall token structure:

46 + (2 * kuf) + (2 * kmf) + kl + iead + uad + ((pl + 7) / 8)

Key token
Minimum token length (Release 4.1)

Skeleton
46 + (2 * 2) + (2 * 2) + 0 + 0 + 0 + 0 = 54

Clear V0 payload
46 + (2 * 2) + (2 * 2) + 0 + 0 + 0 + ((80 + 7) / 8) = 64

Encrypted V0 payload
46 + (2 * 2) + (2 * 2) + 0 + 0 + 0 + ((448 + 7) / 8) = 110

Key token
Minimum token length (Release 4.2 or later)

Skeleton
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + 0 = 56

Clear V0 payload
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + ((80 + 7) / 8) = 66

Encrypted V0 payload
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + ((448 + 7) / 8) = 112

Key token
Maximum token length (Release 4.1)

External*
46 + (2 * 2) + (2 * 2) + 64 + 0 + 255 + ((4096 + 7) / 8) = 885

Input 46 + (2 * 2) + (2 * 2) + 64 + 0 + 255 + ((2432 + 7) / 8) = 677

Key token
Maximum token length (Release 4.2 or later)

External*
46 + (2 * 2) + (2 * 3) + 64 + 0 + 255 + ((4096 + 7) / 8) = 887

Internal
46 + (2 * 2) + (2 * 3) + 64 + 0 + 255 + ((2432 + 7) / 8) = 679

*This assumes a PKOAEP2 key-wrapping method using a 4096-bit RSA transport key.

Key token formats

920 Common Cryptographic Architecture Application Programmer's Guide

Table 273. HMAC MAC variable-length symmetric key-token, version X'05' (CCA 4.1.0 or later) (continued)

Offset
(bytes)

Length
(bytes) Description

004 01 Token version number (identifies the format of this key token):

Value Meaning
X'05' Version 5 format of the key token (variable-length symmetric key-token)

005 03 Reserved, binary zero.

End of header

Wrapping information section (all data related to wrapping the key)

008 01 Key material state:

Value Meaning
X'00' No key is present. This is called a skeleton key-token. The key token is external or

internal.
X'01' Key is clear. The key token is external or internal.
X'02' Key is wrapped with a transport key. When the encrypted section key-wrapping

method is AESKW (value at offset 26 is X'02'), the transport key is an AES
key-encrypting key. When it is PKOAEP2 (value at offset 26 is X'03'), the transport
key is an RSA public-key. The key token is external.

X'03' Key is wrapped with the AES master-key. The encrypted section key-wrapping
method is AESKW. The key token is internal.

All unused values are reserved and undefined.

009 01 Key verification pattern (KVP) type:

Value Meaning
X'00' No KVP (no key present, key is clear, or key is wrapped with an RSA public-key).

The key token is external or internal.
X'01' AESMK (8 leftmost bytes of SHA-256 hash: X'01 { clear AES MK). The key token

is internal.
X'02' KEK (8 leftmost bytes of SHA-256 hash: X'01 { clear KEK). The key token is

external.

All unused values are reserved and undefined.

010 16 KVP (value depends on value of key material state, that is, the value at offset 8):

Value at offset 8
Value of KVP

X' 00 ' The key-material state is no key present. The field should be filled with binary
zeros. The key token is external or internal.

X'01' The key-material state is key is clear. The field should be filled with binary zeros.
The key token is external or internal.

X'02' The key material state is the key is wrapped with a transport key. The value of
the KVP depends on the value of the encrypted section key-wrapping method:
v When the key-wrapping method is AESKW (value at offset 26 is X'02'), the field

contains the KVP of the key-encrypting key used to wrap the key. The 8-byte
KEK KVP is left-aligned in the field and padded on the right low-order bytes
with binary zeros.

v When the key-wrapping method is PKOAEP2 (value at offset 26 is X'03'), the
value should be filled with binary zeros. The encoded message, which contains
the key, is wrapped with an RSA public-key.

v The key token is external.
X'03' The key-material state is the key is wrapped with the AES master-key. The field

contains the MKVP of the AES master-key used to wrap the key. The 8-byte
MKVP is left-aligned in the field and padded on the right low-order bytes with
binary zeros. The key token is internal.

Key token formats

Chapter 19. Key token formats 921

Table 273. HMAC MAC variable-length symmetric key-token, version X'05' (CCA 4.1.0 or later) (continued)

Offset
(bytes)

Length
(bytes) Description

026 01 Encrypted section key-wrapping method (how data in the encrypted section is protected):

Value Meaning
X'00' No key-wrapping method (no key present or key is clear). The key token is

external or internal.
X'02' AESKW (ANS X9.102). The key token is external with a key wrapped by an AES

key-encrypting key, or the key token is internal with a key wrapped by the AES
master-key.

X'03' PKOAEP2. Message M, which contains the key, is encoded using the
RSAES-OAEP scheme of the RSA PKCS #1 v2.1 standard. The encoded message
(EM) is produced using the given hash algorithm by encoding message M using
the Bellare and Rogaway Optimal Asymmetric Encryption Padding (OAEP)
method for encoding messages. For PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] { [2 bytes: bit length of the clear key] { [clear key]

where hAD is the message digest of the associated data, and is calculated using
the SHA-256 algorithm on the data starting at offset 30 for the length in bytes of
all the associated data for the key token (length value at offset 32).

EM is wrapped with an RSA public-key. The key token is external.

All unused values are reserved and undefined.

Key token formats

922 Common Cryptographic Architecture Application Programmer's Guide

Table 273. HMAC MAC variable-length symmetric key-token, version X'05' (CCA 4.1.0 or later) (continued)

Offset
(bytes)

Length
(bytes) Description

027 01 Hash algorithm used for wrapping key or encoding message. Meaning depends on
whether the encrypted section key-wrapping method (value at offset 26) is no
key-wrapping method, AESKW, or PKOAEP2:

No key-wrapping method (value at offset 26 is X'00')

Hash algorithm used for wrapping key when encrypted section key-wrapping method is
no key-wrapping method:

Value Meaning
X'00' No hash (no key present or key is clear).

All unused values are reserved and undefined. The key token is external or internal.

AESKW key-wrapping method (value at offset 26 is X'02')

Hash algorithm used for wrapping key when encrypted section key-wrapping method is
AESKW. The value indicates the algorithm used to calculate the message digest of the
associated data. The message digest is included in the wrapped payload and is calculated
starting at offset 30 for the length in bytes of all the associated data for the key token
(length value at offset 32).

Value Meaning
X'02' SHA-256

All unused values are reserved and undefined. The key token is external or internal.

PKOAEP2 key-wrapping method (value at offset 26 is X'03')

Hash algorithm used for encoding message when encrypted section key-wrapping method
is PKOAEP2. The value indicates the given hash algorithm used for encoding message M
using the RSAES-OAEP scheme of the RSA PKCS #1 v2.1 standard.

Value Meaning
X'01' SHA-1
X'02' SHA-256
X'04' SHA-384
X'08' SHA-512

All unused values are reserved and undefined. The key token is external.

Key token formats

Chapter 19. Key token formats 923

Table 273. HMAC MAC variable-length symmetric key-token, version X'05' (CCA 4.1.0 or later) (continued)

Offset
(bytes)

Length
(bytes) Description

028 01 Payload format version (identifies format of the payload). Release 4.4 or later, otherwise
undefined.

Value Meaning
X'00' V0 payload (V0PYLD). The payload format depends on the encrypted section

key-wrapping method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there is no
payload. When the key is clear, the payload is unformatted. The key
token is external or internal.

X'02' The key-wrapping method is AESKW and the payload is variable length.
The payload is formatted with the minimum size possible to contain the
key material. The payload length varies for a given algorithm and key
type. The key length can be inferred by the size of the payload. The key
token is external or internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is equal
to the modulus size in bits of the RSA transport key used to wrap the
encoded message. The key token is external. When the external key is
exported, the internal target key will have the same V0 payload format.

All unused values are reserved and undefined.

029 01 Reserved, binary zero.

End of wrapping information section

Clear key, AESKW, or PKOAEP2 components: (1) associated data section and (2) optional clear key payload,
wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload (no payload if no key present)

Associated data section

030 01 Associated data section version:

Value Meaning
X'01' Version 1 format of associated data

031 01 Reserved, binary zero.

032 02 Length in bytes of all the associated data for the key token: 24 - 343 (Release 4.1); 26 - 345
(Release 4.2 or later).

034 01 Length in bytes of the optional key label (kl): 0 or 64.

035 01 Length in bytes of the optional IBM extended associated data (iead): 0.

036 01 Length in bytes of the optional user-definable associated data (uad): 0 - 255.

037 01 Reserved, binary zero.

038 02 Length in bits of the clear or wrapped payload (pl): 0, 80 - 4096.

v For no key-wrapping method (no key present or key is clear), pl is the length in bits of
the key. For no key present, pl is 0. For key is clear, pl can be 128, 192, or 256.

v For PKOAEP2 encoded payloads, pl is the length in bits of the modulus size of the RSA
key used to wrap the payload. This can be 512 - 4096.

v For an AESKW formatted payload, pl is based on the key size of the algorithm type and
the payload format version:

HMAC algorithm (value at offset 41 is X'03')

An HMAC key can have a length of 80 - 2048 bits. An HMAC key in an AESKW
formatted payload is always wrapped with a V0 payload.

040 01 Reserved, binary zero.

Key token formats

924 Common Cryptographic Architecture Application Programmer's Guide

Table 273. HMAC MAC variable-length symmetric key-token, version X'05' (CCA 4.1.0 or later) (continued)

Offset
(bytes)

Length
(bytes) Description

041 01 Algorithm type (algorithm for which the key can be used):

Value Meaning
X'03' HMAC

All unused values are reserved and undefined.

042 02 Key type (general class of the key):

Value Meaning
X'0002' MAC

All unused values are reserved and undefined.

044 01 Key usage fields count (kuf): 2. Key-usage field information defines restrictions on the use
of the key. Refer to Figure 10 on page 288.

Each key-usage field is 2 bytes in length. The value in this field indicates how many 2-byte
key usage fields follow.

045 01 Key-usage field 1, high-order byte (MAC operation):

Value Meaning
B'11xx xxxx'

Key can be used for generate; key can be used for verify (GENERATE).
B'10xx xxxx'

Undefined or not used.
B'01xx xxxx'

Key cannot be used for generate; key can be used for verify (VERIFY).
B'00xx xxxx'

Undefined or not used.

All unused bits are reserved and must be zero.

046 01 Key-usage field 1, low-order byte (user-defined extension control)

047 01 Key-usage field 2, high-order byte (hash method):

Value Meaning
B'1xxx xxxx'

SHA-1 hash method is allowed for the key (SHA-1).
B'0xxx xxxx'

SHA-1 hash method is not allowed for the key.
B'x1xx xxxx'

SHA-224 hash method is allowed for the key (SHA-224).
B'x0xx xxxx'

SHA-224 hash method is not allowed for the key.
B'xx1x xxxx'

SHA-256 hash method is allowed for the key (SHA-256).
B'xx0x xxxx'

SHA-256 hash method is not allowed for the key.
B'xxx1 xxxx'

SHA-384 hash method is allowed for the key (SHA-384).
B'xxx0 xxxx'

SHA-384 hash method is not allowed for the key.
B'xxxx 1xxx'

SHA-512 hash method is allowed for the key (SHA-512).
B'xxxx 0xxx'

SHA-512 hash method is not allowed for the key.

All unused bits are reserved and must be zero.

Key token formats

Chapter 19. Key token formats 925

Table 273. HMAC MAC variable-length symmetric key-token, version X'05' (CCA 4.1.0 or later) (continued)

Offset
(bytes)

Length
(bytes) Description

048 01 Key-usage field 2, low-order byte (reserved).

All bits are reserved and must be zero.

049 01 Key management fields count (kmf): 3. Key-management field information describes how
the data is to be managed or helps with management of the key material.

Each key-management field is 2 bytes in length. The value in this field indicates how many
2-byte key management fields follow.

050 01 Key-management field 1, high-order byte (symmetric-key export control).

051 01 Key-management field 1, low-order byte (export control by algorithm).

052 01 Key-management field 2, high-order byte (key completeness).

053 01 Key-management field 2, low-order byte (security history).

054, for kuf >
2

01 Key-management field 3, high-order byte (pedigree original). Release 4.2 or later.

055, for kuf >
2

01 Key-management field 3, low-order byte (pedigree current). Release 4.2 or later.

050 + (2 *
kmf)

kl Optional key label.

050 + (2 *
kmf) + kl

iead Optional IBM extended associated data (unused).

050 + (2 *
kmf) + kl +
iead

uad Optional user-defined associated data.

End of associated data section

Optional clear key payload, wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload (no
payload if no key present)

Key token formats

926 Common Cryptographic Architecture Application Programmer's Guide

Table 273. HMAC MAC variable-length symmetric key-token, version X'05' (CCA 4.1.0 or later) (continued)

Offset
(bytes)

Length
(bytes) Description

050+ (2 * kmf)
+ kl + iead +
uad

(pl + 7)
/ 8

Contents of payload (pl is in bits) depending on the encrypted section key-wrapping
method (value at offset 26):

Value at offset
26

Encrypted section
key-wrapping method Meaning

X'00' No key-wrapping method.
Only applies when key is
clear, that is, when key
material state (value at
offset 8) is X'01'.

Only the key material will be in the
payload. The key token is external or
internal.

X'02' AESKW An encrypted payload which the Segment 2
code creates by wrapping the unencrypted
AESKW formatted payload. The payload is
made up of the integrity check value, pad
length, length of hash options and hash,
hash options, hash of the associated data,
key material, and padding. The key token is
internal.

X'03' PKOAEP2 An encrypted PKOAEP2 encoded payload
created using the RSAES-OAEP scheme of
the PKCS #1 v2.1 standard. The message M
is encoded for a given hash algorithm using
the Bellare and Rogaway Optimal
Asymmetric Encryption Padding (OAEP)
method for encoding messages. For
PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] { [2 bytes: bit length
of the clear key] { [clear key]

where hAD is the message digest of the
associated data, and is calculated using the
SHA-256 algorithm starting at offset 30 for
the length in bytes of all the associated data
for the key token (length value at offset 32).
The encoded message is wrapped with an
RSA public-key according to the standard.
The key token is external.

End of optional clear key payload, wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload

End of clear key, AESKW, or PKOAEP2 components

Note: All numbers are in big endian format.

AES EXPORTER and IMPORTER variable-length symmetric
key token

View a table showing the format of the AES EXPORTER and IMPORTER
variable-length symmetric key-token.

Table 274 on page 928 shows the format of the EXPORTER and IMPORTER
variable-length symmetric key tokens that can be used with the AES algorithm. An
EXPORTER operational key-token is used by the Symmetric Key Export
(CSNDSYX) verb to export an internal AES or HMAC variable-length symmetric
key-token into an external variable-length symmetric key-token, either into an

Key token formats

Chapter 19. Key token formats 927

AESKW or PKOAEP2 wrapped payload. An IMPORTER operational key-token is
used by theSymmetric Key Import2 (CSNDSYI2) verb to import an external AES or
HMAC variable-length symmetric key-token, containing either an AESWK or
PKOAEP2 wrapped payload, into an internal variable-length symmetric key-token.

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05'.

Offset
(bytes)

Length
(bytes) Description

Header

000 01 Token identifier:

Value Meaning
X'01' Internal key-token (encrypted key is wrapped with the master key or there is no

payload).
X'02' External key-token (encrypted payload is wrapped with a transport key or there is no

payload). A transport key can be a key-encrypting key or an RSA public-key.

All unused values are reserved and undefined.

001 01 Reserved, binary zero.

002 02 Length in bytes of the overall token structure:

46 + (2 * kuf) + (2 * kmf) + kl + iead + uad + ((pl + 7) / 8)

Key token
Minimum token length

Skeleton
46 + (2 * 4) + (2 * 3) + 0 + 0 + 0 + 0 = 60

Encrypted V0 payload
46 + (2 * 4) + (2 * 3) + 0 + 0 + 0 + ((512 + 7) / 8) = 124

Encrypted V1 payload
46 + (2 * 4) + (2 * 3) + 0 + 0 + 0 + ((640 + 7) / 8) = 140

Key token
Maximum token length

External*
46 + (2 * 4) + (2 * 3) + 64 + 0 + 255 + ((4096 + 7) / 8) = 891

Internal
46 + (2 * 4) + (2 * 3) + 64 + 0 + 255 + ((640 + 7) / 8) = 459

*This assumes a PKOAEP2 key-wrapping method using a 4096-bit RSA transport key.

004 01 Token version number (identifies the format of this key token):

Value Meaning
X'05' Version 5 format of the key token (variable-length symmetric key-token)

005 03 Reserved, binary zero.

End of header

Wrapping information section (all data related to wrapping the key)

Key token formats

928 Common Cryptographic Architecture Application Programmer's Guide

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

008 01 Key material state:

Value Meaning
X'00' No key is present. This is called a skeleton key-token. The key token is external or

internal.
X'02' Key is wrapped with a transport key. When the encrypted section key-wrapping

method is AESKW (value at offset 26 is X'02'), the transport key is an AES
key-encrypting key. When it is PKOAEP2 (value at offset 26 is X'03'), the transport key
is an RSA public-key. The key token is external.

X'03' Key is wrapped with the AES master-key. The encrypted section key-wrapping method
is AESKW. The key token is internal.

All unused values are reserved and undefined.

009 01 Key verification pattern (KVP) type:

Value Meaning
X'00' No KVP (no key present or key is wrapped with an RSA public-key). The key token is

external or internal.
X'01' AESMK (8 leftmost bytes of SHA-256 hash: X'01 { clear AES MK). The key token is

internal.
X'02' KEK (8 leftmost bytes of SHA-256 hash: X'01 { clear KEK). The key token is external.

All unused values are reserved and undefined.

010 16 KVP (value depends on value of key material state, that is, the value at offset 8):

Value at offset 8
Value of KVP

X'00' The key-material state is no key present. The field should be filled with binary zeros.
The key token is external or internal.

X'02' The key material state is the key is wrapped with a transport key. The value of the
KVP depends on the value of the encrypted section key-wrapping method:
v When the key-wrapping method is AESKW (value at offset 26 is X'02'), the field

contains the KVP of the key-encrypting key used to wrap the key. The 8-byte KEK
KVP is left-aligned in the field and padded on the right low-order bytes with binary
zeros.

v When the key-wrapping method is PKOAEP2 (value at offset 26 is X'03'), the value
should be filled with binary zeros. The encoded message, which contains the key, is
wrapped with an RSA public-key.

The key token is external.
X'03' The key-material state is the key is wrapped with the AES master-key. The field

contains the MKVP of the AES master-key used to wrap the key. The 8-byte MKVP is
left-aligned in the field and padded on the right low-order bytes with binary zeros.
The key token is internal.

Key token formats

Chapter 19. Key token formats 929

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

026 01 Encrypted section key-wrapping method (how data in the encrypted section is protected):

Value Meaning
X'00' No key-wrapping method (no key present). The key token is external or internal.
X'02' AESKW (ANS X9.102). The key token is external with a key wrapped by an AES

key-encrypting key, or the key token is internal with a key wrapped by the AES
master-key.

X'03' PKOAEP2. Message M, which contains the key, is encoded using the RSAES-OAEP
scheme of the RSA PKCS #1 v2.1 standard. The encoded message (EM) is produced
using the given hash algorithm by encoding message M using the Bellare and
Rogaway Optimal Asymmetric Encryption Padding (OAEP) method for encoding
messages. For PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] { [2 bytes: bit length of the clear key] { [clear key]

where hAD is the message digest of the associated data, and is calculated using the
SHA-256 algorithm on the data starting at offset 30 for the length in bytes of all the
associated data for the key token (length value at offset 32).

EM is wrapped with an RSA public-key. The key token is external.

All unused values are reserved and undefined.

Key token formats

930 Common Cryptographic Architecture Application Programmer's Guide

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

027 01 Hash algorithm used for wrapping key or encoding message. Meaning depends on whether the
encrypted section key-wrapping method (value at offset 26) is no key-wrapping method,
AESKW, or PKOAEP2:

No key-wrapping method (value at offset 26 is X'00')

Hash algorithm used for wrapping key when encrypted section key-wrapping method is no
key-wrapping method:

Value Meaning
X'00' No hash (no key present)

All unused values are reserved and undefined. The key token is external or internal.

AESKW key-wrapping method (value at offset 26 is X'02')

Hash algorithm used for wrapping key when encrypted section key-wrapping method is
AESKW. The value indicates the algorithm used to calculate the message digest of the
associated data. The message digest is included in the wrapped payload and is calculated
starting at offset 30 for the length in bytes of all the associated data for the key token (length
value at offset 32).

Value Meaning
X'02' SHA-256

All unused values are reserved and undefined. The key token is external or internal.

PKOAEP2 key-wrapping method (value at offset 26 is X'03')

Hash algorithm used for encoding message when encrypted section key-wrapping method is
PKOAEP2. The value indicates the given hash algorithm used for encoding message M using
the RSAES-OAEP scheme of the RSA PKCS #1 v2.1 standard.

Value Meaning
X'01' SHA-1
X'02' SHA-256
X'04' SHA-384
X'08' SHA-512

All unused values are reserved and undefined. The key token is external.

Key token formats

Chapter 19. Key token formats 931

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

028 01 Payload format version (identifies format of the payload). Release 4.4 or later, otherwise
undefined.

Value Meaning

X'00' V0 payload (V0PYLD). The payload format depends on the encrypted section
key-wrapping method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there is no
payload. The key token is external or internal.

X'02' The key-wrapping method is AESKW and the payload is variable length. The
payload is formatted with the minimum size possible to contain the key
material. The payload length varies for a given algorithm and key type. The
key length can be inferred by the size of the payload. The key token is
external or internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is equal to
the modulus size in bits of the RSA transport key used to wrap the encoded
message. The key token is external. When the external key is exported, the
internal target key will have the same V0 payload format.

X'01' V1 payload (Release 4.4 or later). The payload format depends on the encrypted
section key-wrapping method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there is no
payload. The key token is external or internal.

X'02' The key-wrapping method is AESKW and the payload is fixed length based
on the maximum possible key size of the algorithm for the key. The key is
padded with random data to the size of the largest key for that algorithm.
This helps to deter attacks on keys known to be weaker. The key length
cannot be inferred by the size of the payload. The key token is external or
internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is equal to
the modulus size in bits of the RSA transport key used to wrap the encoded
message. The key token is external. When the external key is exported, the
internal target key will have the same V1 payload format.

All unused values are reserved and undefined.

029 01 Reserved, binary zero.

End of wrapping information section

AESKW or PKOAEP2 components: (1) associated data section and (2) optional wrapped AESKW formatted payload
or wrapped PKOAEP2 encoded payload (no payload if no key present)

Associated data section

030 01 Associated data section version:

Value Meaning
X'01' Version 1 format of associated data

031 01 Reserved, binary zero.

032 02 Length in bytes of all the associated data for the key token: 30 - 349.

034 01 Length in bytes of the optional key label (kl): 0 or 64.

035 01 Length in bytes of the optional IBM extended associated data (iead): 0.

036 01 Length in bytes of the optional user-definable associated data (uad): 0 - 255.

Key token formats

932 Common Cryptographic Architecture Application Programmer's Guide

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

037 01 Reserved, binary zero.

038 02 Length in bits of the wrapped payload (pl): 0, 512 - 4096.

v For no key-wrapping method (no key present), pl is 0.

v For PKOAEP2 encoded payloads, pl is the length in bits of the modulus size of the RSA key
used to wrap the payload. This can be 512 - 4096.

v For an AESKW formatted payload, pl is based on the key size of the algorithm type and the
payload format version:

v AES algorithm (value at offset 41 is X'02')

v An AES key can have a length of 16, 24, or 32 bytes (128, 192, or 256 bits). The following
table shows the payload length for a given AES key size and payload format:

Bit length of Bit length of
V0 payload (value at V1 payload (value at

AES key size offset 28 is X’00’) offset 28 is X’01’)
16 bytes (128 bits) 512 640
24 bytes (192 bits) 576 640
32 bytes (256 bits) 640 640

040 01 Reserved, binary zero.

041 01 Algorithm type (algorithm for which the key can be used):

Value Meaning
X'02' AES

All unused values are reserved and undefined.

042 02 Key type (general class of the key):

Value Meaning
X'0003' EXPORTER
X'0004' IMPORTER

All unused values are reserved and undefined.

044 01 Key usage fields count (kuf): 4. Key-usage field information defines restrictions on the use of the
key.

For key type EXPORTER, see AES EXPORTER Key Token Build2 keywords (Figure 7 on page
277).

For key type IMPORTER, see AES IMPORTER Key Token Build2 keywords (Figure 8 on page
281).

Each key-usage field is 2 bytes in length. The value in this field indicates how many 2-byte key
usage fields follow.

Key token formats

Chapter 19. Key token formats 933

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

045
(1 of 2)

01 Key-usage field 1, high-order byte (KEK control). The meaning is determined by the key type
(value at offset 42). The key type can be EXPORTER or IMPORTER.

EXPORTER (value at offset 42 is X'0003')

Value Meaning
B'1xxx xxxx'

Key can be used to export a key (EXPORT).
B'0xxx xxxx'

Key cannot be used to export a key.
B'x1xx xxxx'

Key can be used to translate a key (TRANSLAT).
B'x0xx xxxx'

Key cannot be used to translate a key.
B'xx1x xxxx'

Key can be used by KGN2 for generating an OPEX key pair (GEN-OPEX).
B'xx0x xxxx'

Key cannot be used by KGN2 for generating an OPEX key pair.
B'xxx1 xxxx'

Key can be used by KGN2 for generating an IMEX key pair (GEN-IMEX).
B'xxx0 xxxx'

Key cannot be used by KGN2 for generating an IMEX key pair.
B'xxxx 1xxx'

Key can be used by KGN2 for generating an EXEX key pair (GEN-EXEX).
B'xxxx 0xxx'

Key cannot be used by KGN2 for generating an EXEX key pair.
B'xxxx x1xx'

Key can be used by PKG for generating an ECC public-private key pair (GEN-PUB).
B'xxxx x0xx'

Key cannot be used by PKG for generating an ECC public-private key pair
(GEN-PUB).

Note: At least one defined bit must be B'1'.

All unused bits are reserved and must be zero.

Key token formats

934 Common Cryptographic Architecture Application Programmer's Guide

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

045
(2 of 2)

01 IMPORTER (value at offset 42 is X'0004')

Value Meaning
B'1xxx xxxx'

Key can be used to import a key (IMPORT).
B'0xxx xxxx'

Key cannot be used to import a key.
B'x1xx xxxx'

Key can be used to translate a key (TRANSLAT).
B'x0xx xxxx'

Key cannot be used to translate a key.
B'xx1x xxxx'

Key can be used by KGN2 for generating an OPIM key pair (GEN-OPIM).
B'xx0x xxxx'

Key cannot be used by KGN2 for generating an OPIM key pair.
B'xxx1 xxxx'

Key can be used by KGN2 for generating an IMEX key pair (GEN-IMEX).
B'xxx0 xxxx'

Key cannot be used by KGN2 for generating an IMEX key pair.
B'xxxx 1xxx'

Key can be used by KGN2 for generating an IMIM key pair (GEN-IMIM).
B'xxxx 0xxx'

Key cannot be used by KGN2 for generating an IMIM key pair.
B'xxxx x1xx'

Key can be used by PKG for generating an ECC public-private key pair (GEN-PUB).
B'xxxx x0xx'

Key cannot be used by PKG for generating an ECC public-private key pair
(GEN-PUB).

Note: At least one defined bit must be B'1'.

All unused bits are reserved and must be zero.

046 01 Key-usage field 1, low-order byte (user-defined extension control).

047 01 Key-usage field 2, high-order byte (TR-31 wrap control):

Value Meaning
B'1xxx xxxx'

Key can wrap or unwrap a TR-31 key (WR-TR31). Defined for future use.
B'0xxx xxxx'

Key cannot wrap or unwrap a TR-31 key. Defined for future use.

All unused bits are reserved and must be zero.

048
01 Key-usage field 2, low-order byte (raw key wrap control):

Value Meaning
B'xxxx xxx1'

Key can wrap or unwrap a raw key (KEK-RAW). Defined for future use.
B'0xxx xxxx'

Key cannot wrap or unwrap a raw key. Defined for future use.

All unused bits are reserved and must be zero.

Key token formats

Chapter 19. Key token formats 935

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

049 01 Key-usage field 3, high-order byte (algorithm wrap control):

Value Meaning
B'1xxx xxxx'

Key can wrap or unwrap DES keys (WR-DES).
B'0xxx xxxx'

Key cannot wrap or unwrap DES keys.
B'x1xx xxxx'

Key can wrap or unwrap AES keys (WR-AES).
B'x0xx xxxx'

Key cannot wrap or unwrap AES keys.
B'xx1x xxxx'

Key can wrap or unwrap HMAC keys (WR-HMAC).
B'xx0x xxxx'

Key cannot wrap or unwrap HMAC keys.
B'xxx1 xxxx'

Key can wrap or unwrap RSA keys (WR-RSA).
B'xxx0 xxxx'

Key cannot wrap or unwrap RSA keys.
B'xxxx 1xxx'

Key can wrap or unwrap ECC keys (WR-ECC).
B'xxxx 0xxx'

Key cannot wrap or unwrap ECC keys.
Note: At least one defined bit must be B'1'.

All unused bits are reserved and must be zero.

050 01 Key-usage field 3, low-order byte (reserved).

All bits are reserved and must be zero.

Key token formats

936 Common Cryptographic Architecture Application Programmer's Guide

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

051 01 Key-usage field 4, high-order byte (class wrap control).

Value Meaning
B'1xxx xxxx'

Key can wrap or unwrap data class keys (WR-DATA).
B'0xxx xxxx'

Key cannot wrap or unwrap data class keys.
B'x1xx xxxx'

Key can wrap or unwrap KEK class keys (WR-KEK).
B'x0xx xxxx'

Key cannot wrap or unwrap KEK class keys.
B'xx1x xxxx'

Key can wrap or unwrap PIN class keys (WR-PIN).
B'xx0x xxxx'

Key cannot wrap or unwrap PIN class keys.
B'xxx1 xxxx'

Key can wrap or unwrap derivation class keys (WRDERIVE).
B'xxx0 xxxx'

Key cannot wrap or unwrap derivation class keys.
B'xxxx 1xxx'

Key can wrap or unwrap card class keys (WR-CARD).
B'xxxx 0xxx'

Key cannot wrap or unwrap card class keys.
B'xxxx x1xx'

Key can wrap or unwrap cryptovariable class keys (WR-CVAR). Undefined in releases
before Release 4.4.

B'xxxx x0xx'
Key cannot wrap or unwrap cryptovariable class keys. Undefined in releases before
Release 4.4.

Note: At least one defined bit must be B'1'.

All unused values are reserved and undefined.

052 01 Key-usage field 4, low-order byte (reserved).

All bits are reserved and must be zero.

053 01 Key management fields count (kmf): 3. Key-management field information describes how the
data is to be managed or helps with management of the key material.

For key type EXPORTER, see AES EXPORTER Key Token Build2 keywords (Figure 7 on page
277).

For key type IMPORTER, see AES IMPORTER Key Token Build2 keywords (Figure 8 on page
281).

Each key-management field is 2 bytes in length. The value in this field indicates how many
2-byte key management fields follow.

054 01 Key-management field 1, high-order byte (symmetric-key export control).

055 01 Key-management field 1, low-order byte (export control by algorithm).

056 01 Key-management field 2, high-order byte (key completeness).

057 01 Key-management field 2, low-order byte (security history).

058 01 Key-management field 3, high-order byte (pedigree original).

059 01 Key-management field 3, low-order byte (pedigree current).

060 kl Optional key label.

Key token formats

Chapter 19. Key token formats 937

Table 274. AES EXPORTER and IMPORTER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

060 + kl iead Optional IBM extended associated data (unused).

060 + kl
+ iead

uad Optional user-defined associated data.

End of associated data section

Optional wrapped AESKW formatted payload or wrapped PKOAEP2 encoded payload (no payload if no key
present)

060 + kl
+ iead +
uad

(pl + 7)
/ 8

Contents of payload (pl is in bits) depending on the encrypted section key-wrapping method
(value at offset 26):

Value at offset
26

Encrypted section
key-wrapping method Meaning

X'02' AESKW An encrypted payload which the Segment 2 code
creates by wrapping the unencrypted AESKW
formatted payload. The payload is made up of the
integrity check value, pad length, length of hash
options and hash, hash options, hash of the
associated data, key material, and padding. The
key token is internal.

X'03' PKOAEP2 An encrypted PKOAEP2 encoded payload created
using the RSAES-OAEP scheme of the PKCS #1
v2.1 standard. The message M is encoded for a
given hash algorithm using the Bellare and
Rogaway Optimal Asymmetric Encryption Padding
(OAEP) method for encoding messages. For
PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] { [2 bytes: bit length of the
clear key] { [clear key]

where hAD is the message digest of the associated
data, and is calculated using the SHA-256
algorithm starting at offset 30 for the length in
bytes of all the associated data for the key token
(length value at offset 32). The encoded message is
wrapped with an RSA public-key according to the
standard. The key token is external.

End of optional wrapped AESKW formatted payload or wrapped PKAOEP2 encoded payload

End of AESKW or PKOAEP2 components

Note: All numbers are in big endian format.

AES PINPROT, PINCALC, and PINPRW variable-length
symmetric key token

View a table showing the format of the PINPROT, PINCALC, and PINPRW
variable-length symmetric key-tokens.

Table 275. AES CIPHER variable-length symmetric key-token, version X'05'.

Offset
(bytes)

Length
(bytes) Description

Header

Key token formats

938 Common Cryptographic Architecture Application Programmer's Guide

Table 275. AES CIPHER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

000 01 Token identifier:

Value Meaning
X'01' Internal key-token (encrypted key is wrapped with the master key or there is no

payload).
X'02' External key-token (encrypted payload is wrapped with a transport key or there is no

payload). A transport key can be a key-encrypting key or an RSA public-key.

All unused values are reserved and undefined.

001 01 Reserved, binary zero.

002 02 Length in bytes of the overall token structure:

46 + (2 * kuf) + (2 * kmf) + kl + iead + uad + ((pl + 7) / 8)

Key token
Minimum token length

Skeleton
46 + (2 * 3) + (2 * 3) + 0 + 0 + 0 + 0 = 58

Encrypted V1 payload
46 + (2 * 3) + (2 * 3) + 0 + 0 + 0 + ((640 + 7) / 8) = 138

Key token
Maximum token length

External*
46 + (2 * 3) + (2 * 3) + 64 + 0 + 255 + ((4096 + 7) / 8) = 889

Internal
46 + (2 * 3) + (2 * 3) + 64 + 0 + 255 + ((640 + 7) / 8) = 457

*This assumes a PKOAEP2 key-wrapping method using a 4096-bit RSA transport key.

004 01 Token version number (identifies the format of this key token):

Value Meaning
X'05' Version 5 format of the key token (variable-length symmetric key-token)

005 03 Reserved, binary zero.

End of header

Wrapping information section (all data related to wrapping the key)

008 01 Key material state:

Value Meaning
X'00' No key is present. This is called a skeleton key-token. The key token is external or

internal.
X'02' Key is wrapped with a transport key. When the encrypted section key-wrapping

method is AESKW (value at offset 26 is X'02'), the transport key is an AES
key-encrypting key. When it is PKOAEP2 (value at offset 26 is X'03'), the transport key
is an RSA public-key. The key token is external.

X'03' Key is wrapped with the AES master-key. The encrypted section key-wrapping method
is AESKW. The key token is internal.

All unused values are reserved and undefined.

Key token formats

Chapter 19. Key token formats 939

Table 275. AES CIPHER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

009 01 Key verification pattern (KVP) type:

Value Meaning
X'00' No KVP (no key present or key is wrapped with an RSA public-key). The key token is

external or internal.
X'01' AESMK (8 leftmost bytes of SHA-256 hash: X'01 { clear AES MK). The key token is

internal.
X'02' KEK (8 leftmost bytes of SHA-256 hash: X'01 { clear KEK). The key token is external.

All unused values are reserved and undefined.

010 16 KVP (value depends on value of key material state, that is, the value at offset 8):

Value at offset 8
Value of KVP

X'00' The key-material state is no key present. The field should be filled with binary zeros.
The key token is external or internal.

X'02' The key material state is the key is wrapped with a transport key. The value of the
KVP depends on the value of the encrypted section key-wrapping method:
v When the key-wrapping method is AESKW (value at offset 26 is X'02'), the field

contains the KVP of the key-encrypting key used to wrap the key. The 8-byte KEK
KVP is left-aligned in the field and padded on the right low-order bytes with binary
zeros.

v When the key-wrapping method is PKOAEP2 (value at offset 26 is X'03'), the value
should be filled with binary zeros. The encoded message, which contains the key, is
wrapped with an RSA public-key.

The key token is external.
X'03' The key-material state is the key is wrapped with the AES master-key. The field

contains the MKVP of the AES master-key used to wrap the key. The 8-byte MKVP is
left-aligned in the field and padded on the right low-order bytes with binary zeros.
The key token is internal.

026 01 Encrypted section key-wrapping method (how data in the encrypted section is protected):

Value Meaning
X'00' No key-wrapping method (no key present). The key token is external or internal.
X'02' AESKW (ANS X9.102). The key token is external with a key wrapped by an AES

key-encrypting key, or the key token is internal with a key wrapped by the AES
master-key.

X'03' PKOAEP2. Message M, which contains the key, is encoded using the RSAES-OAEP
scheme of the RSA PKCS #1 v2.1 standard. The encoded message (EM) is produced
using the given hash algorithm by encoding message M using the Bellare and
Rogaway Optimal Asymmetric Encryption Padding (OAEP) method for encoding
messages. For PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] { [2 bytes: bit length of the clear key] { [clear key]

where hAD is the message digest of the associated data, and is calculated using the
SHA-256 algorithm on the data starting at offset 30 for the length in bytes of all the
associated data for the key token (length value at offset 32).

EM is wrapped with an RSA public-key. The key token is external.

All unused values are reserved and undefined.

Key token formats

940 Common Cryptographic Architecture Application Programmer's Guide

Table 275. AES CIPHER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

027 01 Hash algorithm used for wrapping key or encoding message. Meaning depends on whether the
encrypted section key-wrapping method (value at offset 26) is no key-wrapping method,
AESKW, or PKOAEP2:

No key-wrapping method (value at offset 26 is X'00')

Hash algorithm used for wrapping key when encrypted section key-wrapping method is no
key-wrapping method:

Value Meaning
X'00' No hash (no key present)

All unused values are reserved and undefined. The key token is external or internal.

AESKW key-wrapping method (value at offset 26 is X'02')

Hash algorithm used for wrapping key when encrypted section key-wrapping method is
AESKW. The value indicates the algorithm used to calculate the message digest of the
associated data. The message digest is included in the wrapped payload and is calculated
starting at offset 30 for the length in bytes of all the associated data for the key token (length
value at offset 32).

Value Meaning
X'02' SHA-256

All unused values are reserved and undefined. The key token is external or internal.

PKOAEP2 key-wrapping method (value at offset 26 is X'03')

Hash algorithm used for encoding message when encrypted section key-wrapping method is
PKOAEP2. The value indicates the given hash algorithm used for encoding message M using
the RSAES-OAEP scheme of the RSA PKCS #1 v2.1 standard.

Value Meaning
X'01' SHA-1
X'02' SHA-256
X'04' SHA-384
X'08' SHA-512

All unused values are reserved and undefined. The key token is external.

Key token formats

Chapter 19. Key token formats 941

Table 275. AES CIPHER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

028 01 Payload format version (identifies format of the payload):

Value Meaning
X'01' V1 payload (V0PYLD). The payload format depends on the encrypted section

key-wrapping method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there is no
payload. The key token is external or internal.

X'02' The key-wrapping method is AESKW and the payload is fixed length based
on the maximum possible key size of the algorithm for the key. The key is
padded with random data to the size of the largest key for that algorithm.
This helps to deter attacks on keys known to be weaker. The key length
cannot be inferred by the size of the payload. The key token is external or
internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is equal to
the modulus size in bits of the RSA transport key used to wrap the encoded
message. The key token is external. When the external key is exported, the
internal target key will have the same V1 payload format.

All unused values are reserved and undefined.

029 01 Reserved, binary zero.

End of wrapping information section

AESKW or PKOAEP2 components: (1) associated data section and (2) optional wrapped AESKW formatted payload
or wrapped PKOAEP2 encoded payload (no payload if no key present)

Associated data section

030 01 Associated data section version:

Value Meaning
X'01' Version 1 format of associated data

031 01 Reserved, binary zero.

032 02 Length in bytes of all the associated data for the key token: 16 - 347.

034 01 Length in bytes of the optional key label (kl): 0 or 64.

035 01 Length in bytes of the optional IBM extended associated data (iead): 0.

036 01 Length in bytes of the optional user-definable associated data (uad): 0 - 255.

037 01 Reserved, binary zero.

Key token formats

942 Common Cryptographic Architecture Application Programmer's Guide

Table 275. AES CIPHER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

038 02 Length in bits of the wrapped payload (pl): 0, 512 - 4096.

v For no key-wrapping method (no key present), pl is 0.

v For PKOAEP2 encoded payloads, pl is the length in bits of the modulus size of the RSA key
used to wrap the payload. This can be 512 - 4096.

v For an AESKW formatted payload, pl is based on the key size of the algorithm type and the
payload format version:

AES algorithm (value at offset 41 is X'02')

– An AES key can have a length of 16, 24, or 32 bytes (128, 192, or 256 bits). The following
table shows the payload length for a given AES key size and payload format:

Bit length of Bit length of
V0 payload (value at V1 payload (value at

AES key size offset 28 is X’00’) offset 28 is X’01’)
16 bytes (128 bits) Not applicable 640
24 bytes (192 bits) Not applicable 640
32 bytes (256 bits) Not applicable 640

040 01 Reserved, binary zero.

041 01 Algorithm type (algorithm for which the key can be used):

Value Meaning
X'02' AES

All unused values are reserved and undefined.

042 02 Key type (general class of the key):

Value Meaning
X'0005' PINPROT
X'0006' PINCALC
X'0007' PINPRW

All unused values are reserved and undefined.

044 01 Key usage fields count (kuf): 3. Key-usage field information defines restrictions on the use of the
key.

For key type PINPROT, see AES PINPROT Key Token Build2 keywords (Figure 12 on page 293).

For key type PINCALC, see AES PINCALC Key Token Build2 keywords (Figure 11 on page
291).

For key type PINPRW, see AES PINPRW Key Token Build2 keywords (Figure 13 on page 296).

Each key-usage field is 2 bytes in length. The value in this field indicates how many 2-byte key
usage fields follow.

Key token formats

Chapter 19. Key token formats 943

Table 275. AES CIPHER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

045 01 Key-usage field 1, high-order byte. The meaning is determined by the key type (value at offset
42). The key type can be PINPROT, PINCALC, or PINPRW:

PINPROT (value at offset 42 is X'0005')

Encryption operation:

Value Meaning
B'11xx xxxx'

Undefined or not used.
B'10xx xxxx'

Key can be used for encryption; key cannot be used for decryption (ENCRYPT).
B'01xx xxxx'

Key cannot be used for encryption; key can be used for decryption (DECRYPT).
B'00xx xxxx'

Undefined or not used.

All unused bits are reserved and must be zero.

PINCALC (value at offset 42 is X'0006')

MAC operation:

Value Meaning
B'1xxx xxxx'

Key can only be used for generate (GENONLY).
B'0xxx xxxx'

Undefined or not used.

All unused bits are reserved and must be zero.

PINPRW (value at offset 42 is X'0007')

MAC operation:

Value Meaning
B'11xx xxxx'

Undefined or not used.
B'10xx xxxx'

Key can be used for generate; key cannot be used for verify (GENONLY).
B'01xx xxxx'

Key cannot be used for generate; key can be used for verify (VERIFY).
B'00xx xxxx'

Undefined or not used.

All unused bits are reserved and must be zero.

046 01 Key-usage field 1, low-order byte (user-defined extension control).

Key token formats

944 Common Cryptographic Architecture Application Programmer's Guide

Table 275. AES CIPHER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

047 01 Key-usage field 2, high-order byte. The meaning is determined by the key type (value at offset
42). The key type can be PINPROT, PINCALC, or PINPRW:

PINPROT (value at offset 42 is X'0005')

Encryption mode:

Value Meaning
X'00' Key can be used for Cipher Block Chaining (CBC).

All unused values are reserved and undefined.

PINCALC (value at offset 42 is X'0006')

Encryption mode:

Value Meaning
X'00' Key can be used for Cipher Block Chaining (CBC).

All unused values are reserved and undefined.

PINPRW (value at offset 42 is X'0007')

MAC mode:

Value Meaning
X'01' CMAC mode (NIST SP 800-38B)

All unused values are reserved and undefined.

048 01 Key-usage field 2, low-order byte:

Reserved, binary zero.

049 01 Key-usage field 3, high-order byte. The meaning is determined by the field format identifier
(value at offset 50). Currently the only field format identifier is DK enabled:

DK enabled (value at offset 50 is X'01')

Common control by key type, based on key type PINPROT, PINCALC, or PINPRW:

Key type (value at offset 42)
Value Meaning PINPROT PINCALC PINPRW
X’01’ PIN OP Valid Valid Valid

(DKPINOP)
X’02’ PIN OPP Valid Undefined Undefined

(DKPINOPP)
X’03’ PIN AD1 Valid Undefined Undefined

(DKPINAD1)

All unused values are reserved and undefined.

050 01 Key-usage field 3, low-order byte (field format identifier). Identifies the format of key-usage
field 3, high-order byte (value at offset 49):

Value Meaning
X'01' DK enabled (set when DKPINOP, DKPINOPP, or DKPINAD1 keyword is used)

All unused values are reserved and undefined.

Key token formats

Chapter 19. Key token formats 945

Table 275. AES CIPHER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

051 01 Key management fields count (kmf): 3. Key-management field information describes how the
data is to be managed or helps with management of the key material.

For key type PINPROT, see AES PINPROT Key Token Build2 keywords (Figure 12 on page 293).

For key type PINCALC, see AES PINCALC Key Token Build2 keywords (Figure 11 on page
291).

For key type PINPRW, see AES PINPRW Key Token Build2 keywords (Figure 13 on page 296).

Each key-management field is 2 bytes in length. The value in this field indicates how many
2-byte key management fields follow.

052 01 Key-management field 1, high-order byte (symmetric-key export control).

053 01 Key-management field 1, low-order byte (export control by algorithm).

054 01 Key-management field 2, high-order byte (key completeness).

055 01 Key-management field 2, low-order byte (security history).

056 01 Key-management field 3, high-order byte (pedigree original).

057 01 Key-management field 3, low-order byte (pedigree current).

058 kl Optional key label.

058 + kl iead Optional IBM extended associated data (unused).

058 + kl
+ iead

uad Optional user-defined associated data.

End of associated data section

Optional wrapped AESKW formatted payload or wrapped PKOAEP2 encoded payload (no payload if no key
present)

Key token formats

946 Common Cryptographic Architecture Application Programmer's Guide

Table 275. AES CIPHER variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

058 + kl
+ iead +
uad

(pl + 7)
/ 8

Contents of payload (pl is in bits) depending on the encrypted section key-wrapping method
(value at offset 26):

Value at
offset 26

Encrypted section
key-wrapping method

Meaning

X'02' AESKW An encrypted payload which the Segment 2 code
creates by wrapping the unencrypted AESKW
formatted payload. The payload is made up of the
integrity check value, pad length, length of hash
options and hash, hash options, hash of the
associated data, key material, and padding. The key
token is internal.

X'03' PKOAEP2 An encrypted PKOAEP2 encoded payload created
using the RSAES-OAEP scheme of the PKCS #1 v2.1
standard. The message M is encoded for a given hash
algorithm using the Bellare and Rogaway Optimal
Asymmetric Encryption Padding (OAEP) method for
encoding messages. For PKAOEP2, M is defined as
follows:

M = [32 bytes: hAD] { [2 bytes: bit length of the
clear key] { [clear key]

where hAD is the message digest of the associated
data, and is calculated using the SHA-256 algorithm
starting at offset 30 for the length in bytes of all the
associated data for the key token (length value at
offset 32). The encoded message is wrapped with an
RSA public-key according to the standard. The key
token is external.

End of optional wrapped AESKW formatted payload or wrapped PKAOEP2 encoded payload

End of AESKW or PKOAEP2 components

Note: All numbers are in big endian format.

AES DESUSECV variable-length symmetric key token
View a table showing the format of the DESUSECV variable-length symmetric
key-token.

Table 276. AES DESUSECV variable-length symmetric key-token, version X'05'

Offset
(bytes)

Length
(bytes) Description

Header

000 01 Token identifier:

Value Meaning
X'02' External key-token (encrypted payload is wrapped with a transport key or there is no

payload). A transport key can be a key-encrypting key or an RSA public-key.

All unused values are reserved and undefined.

001 01 Reserved, binary zero.

Key token formats

Chapter 19. Key token formats 947

Table 276. AES DESUSECV variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

002 02 Length in bytes of the overall token structure:

46 + (2 * kuf) + (2 * kmf) + kl + iead + uad + ((pl + 7) / 8)

Key token Minimum and maximum token length

External 46 + (2 * 1) + (2 * 1) + 0 + 11 + 0 + ((576 + 7) / 8) = 133

004 01 Token version number (identifies the format of this key token):

Value Meaning
X'05' Version 5 format of the key token (variable-length symmetric key-token)

005 03 Reserved, binary zero.

End of header

Wrapping information section (all data related to wrapping the key)

008 01 Key material state:

Value Meaning
X'02' Key is wrapped with a transport key. The transport key is an AES key-encrypting key.

The key token is external.

All unused values are reserved and undefined.

009 01 Key verification pattern (KVP) type:

Value Meaning
X'02' KEK (8 leftmost bytes of SHA-256 hash: X'01 { clear KEK). The key token is external.

All unused values are reserved and undefined.

010 16 KVP:

The field contains the KVP of the key-encrypting key used to wrap the key. The 8-byte KEK
KVP is left-aligned in the field and padded on the right low-order bytes with binary zeros. The
key token is external.

026 01 Encrypted section key-wrapping method (how data in the encrypted section is protected):

Value Meaning
X'02' AESKW (ANS X9.102). The key token is external with a key wrapped by an AES

key-encrypting key.

All unused values are reserved and undefined.

027 01 Hash algorithm used for wrapping key. The value indicates the algorithm used to calculate the
message digest of the associated data. The message digest is included in the wrapped payload
and is calculated starting at offset 30 for the length in bytes of all the associated data for the
key token (length value at offset 32).

Value Meaning
X'02' SHA-256

All unused values are reserved and undefined. The key token is external.

Key token formats

948 Common Cryptographic Architecture Application Programmer's Guide

Table 276. AES DESUSECV variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

028 01 Payload format version (identifies format of the payload):

Value Meaning
X'01' V1 payload (V1PYLD). The payload is fixed length based on the maximum possible

key size of the algorithm for the key. The key is padded with random data to the size
of the largest key for that algorithm. This helps to deter attacks on keys known to be
weaker. The key length cannot be inferred by the size of the payload. The key token is
external or internal.

All unused values are reserved and undefined.

029 01 Reserved, binary zero.

End of wrapping information section

AESKW components: (1) associated data section and (2) optional wrapped AESKW payload

Associated data section

030 01 Associated data section version:

Value Meaning
X'01' Version 1 format of associated data

031 01 Reserved, binary zero.

032 02 Length in bytes of all the associated data for thekey token: 31.

034 01 Length in bytes of the optional key label (kl): 0.

035 01 Length in bytes of the optional IBM extended associated data (iead): 11.

036 01 Length in bytes of the optional user-definable associated data (uad): 0.

037 01 Reserved, binary zero.

038 02 Length in bits of the wrapped payload (pl): 576.

For an AESKW formatted payload, pl is based on the key size of the algorithm type and the
payload format version:

DES algorithm (value at offset 41 is X'01')

A DES key can have a length of 8, 16, or 24 bytes (64, 128, 192 bits). A DES key in an AESKW
formatted payload is always wrapped with a V1 payload and has a fixed length payload of 576
bits.

040 01 Reserved, binary zero.

041 01 Algorithm type (algorithm for which the key can be used):

Value Meaning
X'01' DES

All unused values are reserved and undefined.

042 02 Key type (general class of the key):

Value Meaning
X'0008' DESUSECV

All unused values are reserved and undefined.

044 01 Key usage fields count (kuf): 1. Key-usage field information defines restrictions on the use of
the key.

Each key-usage field is 2 bytes in length. The value in this field indicates how many 2-byte key
usage fields follow.

Key token formats

Chapter 19. Key token formats 949

Table 276. AES DESUSECV variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

045 01 Key-usage field 1, high-order byte (reserved).

All bits are reserved and must be zero.

046 01 Key-usage field 1, low-order byte (reserved).

All bits are reserved and must be zero.

047 01 Key management fields count (kmf): 1. Key-management field information describes how the
data is to be managed or helps with management of the key material.

Each key-management field is 2 bytes in length. The value in this field indicates how many
2-byte key management fields follow.

048 01 Key-management field 1, high-order byte (reserved).

All bits are reserved and must be zero.

049 01 Key-management field 1, low-order byte (reserved).

All bits are reserved and must be zero.

050 iead IBM extended associated data:

Offset Length
(bytes) (bytes) Item Contents
0 1 Structure version X’00’

identifier
1 1 Flag byte 1 Copy of flag byte 1 taken from

offset 6 of the internal fixed-length
DES source key token exported by the
CSNDSYX verb into this external
enciphered key.

2 1 Flag byte 2 Copy of flag byte 2 taken from offset 7
of the internal fixed-length DES source
key token exported by the CSNDSYX verb
into this external enciphered key.

3 0 Masked control Copy of 8 bytes of control vector taken
vector from offset 32 of the internal

fixed-length DES source key token
exported by the CSNDSYX verb into this
external enciphered key. The key form
bits (CV bits 40 - 42) are copied into
the wrapped payload before being masked
here to zero to conceal the length of the
DES key.

End of associated data section

Optional wrapped AESKW formatted payload

Key token formats

950 Common Cryptographic Architecture Application Programmer's Guide

Table 276. AES DESUSECV variable-length symmetric key-token, version X'05' (continued)

Offset
(bytes)

Length
(bytes) Description

061 72 Contents of payload: An encrypted payload which the Segment 2 code creates by wrapping the
unencrypted AESKW formatted payload. The payload is made up of the integrity check value,
pad length, length of hash options and hash, hash options, hash of the associated data, key
material, and padding. The key token is internal.

A DES DESUSECV payload contains key material that is formatted. The key material is
formatted as follows:

Offset Length
bytes) (bytes) Item Contents
0 1 Key length (kl) Value Meaning

X’08’ Single-length key
X’10’ Double-length key
X’18’ Triple-length key (z Systems only)

1 1 Flag byte 1 Reserved, binary zero.
2 1 Flag byte 2 Value Meaning

B’xxxx xxx1’
The key has guaranteed unique halves

B’xxxx xxx0’
The key does not have guaranteed
unique halves.

All unused bits are reserved and must be zero.
3 8 Left part of key Left part of single-length, double-length,

or (System z only) triple-length DES key.
11 8 Middle part of Middle part of double-length or (z Systems)

key, or random triple-length DES key, otherwise random data.
data

19 8 Right part of Right part of triple-length key (z Systems only),
key. otherwise random data.

End of optional wrapped AESKW formatted payload

End of AESKW components

Note: All numbers are in big endian format.

AES DKYGENKY variable-length symmetric key token
View a table showing the format of the DKYGENKY variable-length symmetric
key-token.

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05'.

Offset (bytes)
Length
(bytes) Description

Header

000 01 Token identifier:

Value Meaning
X'01' Internal key-token (encrypted key is wrapped with the master key or there

is no payload).
X'02' External key-token (encrypted payload is wrapped with a transport key or

there is no payload). A transport key can be a key-encrypting key or an
RSA public-key.

All unused values are reserved and undefined.

001 01 Reserved, binary zero.

Key token formats

Chapter 19. Key token formats 951

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

002 02 Length in bytes of the overall token structure:

46 + (2 * kuf) + (2 * kmf) + kl + iead + uad + ((pl + 7) / 8)

Key token
Minimum token length

Skeleton
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + 0 = 56

Encrypted V1 payload
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + ((640 + 7) / 8) = 136

Key token
Maximum token length

External*
46 + (2 * 6) + (2 * 3) + 64 + 0 + 255 + ((4096 + 7) / 8) = 895

Internal
46 + (2 * 6) + (2 * 3) + 64 + 0 + 255 + ((640 + 7) / 8) = 463

*This assumes a PKOAEP2 key-wrapping method using a 4096-bit RSA transport
key.

004 01 Token version number (identifies the format of this key token):

Value Meaning
X'05' Version 5 format of the key token (variable-length symmetric key-token)

005 03 Reserved, binary zero.

End of header

Wrapping information section (all data related to wrapping the key)

008 01 Key material state:

Value Meaning
X'00' No key is present. This is called a skeleton key-token. The key token is

external or internal.
X'02' Key is wrapped with a transport key. When the encrypted section

key-wrapping method is AESKW (value at offset 26 is X'02'), the transport
key is an AES key-encrypting key. When it is PKOAEP2 (value at offset 26
is X'03'), the transport key is an RSA public-key. The key token is external.

X'03' Key is wrapped with the AES master-key. The encrypted section
key-wrapping method is AESKW. The key token is internal.

All unused values are reserved and undefined.

009 01 Key verification pattern (KVP) type:

Value Meaning
X'00' No KVP (no key present or key is wrapped with an RSA public-key). The

key token is external or internal.
X'01' AESMK (8 leftmost bytes of SHA-256 hash: X'01 ⌂⌂¥ clear AES MK). The

key token is internal.
X'02' KEK (8 leftmost bytes of SHA-256 hash: X'01 ⌂⌂¥ clear KEK). The key token

is external.

All unused values are reserved and undefined.

Key token formats

952 Common Cryptographic Architecture Application Programmer's Guide

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

010 16 KVP (value depends on value of key material state, that is, the value at offset 8):

Value at offset 8
Value of KVP

X'00' The key-material state is no key present. The field should be filled with
binary zeros. The key token is external or internal.

X'02' The key material state is the key is wrapped with a transport key. The value
of the KVP depends on the value of the encrypted section key-wrapping
method:
v When the key-wrapping method is AESKW (value at offset 26 is X'02'),

the field contains the KVP of the key-encrypting key used to wrap the
key. The 8-byte KEK KVP is left-aligned in the field and padded on the
right low-order bytes with binary zeros.

v When the key-wrapping method is PKOAEP2 (value at offset 26 is X'03'),
the value should be filled with binary zeros. The encoded message, which
contains the key, is wrapped with an RSA public-key.

The key token is external.
X'03' The key-material state is the key is wrapped with the AES master-key. The

field contains the MKVP of the AES master-key used to wrap the key. The
8-byte MKVP is left-aligned in the field and padded on the right low-order
bytes with binary zeros. The key token is internal.

026 01 Encrypted section key-wrapping method (how data in the encrypted section is
protected):

Value Meaning
X'00' No key-wrapping method (no key present or key is clear). The key token is

external or internal.
X'02' AESKW (ANS X9.102). The key token is external with a key wrapped by an

AES key-encrypting key, or the key token is internal with a key wrapped by
the AES master-key.

X'03' PKOAEP2. Message M, which contains the key, is encoded using the
RSAES-OAEP scheme of the RSA PKCS #1 v2.1 standard. The encoded
message (EM) is produced using the given hash algorithm by encoding
message M using the Bellare and Rogaway Optimal Asymmetric Encryption
Padding (OAEP) method for encoding messages. For PKAOEP2, M is
defined as follows:

M = [32 bytes: hAD] ⌂⌂¥ [2 bytes: bit length of the clear key] ⌂⌂¥ [clear key]

where hAD is the message digest of the associated data, and is calculated
using the SHA-256 algorithm on the data starting at offset 30 for the length
in bytes of all the associated data for the key token (length value at offset
32).

EM is wrapped with an RSA public-key. The key token is external.

All unused values are reserved and undefined.

Key token formats

Chapter 19. Key token formats 953

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

027 01 Hash algorithm used for wrapping key or encoding message. Meaning depends on
whether the encrypted section key-wrapping method (value at offset 26) is no
key-wrapping method, AESKW, or PKOAEP2:

No key-wrapping method (value at offset 26 is X'00')

Hash algorithm used for wrapping key when encrypted section key-wrapping
method is no key-wrapping method:

Value Meaning
X'00' No hash (no key present)

All unused values are reserved and undefined. The key token is external or internal.

AESKW key-wrapping method (value at offset 26 is X'02')

Hash algorithm used for wrapping key when encrypted section key-wrapping
method is AESKW. The value indicates the algorithm used to calculate the message
digest of the associated data. The message digest is included in the wrapped
payload and is calculated starting at offset 30 for the length in bytes of all the
associated data for the key token (length value at offset 32).

Value Meaning
X'02' SHA-256

All unused values are reserved and undefined. The key token is external or internal.

PKOAEP2 key-wrapping method (value at offset 26 is X'03')

Hash algorithm used for encoding message when encrypted section key-wrapping
method is PKOAEP2. The value indicates the given hash algorithm used for
encoding message M using the RSAES-OAEP scheme of the RSA PKCS #1 v2.1
standard.

Value Meaning
X'01' SHA-1
X'02' SHA-256
X'04' SHA-384
X'08' SHA-512

All unused values are reserved and undefined. The key token is external.

Key token formats

954 Common Cryptographic Architecture Application Programmer's Guide

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

028 01 Payload format version (identifies format of the payload):

Value Meaning
X'01' V1 payload (V1PYLD). The payload format depends on the encrypted

section key-wrapping method (value at offset 26):

Value at offset 26
Meaning

X'00' There is no key-wrapping method. When no key is present, there is
no payload. The key token is external or internal.

X'02' The key-wrapping method is AESKW and the payload is fixed
length based on the maximum possible key size of the algorithm
for the key. The key is padded with random data to the size of the
largest key for that algorithm. This helps to deter attacks on keys
known to be weaker. The key length cannot be inferred by the size
of the payload. The key token is external or internal.

X'03' The key-wrapping method is PKOAEP2 and the payload length is
equal to the modulus size in bits of the RSA transport key used to
wrap the encoded message. The key token is external. When the
external key is exported, the internal target key will have the same
V1 payload format.

All unused values are reserved and undefined.

029 01 Reserved, binary zero.

End of wrapping information section

AESKW or PKOAEP2 components: (1) associated data section and (2) optional wrapped AESKW payload or
wrapped PKOAEP2 payload (no payload if no key present)

Associated data section

030 01 Associated data section version:

Value Meaning
X'01' Version 1 format of associated data

031 01 Reserved, binary zero.

032 02 Length in bytes of all the associated data for the key token: 26 - 353.

034 01 Length in bytes of the optional key label (kl): 0 or 64.

035 01 Length in bytes of the optional IBM extended associated data (iead): 0.

036 01 Length in bytes of the optional user-definable associated data (uad): 0 - 255.

037 01 Reserved, binary zero.

Key token formats

Chapter 19. Key token formats 955

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

038 02 Length in bits of the wrapped payload (pl): 0, 512 - 4096.

v For no key-wrapping method (no key present), pl is 0.

v For PKOAEP2 encoded payloads, pl is the length in bits of the modulus size of the
RSA key used to wrap the payload. This can be 512 - 4096.

v For an AESKW formatted payload, pl is based on the key size of the algorithm
type and the payload format version:

v AES algorithm (value at offset 41 is X'02')

An AES key can have a length of 16, 24, or 32 bytes (128, 192, or 256 bits). The
following table shows the payload length for a given AES key size and payload
format:

Bit length of Bit length of
V0 payload (value at V1 payload (value at

AES key size offset 28 is X’00’) offset 28 is X’01’)
16 bytes (128 bits) Not applicable 640
24 bytes (192 bits) Not applicable 640
32 bytes (256 bits) Not applicable 640

040 01 Reserved, binary zero.

041 01 Algorithm type (algorithm for which the key can be used):

Value Meaning
X'02' AES

All unused values are reserved and undefined.

042 02 Key type (general class of the key):

Value Meaning
X'0009' DKYGENKY

All unused values are reserved and undefined.

044 01 Key usage fields count (kuf): 2, 4 - 6. Key-usage field information defines restrictions
on the use of the key.

Count is based on type of key to diversify (value at offset 45):

Value at Type of key
offset 45 to diversify kuf count
X’00’ D-ALL 2
X’01’ D-CIPHER 4
X’02’ D-MAC 4 (not DK enabled)

5 (DK enabled)
X’03’ D-EXP 6
X’04’ D-IMP 6
X’05’ D-PPROT 5
X’06’ D-PCALC 5
X’07’ D-PPRW 5

Each key-usage field is 2 bytes in length. The value in this field indicates how many
2-byte key usage fields follow.

Key token formats

956 Common Cryptographic Architecture Application Programmer's Guide

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

045 01 Key-usage field 1, high-order byte (type of key to diversify). Defines the type of
diversified key that this diversifying key can generate.

Value Meaning
X'00' Any key type listed below (D-ALL)
X'01' CIPHER (D-CIPHER)
X'02' MAC (D-MAC)
X'03' EXPORTER (D-EXP)
X'04' IMPORTER (D-IMP)
X'05' PINPROT (D-PPROT)
X'06' PINCALC (D-PCALC)
X'07' PINPRW (D-PPRW)

All unused values are reserved and undefined.

046 01 Key-usage field 1, low-order byte (user-defined extension control).

047 01 Key-usage field 2, high-order byte (related generated key-usage field level of
control):

Value Meaning
B'1xxx xxxx'

The key usage fields of the key to be generated must be equal (KUF-MBE)
to the related generated key usage fields that start with key usage field 3
below.

B'0xxx xxxx'
The key usage fields of the key to be generated must be permissible
(KUF-MBP) based on the related generated key usage fields that start with
key usage field 3 below. A key to be diversified is not permitted to have a
higher level of usage than the related key usage fields permit. The key to be
diversified is only permitted to have key usage that is less than or equal to
the related key usage fields. One exception is the UDX-ONLY setting in the
generated key usage fields. The UDX-ONLY setting must always be equal to
the UDX-ONLY setting in the related key usage fields.

Undefined when the value at offset 45 = X'00' (D-ALL). All unused bits are reserved
and must be zero.

048 01 Key-usage field 2, low-order byte (key-derivation sequence level):

Value Meaning
X'00' Use this diversifying key to generate a Level 0 diversified key (DKYL0). The

type of key to diversify (value at offset 45) determines the key type of the
generated key. Level 0 is a completed key.

X'01' Use this diversifying key to generate a Level 1 diversified key (DKYL1).
X'02' Use this diversifying key to generate a Level 2 diversified key (DKYL2).

All unused values are reserved and undefined.

Key token formats

Chapter 19. Key token formats 957

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

049, for kuf > 3 02 Optional key-usage field 3 (related generated key usage fields). Controls the key
usage field 1 values of the diversified key. Meaning depends on type of key to
diversify (value at offset 45):

Value at offset 45
Meaning

X'01' Same as key-usage field 1 of AES CIPHER key.
X'02' Same as key-usage field 1 of AES MAC key.
X'03' Same as key-usage field 1 of AES EXPORTER key.
X'04' Same as key-usage field 1 of AES IMPORTER key.
X'05' Same as key-usage field 1 of AES PINPROT key .
X'06' Same as key-usage field 1 of AES PINCALC key.
X'07' Same as key-usage field 1 of AES PINPRW key.

All unused bits are reserved and must be zero.

051, for kuf > 3 02 Optional key-usage field 4 (related generated key usage fields). Controls the key
usage field 2 values of the diversified key. Meaning depends on type of key to
diversify (value at offset 45):

Value at offset 45
Meaning

X'01' Same as key-usage field 2 of AES CIPHER key.
X'02' Same as key-usage field 2 of AES MAC key.
X'03' Same as key-usage field 2 of AES EXPORTER key.
X'04' Same as key-usage field 2 of AES IMPORTER key.
X'05' Same as key-usage field 2 of AES PINPROT key.
X'06' Same as key-usage field 2 of AES PINCALC key.
X'07' Same as key-usage field 2 of AES PINPRW key.

All unused bits are reserved and must be zero.

053, for kuf > 4 02 Optional key-usage field 5 (related generated key usage fields). Controls the key
usage field 3 values of the diversified key. Meaning depends on type of key to
diversify (value at offset 45):

Value at offset 45
Meaning

X'02' Same as key-usage field 3 of AES MAC key.
X'03' Same as key-usage field 3 of AES EXPORTER key.
X'04' Same as key-usage field 3 of AES IMPORTER key.
X'05' Same as key-usage field 3 of AES PINPROT key.
X'06' Same as key-usage field 3 of AES PINCALC key.
X'07' Same as key-usage field 3 of AES PINPRW key.

All unused bits are reserved and must be zero.

055, for kuf > 5 02 Optional key-usage field 6 (related generated key usage fields). Controls the key
usage field 4 values of the diversified key. Meaning depends on type of key to
diversify (value at offset 45):

Value at offset 45
Meaning

X'03' Same as key-usage field 4 of AES EXPORTER key.
X'04' Same as key-usage field 4 of AES IMPORTER key.

All unused bits are reserved and must be zero.

Key token formats

958 Common Cryptographic Architecture Application Programmer's Guide

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

045 + (2 * kuf) 01 Key management fields count (kmf): 3. Key-management field information describes
how the data is to be managed or helps with management of the key material.

Each key-management field is 2 bytes in length. The value in this field indicates how
many 2-byte key management fields follow.

046 + (2 * kuf) 01 Key-management field 1, high-order byte (symmetric-key export control).

047 + (2 * kuf) 01 Key-management field 1, low-order byte (export control by algorithm).

048 + (2 * kuf) 01 Key-management field 2, high-order byte (key completeness).

049 + (2 * kuf) 01 Key-management field 2, low-order byte (security history).

050 + (2 * kuf) 01 Key-management field 3, high-order byte (pedigree original).

051 + (2 * kuf) 01 Key-management field 3, low-order byte (pedigree current).

052 + (2 * kuf) kl Optional key label.

052 + (2 * kuf) +
kl

iead Optional IBM extended associated data (not used).

052 + (2 * kuf) +
kl + iead

uad Optional user-defined associated data.

End of associated data section

Optional wrapped AESKW formatted payload or wrapped PKOAEP2 encoded payload (no payload if no key
present)

Key token formats

Chapter 19. Key token formats 959

Table 277. AES DKYGENKY variable-length symmetric key-token, version X'05' (continued).

Offset (bytes)
Length
(bytes) Description

052 + (2 * kuf) +
kl + iead + uad

(pl + 7) / 8 Contents of payload (pl is in bits) depending on the encrypted section key-wrapping
method (value at offset 26):

Value at
offset 26

Encrypted section
key-wrapping method Meaning

X'02' AESKW An encrypted payload which the Segment
2 code creates by wrapping the
unencrypted AESKW formatted payload.
The payload is made up of the integrity
check value, pad length, length of hash
options and hash, hash options, hash of
the associated data, key material, and
padding. The key token is internal.

X'03' PKOAEP2 An encrypted PKOAEP2 encoded payload
created using the RSAES-OAEP scheme of
the PKCS #1 v2.1 standard. The message
M is encoded for a given hash algorithm
using the Bellare and Rogaway Optimal
Asymmetric Encryption Padding (OAEP)
method for encoding messages. For
PKAOEP2, M is defined as follows:

M = [32 bytes: hAD] ⌂⌂¥ [2 bytes: bit
length of the clear key] ⌂⌂¥ [clear key]

where hAD is the message digest of the
associated data, and is calculated using
the SHA-256 algorithm starting at offset
30 for the length in bytes of all the
associated data for the key token (length
value at offset 32). The encoded message
is wrapped with an RSA public-key
according to the standard. The key token
is external.

End of optional wrapped AESKW formatted payload or wrapped PKOAEP2 encoded payload

End of AESKW or PKOAEP2 components

Note: All numbers are in big endian format.

AES SECMSG variable-length symmetric key token
View a table showing the format of the SECMSG variable-length symmetric
key-token.

Table 278. AES SECMSG variable-length symmetric key-token, version X'05'.

Offset
(bytes)

Length
(bytes) Description

Header

Key token formats

960 Common Cryptographic Architecture Application Programmer's Guide

Table 278. AES SECMSG variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

000 01
Token identifier (note that it is intentional that an external key-token is not defined):

Value Meaning
X'01' Internal key-token (encrypted key is wrapped with the master key, or there

is no payload).

All unused values are reserved and undefined.

001 01 Reserved, binary zero.

002 02
Length in bytes of the overall token structure:

Key token
Minimum token length

Skeleton
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + 0 = 56

Encrypted V1 payload
46 + (2 * 2) + (2 * 3) + 0 + 0 + 0 + ((640 + 7) / 8) = 136

Key token
Maximum token length

Internal
46 + (2 * 2) + (2 * 3) + 64 + 0 + 255 + ((640 + 7) / 8) = 455

004 01
Token version number (identifies the format of this key token):

Value Meaning
X'05' Version 5 format of the key token (variable-length symmetric key-token)

005 03
Reserved, binary zero.

End of header

Wrapping information section (all data related to wrapping the key)

008 01
Key material state:

Value Meaning
X'00' No key is present. This is called a skeleton key-token. The key token is

internal.
X'03' Key is wrapped with the AES master-key. The encrypted section

key-wrapping method is AESKW. The key token is internal.

All unused values are reserved and undefined.

009 01
Key verification pattern (KVP) type:

Value Meaning
X'00' No KVP (no key present or key is wrapped with an RSA public-key). The

key token is external or internal.
X'01' AESMK (8 leftmost bytes of SHA-256 hash: X'01 || clear AES MK). The key

token is internal.

All unused values are reserved and undefined.

Key token formats

Chapter 19. Key token formats 961

Table 278. AES SECMSG variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

010 16
KVP (value depends on value of key material state, that is, the value at offset 8):

Value at offset 8
Value of KVP

X'00' The key-material state is no key present. The field should be filled with
binary zeros. The key token is internal.

X'03' The key-material state is the key is wrapped with the AES master-key. The
field contains the MKVP of the AES master-key used to wrap the key. The
8-byte MKVP is left-aligned in the field and padded on the right low-order
bytes with binary zeros. The key token is internal.

All unused values are reserved and undefined.

026 01
Encrypted section key-wrapping method (how data in the encrypted section is
protected):

Value Meaning
X'00' No key-wrapping method (no key present). The key token is external or

internal.
X'02' AESKW (ANS X9.102). The key token is internal with a key wrapped by the

AES master-key.

All unused values are reserved and undefined.

027 01
Hash algorithm used for wrapping key or encoding message. Meaning depends on
whether the encrypted section key-wrapping method (value at offset 26) is no
key-wrapping method or AESKW:

No key-wrapping method (value at offset 26 is X'00')

Hash algorithm used for wrapping key when encrypted section key-wrapping
method is no key-wrapping method:

Value Meaning
X'00' No hash (no key present).

All unused values are reserved and undefined. The key token is internal.

AESKW key-wrapping method (value at offset 26 is X'02')

Hash algorithm used for wrapping key when encrypted section key-wrapping
method is AESKW. The value indicates the algorithm used to calculate the hash
digest of the associated data. The hash digest is included in the wrapped payload
and is calculated starting at offset 30 for the length in bytes of all the associated data
for the key token (length value at offset 32).

Value Meaning
X'02' SHA-256

All unused values are reserved and undefined. The key token is internal.

Key token formats

962 Common Cryptographic Architecture Application Programmer's Guide

Table 278. AES SECMSG variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

028 01
Payload format version (identifies format of the payload).

Value Meaning
X'01' V1 payload. The payload format depends on the encrypted section

key-wrapping method (value at offset 26):

Value Meaning
X'00' There is no key-wrapping method. When no key is present, there is

no payload. The key token is internal.
X'02' The key-wrapping method is AESKW and the payload is fixed

length based on the maximum possible key size of the algorithm for
the key. The key is padded with random data to the size of the
largest key for that algorithm. This helps to deter attacks on keys
known to be weaker. The key length cannot be inferred by the size
of the payload. The key token is internal.

All unused values are reserved and undefined.

029 01
Reserved, binary zero.

End of wrapping information section

AESKW components: (1) associated data section and (2) optional wrapped AESKW formatted payload (no payload
if no key present)

Associated data section

030 01
Associated data section version:

Value Meaning
X'01' Version 1 format of associated data.

031 01
Reserved, binary zero.

032 02
Length in bytes of all the associated data for the key token: 26 - 345.

034 01
Length in bytes of the optional key label (kl) : 0 or 64 .

035 01
Length in bytes of the optional IBM extended associated data (iead) : 0 .

036 01
Length in bytes of the optional user-definable associated data: 0 - 255 (uad).

037 01
Reserved, binary zero.

Key token formats

Chapter 19. Key token formats 963

Table 278. AES SECMSG variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

038 02
Length in bits of the wrapped payload (pl): 0, 640.

For no key-wrapping method (no key present), plis 0.

For an AESKW formatted payload, plis based on the key size of the algorithm type
and the payload format version:

v
AES algorithm (value at offset 41 is X'02')

v An AES key can have a length of 16, 24, or 32 bytes (128, 192, or 256 bits). The
payload length for a given AES key size and payload format are as follows:

AES key
size
16 bytes (128 bits)
24 bytes (192 bits)
32 bytes (256 bits)

Bit length of V0 payload
(value at offset 28 is X'00')
Not applicable
Not applicable
Not applicable

Bit length of V1 payload
(value at offset 28 is X'01')
640
640
640

040 01
Reserved, binary zero.

041 01
Algorithm type (algorithm for which the key can be used):

Value Meaning
X'02' AES

All unused values are reserved and undefined.

042 02
Key type (general class of the key):

Value Meaning
X'000A' SECMSG

All unused values are reserved and undefined.

044 01
Key usage fields count (kuf): 2. Key-usage field information defines restrictions on the
use of the key.

Each key-usage field is 2 bytes in length. The value in this field indicates how many
2-byte key usage fields follow.

045 01
Key-usage field 1, high-order byte (secure message encryption enablement):

Value Meaning
X'00' Enable the encryption of PINs in an EMV secure message (SMPIN).

All unused values are reserved and undefined.

046 01 Key-usage field 1, low-order byte (user-defined extension control).

047 01
Key-usage field 2, high-order byte (verb restriction):

Value Meaning
X'00' Any verb can use this key (ANY-USE).
X'01' Only CSNBDPC can use this key (DPC-ONLY).

All unused values are reserved and undefined.

Key token formats

964 Common Cryptographic Architecture Application Programmer's Guide

Table 278. AES SECMSG variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

048 01
Key-usage field 2, low-order byte (reserved).

All bits are reserved and must be zero.

049 01
Key management fields count (kmf): 3. Key-management field information describes
how the data is to be managed or helps with management of the key material.

Each key-management field is 2 bytes in length. The value in this field indicates how
many 2-byte key management fields follow.

050 01
Key-management field 1, high-order byte (symmetric-key export control). Note that
an AES SECMSG key cannot be exported because it has no external key-token
defined.

Symmetric-key export control:

Value Meaning
B'1xxx xxxx'

Undefined.
B'0xxx xxxx'

Prohibit export using symmetric key (NOEX-SYM).

Unauthenticated asymmetric-key export control:

Value Meaning
B'x1xx xxxx'

Undefined.
B'x0xx xxxx'

Prohibit export using unauthenticated asymmetric key (NOEXUASY).

Authenticated asymmetric-key export control:

Value Meaning
B'xx1x xxxx'

Undefined.
B'xx0x xxxx'

Prohibit export using authenticated asymmetric key (NOEXAASY).

Raw-key export control:

Value Meaning
B'xxx1 xxxx'

Undefined.
B'xxx0 xxxx'

Prohibit export using raw key (NOEX-RAW). Defined for future use.
Currently ignored.

All unused bits are reserved and must be zero.

Key token formats

Chapter 19. Key token formats 965

Table 278. AES SECMSG variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

051 01
Key-management field 1, low-order byte (export control by algorithm). Note that an
AES SECMSG key can only be internal; it cannot be external.

DES-key export control:

Value Meaning
B'1xxx xxxx'

Prohibit export using DES key (NOEX-DES).
B'0xxx xxxx'

Undefined.

AES-key export control:

Value Meaning
B'x1xx xxxx'

Prohibit export using AES key (NOEX-AES).
B'x0xx xxxx'

Undefined.

RSA-key export control:

Value Meaning
B'xxxx 1xxx'

Prohibit export using RSA key (NOEX-RSA).
B'xxxx 0xxx'

Undefined.

All unused bits are reserved and must be zero.

052 01
Key-management field 2, high-order byte (key completeness).

053 01
Key-management field 2, low-order byte (security history).

054 01
Key-management field 3, high-order byte (pedigree original).

055 01
Key-management field 3, low-order byte (pedigree current).

056 01 Optional key label.

056 + kl
iead Optional IBM extended associated data (unused).

056 + kl +
iead

uad Optional user-defined associated data.

End of associated data section

Optional wrapped AESKW formatted payload, or wrapped PKOAEP2 encoded payload (no payload if no key
present)

Key token formats

966 Common Cryptographic Architecture Application Programmer's Guide

Table 278. AES SECMSG variable-length symmetric key-token, version X'05' (continued).

Offset
(bytes)

Length
(bytes) Description

056 + kl +
iead + uad

(pl + 7) / 8 Contents of payload (pl is in bits) depending on the encrypted section key-wrapping
method (value at offset 26):

Value at offset 26
Encrypted section
key-wrapping method

Meaning

X'02' AESKW An encrypted payload
which the Segment 2 code
creates by wrapping the
unencrypted AESKW
formatted payload. The
payload is made up of the
integrity check value, pad
length, length of hash
options and hash, hash
options, hash of the
associated data, key
material, and padding. The
key token is internal.

End of optional wrapped AESKW formatted payload

End of AESKW components

Note: All numbers are in big endian format.

TR-31 optional block data
A TR-31 key block can contain an optional block with IBM-defined data.

See X9 TR-31 2010: Interoperable Secure Key Exchange Block Specification for Symmetric
Algorithms for the definition of a TR-31 key block. As defined by X9 TR-31, a TR-31
key block can contain one or more optional blocks. A TR-31 key block contains at
least one optional block when byte number 12 - 13 is a value other than ASCII
string "00".

The data of an IBM-defined optional block contains ASCII string 10 (X'3130') in the
first two bytes, and contains ASCII string IBMC (X'49424D43') beginning at offset 4
of the data. CCA treats an optional block with these characteristics as a proprietary
container for a CCA control vector. See Table 279 on page 968. An optional block
with different characteristics is ignored by CCA.

If a TR-31 key block contains an optional block as defined by Table 279 on page
968, the data contains a copy of the 8-byte or 16-byte DES control vector that was
in the CCA key-token of the key being exported. The copied control vector is in
hex-ASCII format.

The control vector is only copied from the CCA key-token when the user of the
Key Export to TR31 verb specifies a control vector transport control keyword
(INCL-CV or ATTR-CV):
1. If the optional block contains a control vector as the result of specifying the

INCL-CV keyword during export, the key usage and mode of use fields
indicate the key attributes, and these attributes are verified during export to be
compatible with the ones in the included control vector.

Key token formats

Chapter 19. Key token formats 967

2. If the optional block contains a control vector as the result of specifying the
ATTR-CV keyword during export, the key usage field (byte number 5 - 6 of
the TR-31 key block) is set to the proprietary value 10 (X'3130'), and the mode
of use field (byte number 8) is set to the proprietary value 1 (X'31'). These
proprietary values indicate that the key attributes are specified in the included
control vector.

See Chapter 5, “TR-31 symmetric key management,” on page 79 for additional
information on how CCA uses an IBM-defined optional block in a TR-31 key block.

Table 279. IBM optional block data in a TR-31 key block

Offset
(bytes)

Length
(bytes) Description

00 02 Proprietary ID of TR-31 optional block (alphanumeric-ASCII):
X'3130' IBM proprietary optional block (ASCII string 10)

02 02 Length of optional block (hex-ASCII):

For TLV valued to 01:
X'3143' "1C" for 8-byte (single-length) control vector
X'3243' "2C" for 16-byte (double-length) control vector

Beginning of optional block data

04 04 Magic value (alphanumeric-ASCII):
X'49424D43'

A constant value ("IBMC") used to reduce ambiguity and
the chance for false interpretation of the proprietary
optional blocks of non-IBM vendors.

An optional block that uses the same proprietary ID but
does not include this magic value will be ignored.

08 02 Tag-length-value (TLV) ID (numeric-ASCII):
X'3031' IBM CCA control vector (01)

10 02 Length of TLV (hex-ASCII)

For TLV valued to 01:
X'3134' "14" (decimal 20) TLV of 8-byte control vector
X'3234' 24 (decimal 36) TLV of 16-byte control vector

12 16 or 32 Control vector (hex-ASCII)

Trusted blocks
A key token is a data structure that contains information about a key and usually
contains a key or keys.

A trusted block is an extension of CCA key tokens using new section identifiers.
Trusted blocks are an integral part of a remote key-loading process. See “Remote
key loading” on page 53.

In general, a key that is available to an application program or held in key storage
is multiply-enciphered by some other key. When a key is enciphered by the CCA
node's master key, the key is designated an internal key and is held in an internal
key-token structure. Therefore, an internal key token or internal trusted block is used
to hold a key and its related information for use at a specific CCA node.

An external key token or external trusted block is used to communicate a key between
nodes, or to hold a key in a form not enciphered by a CCA master key. DES keys

Key token formats

968 Common Cryptographic Architecture Application Programmer's Guide

and PKA private-keys contained in an external key-token or external trusted block
are multiply-enciphered by a transport key. In a CCA node, a transport key is a
double-length DES key encrypting key (KEK).

Trusted blocks contain various items, some of which are optional, and some of
which can be present in different forms. Tokens are composed of concatenated
sections that, unlike CCA PKA key tokens, occur in no prescribed order.

As with other CCA key-tokens, both internal and external forms are defined:
v An external trusted block contains a randomly generated confounder and a

triple-length MAC key enciphered under a DES IMP-PKA transport key. The
MAC key is used to calculate an ISO 16609 CBC mode TDES MAC of the
trusted block contents. An external trusted block is created by the Trusted Block
Create verb. This verb can:
1. Create an inactive external trusted block
2. Change an external trusted block from inactive to active

v An internal trusted block contains a confounder and triple-length MAC key
enciphered under a variant of the PKA master key. The MAC key is used to
calculate a TDES MAC of the trusted block contents. A PKA master-key
verification pattern is also included to enable determination that the proper
master key is available to process the key. The Remote Key Export verb only
operates on trusted blocks that are internal. An internal trusted block must be
imported from an external trusted block that is active using the PKA Key Import
verb.

Note: Trusted blocks do not contain a private key section.

Trusted block organization
A trusted block is a concatenation of a header followed by an unordered set of
sections.

Some elements are required, while others are optional. The data structures of these
sections are summarized in Table 280.

Table 280. Trusted block sections and their use

Section Reference Usage

Header Table 281 on page 971 Trusted block token header

X'11' Table 282 on page 972 Trusted block public key

X'12' Table 283 on page 973 Trusted block rule

X'13' Table 290 on page 980 Trusted block name (key label)

X'14' Table 291 on page 980 Trusted block information

X'15' Table 295 on page 982 Trusted block application-defined data

Every trusted block starts with a token header. The first byte of the token header
determines the key form:
v An external header (first byte X'1E'), created by the Trusted Block Create verb
v An internal header (first byte X'1F'), imported from an active external trusted

block by the PKA Key Import verb

Following the token header of a trusted block is an unordered set of sections. A
trusted block is formed by concatenating these sections to a trusted block header:

Key token formats

Chapter 19. Key token formats 969

v An optional public-key section (trusted block section identifier X'11')
The trusted block trusted RSA public key section includes the key itself in
addition to a key-usage flag. No multiple sections are allowed.

v An optional rule section (trusted block section identifier X'12')
A trusted block can have zero or more rule sections.
1. A trusted block with no rule sections can be used by the PKA Key Token

Change and PKA Key Import verbs. A trusted block with no rule sections
can also be used by the Digital Signature Verify verb, provided there is an
RSA public key section that has its key-usage flag bits set to allow digital
signature operations.

2. At least one rule section is required when the Remote Key Export verb is
used to:
– Generate an RKX key-token
– Export an RKX key-token
– Export a CCA DES key-token
– Encrypt the clear generated or exported key using the provided vendor

certificate
3. If a trusted block has multiple rule sections, each rule section must have a

unique 8-character Rule ID.
v An optional name (key label) section (trusted block section identifier X'13')

The trusted block name section provides a 64-byte variable to identify the
trusted block, just as key labels are used to identify other CCA keys. This name,
or label, enables a host access-control system such as RACF® to use the name to
verify that the application has authority to use the trusted block. No multiple
sections are allowed.

v A required information section (trusted block section identifier X'14')
The trusted block information section contains control and security information
related to the trusted block. The information section is required while the others
are optional. This section contains the cryptographic information that guarantees
its integrity and binds it to the local system. No multiple sections are allowed.

v An optional application-defined data section (trusted block section identifier
X'15')
The trusted block application-defined data section can be used to include
application-defined data in the trusted block. The purpose of the data in this
section is defined by the application. CCA does not examine or use this data in
any way. No multiple sections are allowed.

Trusted block integrity
An enciphered confounder and triple-length MAC key contained within the
required information section of the trusted block is used to protect the integrity of
the trusted block.

The randomly generated MAC key is used to calculate an ISO 16609 CBC mode
TDES MAC of the trusted block contents. Together, the MAC key and MAC value
provide a way to verify that the trusted block originated from an authorized
source, and binds it to the local system.

An external trusted block has its MAC key enciphered under an IMP-PKA
key-encrypting key. An internal trusted block has its MAC key enciphered under a
variant of the PKA master key, and the master-key verification pattern is stored in
the information section.

Key token formats

970 Common Cryptographic Architecture Application Programmer's Guide

Number representation in trusted blocks
The number format in trusted blocks.
v All length fields are in binary.
v All binary fields (exponents, lengths, and so forth) are stored with the

high-order byte first (big-endian format). Thus the least significant bits are to the
right and preceded with zero-bits to the width of a field.

v In variable-length binary fields, that have an associated field-length value,
leading bytes that would otherwise contain X'00' can be dropped. Thus, these
fields can be shortened to contain only the significant bits.

Trusted block sections
At the beginning of every trusted block is a trusted block header.

The header contains the following information:
v A token identifier, which specifies if the token contains an external or internal

key-token
v A token version number to allow for future changes
v A length in bytes of the trusted block, including the length of the header

The trusted block header is defined in Table 281.

Table 281. Trusted block header format

Offset
(bytes)

Length
(bytes) Description

000 001 Token identifier (a flag that indicates token type)

Value Description
X'1E' External trusted block token
X'1F' Internal trusted block token

001 001 Token version number (X'00').

002 002 Length of the key-token structure in bytes.

004 004 Reserved, binary zero.

Following the header, in no particular order, are trusted block sections. There are
five different sections defined, each identified by a one-byte section identifier (X'11'
- X'15'). Two of the five sections have subsections defined. A subsection is a
tag-length-value (TLV) object, identified by a two-byte subsection tag.

Only sections X'12' and X'14' have subsections defined; the other sections do not. A
section and its subsections, if any, are one contiguous unit of data. The subsections
are concatenated to the related section, but are otherwise in no particular order.

Section X'12' has five subsections defined (X'0001' - X'0005'). Section X'14' has two
subsections, (X'0001' and X'0002'). Of all the subsections, only subsection X'0001' of
section X'14' is required. Section X'14' is also required.

The trusted block sections and subsections are described in detail in the following
topics.

Key token formats

Chapter 19. Key token formats 971

Trusted block section X'11'
Trusted block section X'11' contains the trusted RSA public key in addition to a
key-usage flag indicating whether the public key is usable in key-management
operations, digital signature operations, or both.

Section X'11' is optional. No multiple sections are allowed. It has no subsections
defined.

Table 282. Trusted block trusted RSA public key section (X'11')

Offset
(bytes)

Length
(bytes) Description

000 001 Section identifier:
X'11' Trusted block trusted RSA public key

001 001 Section version number (X'00').

002 002 Section length (16 + xxx + yyy).

004 002 Reserved, must be binary zero.

006 002 RSA public key exponent field length in bytes, xxx.

008 002 RSA public key modulus length in bits.

010 002 RSA publickey modulus field length in bytes, yyy.

012 xxx Public key exponent, e (this field length is typically 1, 3, or 64 - 512 bytes). e must be odd
and 1 ≤ e < n. (e is frequently valued to 3 or 216+1 (=65537), otherwise e is of the same
order of magnitude as the modulus).

012 + xxx yyy RSA public key modulus, n. n=pq, where p and q are prime and 2512 ≤ n < 24096. The field
length is 64 - 512 bytes.

012 + xxx +
yyy

004 Flags:

Value Description
X'00000000'

Trusted block public key can be used in digital signature operations only
X'80000000'

Trusted block public key can be used in both digital signature and key
management operations

X'C0000000'
Trusted block public key can be used in key management operations only

Trusted block section X'12'
Trusted block section X'12' contains information that defines a rule.

TA trusted block can have zero or more rule sections.
1. A trusted block with no rule sections can be used by the PKA Key Token

Change and PKA Key Import verbs. A trusted block with no rule sections can
be used by the Digital Signature Verify verb, provided there is an RSA public
key section that has its key-usage flag set to allow digital signature operations.

2. At least one rule section is required when the Remote Key Export verb is used
to:
v Generate an RKX key-token
v Export an RKX key-token
v Export a CCA DES key-token
v Generate or export a key encrypted by a public key. The public key is

contained in a vendor certificate and is the root certification key for the ATM
vendor. It is used to verify the digital signature on public-key certificates for
specific individual ATMs.

Key token formats

972 Common Cryptographic Architecture Application Programmer's Guide

3. If a trusted block has multiple rule sections, each rule section must have a
unique 8-character Rule ID.

Section X'12' is the only section that can have multiple sections. Section X'12' is
optional.

Note: The overall length of the trusted block cannot exceed its maximum size of
3500 bytes.

Five subsections (TLV objects) are defined.

Table 283. Trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:
X'12' Trusted block rule

001 001 Section version number (X'00').

002 002 Section length in bytes (20 + yyy).

004 008 Rule ID (in ASCII).

An 8-byte character string that uniquely identifies the rule within the trusted block.

Valid ASCII characters are: A - Z, a - z, 0 - 9, - (hyphen), and _ (underscore), left-aligned
and padded on the right with space characters.

012 004 Flags (undefined flag bits are reserved and must be zero).

Value Description
X'00000000'

Generate new key
X'00000001'

Export existing key

016 001 Generated key length.

Length in bytes of key to be generated when flags value (offset 012) is set to generate a
new key; otherwise ignore this value. Valid values are 8, 16, or 24; return an error if not
valid.

017 001 Key-check algorithm identifier (all others are reserved and must not be used):

Value Description
X'00' Do not compute key-check value. Set the key_check_value_length variable to

zero.
X'01' Encrypt an 8-byte block of binary zeros with the key. See “Encrypt zeros

DES-key verification algorithm” on page 1024.
X'02' Compute the MDC-2 hash of the key. See “Modification Detection Code

calculation” on page 1024.

Key token formats

Chapter 19. Key token formats 973

Table 283. Trusted block rule section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

018 001 Symmetric encrypted output key format flag (all other values are reserved and must not
be used).

Return the indicated symmetric key-token using the sym_encrypted_key_identifier
parameter.

Value Description
X'00' Return an RKX key-token encrypted under a variant of the MAC key.

Note: This key format is permitted when the flags value (offset 012) is set to
either:
1. Generate a new key
2. Export an existing key

X'01' Return a CCA DES key-token encrypted under a transport key.
Note: This key format is not permitted if the flags value (offset 012) is set to
generate a new key; it is only permitted when exporting an existing key.

019 001 Asymmetric encrypted output key format flag (all other values are reserved and must
not be used).

Return the indicated asymmetric key-token in the asym_encrypted_key variable.

Value Description
X'00' Do not return an asymmetric key. Set the asym_encrypted_key_length variable to

zero.
X'01' Output in PKCS-1.2 format.
X'02' Output in RSA-OAEP format.
X'04' Output in RSA-OAEP format (RSA PKCS #1 v2.0) using SHA-256.

020 yyy Rule section subsections (tag-length-value objects). A series of zero - five objects in TLV
format.

Trusted block section X'12' subsections:

Section X'12' has five rule subsections (tag-length-value objects) defined.

These subsections are summarized in Table 284.

Table 284. Summary of trusted block X'12' subsections

Rule
subsection
tag

TLV object Optional or required Comments

X'0001' Transport
key variant

Optional Contains variant to be XORed into the cleartext transport
key.

X'0002' Transport
key rule
reference

Optional; required to
use an RKX key-token
as a transport key

Contains the rule ID for the rule that must have been used to
create the transport key.

X'0003' Common
export key
parameters

Optional for key
generation; required
for key export of an
existing key

Contains the export key and source key minimum and
maximum lengths, an output key variant length and variant,
a CV length, and a CV to be XORed with the cleartext
transport key to control usage of the key.

X'0004' Source key
reference

Optional; required if
the source key is an
RKX key-token

Contains the rule ID for the rule used to create the source
key.
Note: Include all rules that will ever be needed when a
trusted block is created. A rule cannot be added to a trusted
block after it has been created.

Key token formats

974 Common Cryptographic Architecture Application Programmer's Guide

||

Table 284. Summary of trusted block X'12' subsections (continued)

Rule
subsection
tag

TLV object Optional or required Comments

X'0005' Export key
CCA token
parameters

Optional; used for
export of CCA DES
key tokens only

Contains mask length, mask, and CV template to limit the
usage of the exported key. Also contains the template length
and template that defines which source key labels are
allowed.

The key type of a source key input parameter can be
"filtered" by using the export key CV limit mask (offset 005)
and limit template (offset 005 + yyy) in this subsection.

Note: See “Number representation in trusted blocks” on page 971.

Trusted block section X'12' subsection X'0001'

Subsection X'0001' of the trusted block rule section (X'12') is the transport key
variant TLV object. This subsection is optional. It contains a variant to be XORed
into the cleartext transport key.

This subsection is defined in Table 285.

Table 285. Transport key variant subsection (X'0001') of trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:
X'0001' Transport key variant TLV object

002 002 Subsection length in bytes (8 + nnn).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Length of variant field in bytes (nnn).

This length must be greater than or equal to the length of the transport key that is
identified by the transport_key_identifier parameter. If the variant is longer than the key,
truncate it on the right to the length of the key prior to use.

008 nnn Transport key variant.

XOR this variant into the cleartext transport key, provided: (1) the length of the variant
field value (offset 007) is not zero, and (2) the symmetric encrypted output key format
flag (offset 018 in section X'12') is X'01'.
Note: A transport key is not used when the symmetric encrypted output key is in RKX
key-token format.

Note: See “Number representation in trusted blocks” on page 971.

Trusted block section X'12' subsection X'0002'

Subsection X'0002' of the trusted block rule section (X'12') is the transport key rule
reference TLV object. This subsection is optional. It contains the rule ID for the rule
that must have been used to create the transport key. This subsection must be
present to use an RKX key-token as a transport key.

This subsection is defined in Table 286 on page 976.

Key token formats

Chapter 19. Key token formats 975

Table 286. Transport key rule reference subsection (X'0002') of trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:
X'0002' Transport key rule reference TLV object

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 008 Rule ID.

Contains the rule identifier for the rule that must have been used to create the RKX
key-token used as the transport key.

The Rule ID is an 8-byte string of ASCII characters, left-aligned and padded on the right
with space characters. Acceptable characters are A - Z, a - z, 0 - 9, - (X'2D'), and _ (X'5F').
All other characters are reserved for future use.

Note: See “Number representation in trusted blocks” on page 971.

Trusted block section X'12' subsection X'0003'

Subsection X'0003' of the trusted block rule section X'12') is the common export key
parameters TLV object. This subsection is optional, but is required for the key
export of an existing source key (identified by the source_key_identifier parameter)
in either RKX key-token format or CCA DES key-token format. For new key
generation, this subsection applies the output key variant to the cleartext generated
key, if such an option is desired. It contains the input source key and output export
key minimum and maximum lengths, an output key variant length and variant, a
CV length, and a CV to be XORed with the cleartext transport key.

This subsection is defined in Table 287.

Table 287. Common export key parameters subsection (X'0003') of trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:
X'0003' Common export key parameters TLV object

002 002 Subsection length in bytes (12 + xxx + yyy).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key minimum length in bytes. Length must be 0, 8, 16, or 24.

Also applies to the source key. Not applicable for key generation.

009 001 Export key maximum length in bytes (yyy). Length must be 0, 8, 16, or 24.

Also applies to the source key. Not applicable for key generation.

010 001 Output key variant length in bytes (xxx).

Valid values are 0 or 8 - 255. If greater than 0, the length must be at least as long as the
longest key ever to be exported using this rule. If the variant is longer than the key,
truncate it on the right to the length of the key prior to use.
Note: The output key variant (offset 011) is not used if this length is zero.

Key token formats

976 Common Cryptographic Architecture Application Programmer's Guide

Table 287. Common export key parameters subsection (X'0003') of trusted block rule section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

011 xxx Output key variant.

The variant can be any value. XOR this variant into the cleartext value of the output key.

011 + xxx 001 CV length in bytes (yyy).
v If the length is not 0, 8, or 16, return an error.
v If the length is 0, and if the source key is a CCA DES key-token, preserve the CV in

the symmetric encrypted output if the output is to be in the form of a CCA DES
key-token.

v If a nonzero length is less than the length of the key identified by the
source_key_identifier parameter, return an error.

v If the length is 16, and if the CV (offset 012 + xxx) is valued to 16 bytes of X'00'
(ignoring the key-part bit), then:
1. Ignore all CV bit definitions
2. If CCA DES key-token format, set the flag byte of the symmetric encrypted output

key to indicate a CV value is present.
3. If the source key is eight bytes in length, do not replicate the key to 16 bytes

012 + xxx yyy CV. (See “Control vector table” on page 989.)

Place this CV into the output exported key-token, provided that the symmetric
encrypted output key format selected (offset 018 in rule section) is CCA DES key-token.
v If the symmetric encrypted output key format flag (offset 018 in section X'12')

indicates return an RKX key-token (X'00'), then ignore this CV. Otherwise, XOR this
CV into the cleartext transport key.

v XOR the CV of the source key into the cleartext transport key if the CV length (offset
011 + xxx) is set to 0. If a transport key to encrypt a source key has equal left and
right key halves, return an error. Replicate the key halves of the key identified by the
source_key_identifier parameter whenever all of these conditions are met:
1. The Key Generate - SINGLE-R command (offset X'00DB') is enabled in the active

role
2. The CV length (offset 011 + xxx) is 16, and both CV halves are nonzero
3. The source_key_identifier parameter (contained in either a CCA DES key-token or

RKX key-token) identifies an 8-byte key
4. The key-form bits (40 - 42) of this CV do not indicate a single-length key (are not

set to zero)
5. Key-form bit 40 of this CV does not indicate the key is to have guaranteed unique

halves (is not set to B'1'). See “Key Form Bits, fff” on page 995.

Note: A transport key is not used when the symmetric encrypted output key is in RKX
key-token format.

Note: See “Number representation in trusted blocks” on page 971.

Trusted block section X'12' subsection X'0004'

Subsection X'0004' of the trusted block rule section (X'12') is the source key rule
reference TLV object. This subsection is optional, but is required if using an RKX
key-token as a source key (identified by source_key_identifier parameter). It contains
the rule ID for the rule used to create the export key. If this subsection is not
present, an RKX key-token format source key will not be accepted for use.

This subsection is defined in Table 288 on page 978.

Key token formats

Chapter 19. Key token formats 977

Table 288. Source key rule reference subsection (X'0004') of trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:
X'0004' Source key rule reference TLV object

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 008 Rule ID.

Rule identifier for the rule that must have been used to create the source key.

The Rule ID is an 8-byte string of ASCII characters, left-aligned and padded on the right
with space characters. Acceptable characters are A - Z, a - z, 0 - 9, - (X'2D'), and _ (X'5F').
All other characters are reserved for future use.

Note: See “Number representation in trusted blocks” on page 971.

Trusted block section X'12' subsection X'0005'

Subsection X'0005' of the trusted block rule section (X'12') is the export key CCA
token parameters TLV object. This subsection is optional. It contains a mask length,
mask, and template for the export key CV limit. It also contains the template
length and template for the source key label. When using a CCA DES key-token as
a source key input parameter, its key type can be "filtered" by using the export key
CV limit mask (offset 005) and limit template (offset 005+yyy) in this subsection.

This subsection is defined in Table 289.

Table 289. Export key CCA token parameters subsection (X'0005') of trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:
X'0005' Export key CCA token parameters TLV object

002 002 Subsection length in bytes (8 + yyy + yyy + zzz).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key CV limit mask length in bytes (yyy).

Do not use CV limits if this CV limit mask length (yyy) is zero. Use CV limits if yyy is
nonzero, in which case yyy:
v Must be 8 or 16
v Must not be less than the export key minimum length (offset 008 in subsection X'0003')
v Must be equal in length to the actual source key length of the key

Example: An export key minimum length of 16 and an export key CV limit mask length
of 8 returns an error.

Key token formats

978 Common Cryptographic Architecture Application Programmer's Guide

Table 289. Export key CCA token parameters subsection (X'0005') of trusted block rule section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

009 yyy Export key CV limit mask (does not exist if yyy=0).

See “Control-vector-base bit maps” on page 991

Indicates which CV bits to check against the source key CV limit template (offset 009 +
yyy).

Examples: A mask of X'FF' means check all bits in a byte. A mask of X'FE' ignores the
parity bit in a byte.

009 + yyy yyy Export key CV limit template (does not exist if yyy = 0).

Specifies the required values for those CV bits that are checked based on the export key
CV limit mask (offset 009). (See “Control-vector-base bit maps” on page 991.)

The export key CV limit mask and template have the same length, yyy. This is because
these two variables work together to restrict the acceptable CVs for CCA DES key tokens
to be exported. The checks work as follows:
1. If the length of the key to be exported is less than yyy, return an error
2. Logical AND the CV for the key to be exported with the export key CV limit mask
3. Compare the result to the export key CV limit template
4. Return an error if the comparison is not equal

Examples: An export key CV limit mask of X'FF' for CV byte 1 (key type) along with an
export key CV limit template of X'3F' (key type CVARENC) for byte 1 filters out all key
types except CVARENC keys.
Note: Using the mask and template to permit multiple key types is possible, but cannot
consistently be achieved with one rule section. For example, setting bit 10 to B'1' in the
mask and the template permits PIN processing keys and cryptographic variable
encrypting keys, and only those keys. However, a mask to permit PIN-processing keys
and key-encrypting keys, and only those keys, is not possible. In this case, multiple rule
sections are required, one to permit PIN-processing keys and the other to permit
key-encrypting keys.

009 + yyy +
yyy

001 Source key label template length in bytes (zzz).

Valid values are 0 and 64. Return an error if the length is 64 and a source key label is
not provided.

010 + yyy +
yyy

zzz Source key label template (does not exist if zzz = 0).

If a key label is identified by the source_key_identifier parameter, verify that the key label
name matches this template. If the comparison fails, return an error. The source key label
template must conform to the following rules:
v The key label template must be 64 bytes in length
v The first character cannot be in the range X'00' - X'1F', nor can it be X'FF'
v The first character cannot be numeric (X'30' - X'39')
v A key label name is terminated by a space character (X'20') on the right and must be

padded on the right with space characters
v The only special characters permitted are #, $, @, and * (X'23', X'24', X'40', and X'2A')
v The wildcard X'2A' (*) is permitted only as the first character, the last character, or the

only character in the template
v Only alphanumeric characters (a - z, A - Z, 0 - 9), the four special characters (X'23',

X'24', X'40', and X'2A'), and the space character (X'20') are allowed

Note: See “Number representation in trusted blocks” on page 971.

Trusted block section X'13'
Trusted block section X'13' contains the name (key label).

Key token formats

Chapter 19. Key token formats 979

The trusted block name section provides a 64-byte variable to identify the trusted
block, just as key labels are used to identify other CCA keys. This name, or label,
enables a host access-control system such as RACF to use the name to verify that
the application has authority to use the trusted block.

Section X'13' is optional. No multiple sections are allowed. It has no subsections
defined.

Table 290. Trusted block key label (name) section X'13'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:
X'13' Trusted block name (key label)

001 001 Section version number (X'00').

002 002 Section length in bytes (68).

004 064 Name (key label).

Trusted block section X'14'
Trusted block section X'14' contains control and security information related to the
trusted block.

This information section is separate from the public key and other sections because
this section is required while the others are optional. This section contains the
cryptographic information that guarantees its integrity and binds it to the local
system.

Section X'14' is required. No multiple sections are allowed. Two subsections are
defined.

Table 291. Trusted block information section (X'14')

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:
X'14' Trusted block information

001 001 Section version number (X'00').

002 002 Section length in bytes (10+xxx).

004 002 Reserved, binary zero.

006 004 Flags:

Value Description
X'00000000'

Trusted block is in the inactive state
X'00000001'

Trusted block is in the active state

010 xxx Information section subsections (tag-length-value objects).

One or two objects in TLV format.

Trusted block section X'14' subsections:

Section X'14' has two information subsections (tag-length-value objects) defined.

Key token formats

980 Common Cryptographic Architecture Application Programmer's Guide

These subsections are summarized in Table 292. See also “Number representation
in trusted blocks” on page 971.

Table 292. Summary of trusted block information subsections

Rule
subsection
tag

TLV object Optional or
required

Comments

X'0001' Protection
information

Required Contains the encrypted 8-byte confounder and triple-length
(24-byte) MAC key, the ISO-16609 TDES CBC MAC value, and the
MKVP of the PKA master key (computed using MDC4).

X'0002' Activation
and expiration
dates

Optional Contains flags indicating whether or not the coprocessor is to
validate dates, and contains the activation and expiration dates that
are considered valid for the trusted block.

Trusted block section X'14' subsection X'0001'

Subsection X'0001' of the trusted block information section (X'14') is the protection
information TLV object. This subsection is required. It contains the encrypted
8-byte confounder and triple-length (24-byte) MAC key, the ISO-16609 TDES CBC
MAC value, and the MKVP of the PKA master key (computed using MDC4).

This subsection is defined in Table 293.

Table 293. Protection information subsection (X'0001') of trusted block information section (X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0001' Trusted block information TLV object

002 002 Subsection length in bytes (62).

004 001 Subsection version number (X'00'.

005 001 Reserved, must be binary zero.

006 032 Encrypted MAC key.

Contains the encrypted 8-byte confounder and triple-length (24-byte) MAC key in the
following format:

Offset Description

00 - 07 Confounder

08 - 15 Left key

16 - 23 Middle key

24 - 31 Right key

038 008 MAC.

Contains the ISO-16609 TDES CBC Message Authentication Code value.

046 016 MKVP.

Contains the PKA master-key verification pattern, computed using MDC4, when the
trusted block is in internal form, otherwise contains binary zero.

Trusted block section X'14' subsection X'0002'

Key token formats

Chapter 19. Key token formats 981

Subsection X'0002' of the trusted block information section (X'14') is the activation
and expiration dates TLV object. This subsection is optional. It contains flags
indicating whether or not the coprocessor is to validate dates, and contains the
activation and expiration dates that are considered valid for the trusted block.

This subsection is defined in Table 294.

Table 294. Activation and expiration dates subsection (X'0002') of trusted block information section (X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:
X'0002' Activation and expiration dates TLV object

002 002 Subsection length in bytes (16).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 002 Flags:

Value Description
X'0000' The coprocessor does not check dates.
X'0001' The coprocessor checks dates.

Compare the activation date (offset 008) and the expiration date (offset 012) to
the coprocessor's internal real-time clock. Return an error if the coprocessor date
is before the activation date or after the expiration date.

008 004 Activation date.

Contains the first date that the trusted block can be used for generating or exporting
keys. Format of the date is YYMDD, where:
YY Big-endian year (return an error if greater than 9999)
MM Month (return an error if any value other than X'01' - X'0C')
DD Day of month (return an error if any value other than X'01' - X'1F'. Day must be

valid for given month and year, including leap years).

Return an error if the activation date is after the expiration date or is not valid.

012 004 Expiration date.

Contains the last date that the trusted block can be used. Same format as activation date
(offset 008). Return an error if date is not valid.

Trusted block section X'15'
Trusted block section X'15' contains application-defined data.

The trusted block application-defined data section can be used to include
application-defined data in the trusted block. The purpose of the data in this
section is defined by the application; it is neither examined nor used by CCA in
any way.

Section X'15' is optional. No multiple sections are allowed. It has no subsections
defined.

Table 295. Trusted block application-defined data section (X'15')

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'15' Application-defined data

Key token formats

982 Common Cryptographic Architecture Application Programmer's Guide

Table 295. Trusted block application-defined data section (X'15') (continued)

Offset
(bytes)

Length
(bytes)

Description

001 001 Section version number (X'00').

002 002 Section length (6 + xxx)

004 002 Application data length

The value of xxx must be between 0 and N, where N does not cause the overall length of
the trusted block to exceed its maximum size of 3500 bytes.

006 xxx Application-defined data

Could be used to hold a public-key certificate for the trusted public key.

Key token formats

Chapter 19. Key token formats 983

Key token formats

984 Common Cryptographic Architecture Application Programmer's Guide

Chapter 20. Key forms and types used in the Key Generate
verb

The Key Generate verb is the most complex of all the CCA verbs. You can generate
different key forms and key types with the Key Generate verb.

Generating an operational key
There are different methods that you can use to generate an operational key.

Choose one of the following methods:
v For operational keys, call the Key Generate (CSNBKGN) verb. Table 59 on page

219 and Table 60 on page 219 show the key type and key form combinations for
a single key and for a key pair.

v For data-encrypting keys, call the Random Number Generate (CSNBRNG) verb
and specify the form parameter as ODD. Then pass the generated value to the
Clear Key Import (CSNBCKI) verb or the Multiple Clear Key Import
(CSNBCKM) verb. The DATA key type is now in operational form.

You cannot generate a PIN verification (PINVER) key in operational form because
the originator of the PIN generation (PINGEN) key generates the PINVER key in
exportable form, which is sent to you to be imported.

Generating an importable key
To generate an importable key form, call the Key Generate (CSNBKGN) verb.

If you want a DATA, MAC, PINGEN, DATAM, or DATAC key type in importable
form, obtain it directly by generating a single key. If you want any other key type
in importable form, request a key pair where either the first or second key type is
importable (IM). Discard the generated key form that you do not need.

Generating an exportable key
To generate an exportable key form, call the Key Generate (CSNBKGN) verb.

If you want a DATA, MAC, PINGEN, DATAM, or DATAC key type in exportable
form, obtain it directly by generating a single key. If you want any other key type
in exportable form, request a key pair where either the first or second key type is
exportable (EX). Discard the generated key form that you do not need.

Examples of single-length keys in one form only
An example of single-length keys.
Key Key
Form 1

OP DATA Encipher or Decipher data. Use Data Key Export or Key Export
to send encrypted key to another cryptograpic partner. Then
communicate the ciphertext.

OP MAC MAC Generate. Because no MACVER key exists, there is no
secure communication of the MAC with another cryptographic
partner.

© Copyright IBM Corp. 2007, 2018 985

IM DATA Key Import, and then Encipher or Decipher. Then Key Export
to communicate ciphertext and key with another cryptographic
partner.

EX DATA You can send this key to a cryptographic partner, but you
can do nothing with it directly. Use it for the key
distribution service. The partner could then use Key Import
to get it in operational form, and use it as in OP DATA
above.

Examples of OPIM single-length, double-length, and triple-length keys
in two forms

The first two letters of the key form indicate the form that key type 1 parameter is
in, and the second two letters indicate the form that key type 2 parameter is in.
Key Type Type
Form 1 2

OPIM DATA DATA Use the OP form in Encipher. Use Key Export with the
OP form to communicate ciphertext and key with
another cryptographic partner. Use Key Import at a
later time to use Encipher or Decipher with the same
key again.

OPIM MAC MAC Single-length MAC Generate key. Use the OP form in
MAC Generate. You have no corresponding verb MACVER key,
but you can call the MAC Verify verb with
the MAC key directly. Use the Key Import verb
and then compute the MAC again using the MAC Verify
verb, which compares the MAC
it generates with the MAC supplied with the message
and issues a return code indicating whether they
compare.

Examples of OPEX single-length, double-length, and triple-length keys
in two forms

Examples of OPEX single-length, double-length, and triple-length keys in two
forms.
Key Type Type
Form 1 2

OPEX DATA DATA Use the OP form in Encipher. Send the EX form and
the ciphertext to another cryptographic partner.

OPEX MAC MAC Single-length MAC generation key. Use the OP form in
both MAC Generate and MAC Verify. Send the
EX form to a cryptographic partner to be used in the
MAC Generate or MAC Verify verbs.

OPEX MAC MACVER Single-length MAC generation and MAC verification
keys. Use the OP form in MAC Generate. Send the EX
form to a cryptographic partner where it will be put
into Key Import, and then MAC Verify, with the
message and MAC that you have also transmitted.

OPEX PINGEN PINVER Use the OP form in Clear PIN Generate. Send the
EX form to a cryptographic partner where it is put
into Key Import, and then Encrypted PIN Verify,
along with an IPINENC key.

OPEX IMPORTER EXPORTER
Use the OP form in Key Import or Key Generate.
Send the EX form to a cryptographic partner where
it is used in Key Export, Data Key Export, or Key Generate,
or put in the CCA key storage file.

OPEX EXPORTER IMPORTER
Use the OP form in Key Export, Data Key Export,

986 Common Cryptographic Architecture Application Programmer's Guide

or Key Generate. Send the EX form to a cryptographic
partner where it is put into the CCA Key storage file
or used in Key Import or Key Generate.

When you and your partner have the OPEX IMPORTER EXPORTER, OPEX
EXPORTER IMPORTER pairs of keys in “Examples of OPEX single-length,
double-length, and triple-length keys in two forms” on page 986 installed, you can
start key and data exchange.

Examples of IMEX single-length and double-length keys in two forms
Examples of IMEX single-length and double-length keys in two forms.

Key Type Type
Form 1 2

IMEX DATA DATA Use the Key Import verb to import
IM form and use the OP form in Encipher. Send
the EX form to a cryptographic partner.

IMEX MAC MACVER Use the Key Import verb to import
the IM form and use the OP form in MAC Generate.
Send the EX form to a cryptographic
partner who can verify the MAC.

IMEX IMPORTER EXPORTER Use the Key Import verb to import
the IM form and send the EX form to a
cryptographic partner. This establishes a new
IMPORTER/EXPORTER key between you and your
partner.

IMEX PINGEN PINVER Use the Key Import verb to import
the IM form and send the EX form to a
cryptographic partner. This establishes a new
PINGEN/PINVER key between you and your partner.

Examples of EXEX single-length and double-length keys in two forms
Examples of IMEX single-length and double-length keys in two forms.

For the keys shown in the following list, you are providing key distribution
services for other nodes in your network, or other cryptographic partners. Neither
key type can be used in your installation.

Key Type Type
Form 1 2

EXEX DATA DATA Send the first EX form to a cryptographic
EXEX MAC MACVER partner with the corresponding IMPORTER and
EXEX IMPORTER EXPORTER send the second EX form to another
EXEC OPINENC IPINENC cryptographic partner with the corresponding

IMPORTER. This exchange establishes a key
between two partners.

Chapter 20. Key forms and types used in the Key Generate verb 987

988 Common Cryptographic Architecture Application Programmer's Guide

Chapter 21. Control vectors and changing control vectors
with the Control Vector Translate verb

A control vector table shows the default value of the control vector associated with
each type of key.

This information unit also describes how to change control vectors with the
Control Vector Translate verb.

Control vector table
The control vector values that CCA uses to XOR key halves depend on the type of
key.

Note: The control vectors descriptions here build on the descriptions used for
earlier IBM products supporting CCA, each in turn: 4765, 4764, 4758, and TSS.

The master key enciphers all keys operational on your system. A transport key
enciphers keys distributed off your system. Before a master key or transport key
enciphers a key, CCA XORs both halves of the master key or transport key with a
control vector. The same control vector is XORed to the left and right half of a
master key or transport key.

Also, if you are entering a key part, CCA XORs each half of the key part with a
control vector before placing the key part into the key storage file.

Each type of CCA key (except the master key) has either one or two unique control
vectors associated with it. The master key or transport key CCA XORs with the
control vector depending on the type of key the master key or transport key is
enciphering. For double-length keys, a unique control vector exists for each half of
a specific key type. For example, there is a control vector for the left half of an
input PIN-encrypting key, and a control vector for the right half of an input
PIN-encrypting key.

If you are entering a cleartext key part, CC XORs the key part with the unique
control vector(s) associated with the key type. CCA also enciphers the key part
with two master key variants for a key part. One master key variant enciphers the
left half of the key part and another master key variant enciphers the right half of
the key part. CCA creates the master key variants for a key part by XORing the
master key with the control vectors for key parts. These procedures protect key
separation.

Table 296 displays the default value of the control vector associated with each type
of key. Some key types do not have a default control vector. For keys that are
double-length, CCA enciphers using a unique control vector on each half.

Table 296. Default control vector values

Key Type

Control Vector Value (Hex)
Value for Single-length Key
or Left Half of
Double-length Key

Control Vector Value (Hex)
Value for Right Half of
Double-length Key

AES 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

© Copyright IBM Corp. 2007, 2018 989

Table 296. Default control vector values (continued)

Key Type

Control Vector Value (Hex)
Value for Single-length Key
or Left Half of
Double-length Key

Control Vector Value (Hex)
Value for Right Half of
Double-length Key

AESTOKEN 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

CIPHERXI 00 0C 50 00 03 C0 00 00 00 0C 50 00 03 A0 00 00

CIPHERXO 00 0C 60 00 03 C0 00 00 00 0C 60 00 03 A0 00 00

CIPHERXL 00 0C 71 00 03 C0 00 00 00 0C 71 00 03 A0 00 00

CIPHER 00 03 71 00 03 00 00 00

CIPHER (double length) 00 03 71 00 03 41 00 00 00 03 71 00 03 21 00 00

CVARDEC 00 3F 42 00 03 00 00 00

CVARENC 00 3F 48 00 03 00 00 00

CVARPINE 00 3F 41 00 03 00 00 00

CVARXCVL 00 3F 44 00 03 00 00 00

CVARXCVR 00 3F 47 00 03 00 00 00

DATA (external) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

DATA (internal) 00 00 7D 00 03 41 00 00 00 00 7D 00 03 21 00 00

DATA 00 00 00 00 00 00 00 00

DATAC 00 00 71 00 03 41 00 00 00 00 71 00 03 21 00 00

DATAM generation key
(external)

00 00 4D 00 03 41 00 00 00 00 4D 00 03 21 00 00

DATAM key (internal) 00 05 4D 00 03 00 00 00 00 05 4D 00 03 00 00 00

DATAMV MAC verification
key (external)

00 00 44 00 03 41 00 00 00 00 44 00 03 21 00 00

DATAMV MAC verification
key (internal)

00 05 44 00 03 00 00 00 00 05 44 00 03 00 00 00

DATAXLAT 00 06 71 00 03 00 00 00

DECIPHER 00 03 50 00 03 00 00 00

DECIPHER (double-length) 00 03 50 00 03 41 00 00 00 03 50 00 03 21 00 00

DKYGENKY 00 71 44 00 00 03 41 00 00 71 44 00 03 21 00 00

DKYL0 This control vector has the DKYL0 set by default.

DKYL1 00 72 44 00 00 03 41 00 00 71 44 00 03 21 00 00

DKYL2 00 74 44 00 00 03 41 00 00 71 44 00 03 21 00 00

DKYL3 00 77 44 00 00 03 41 00 00 71 44 00 03 21 00 00

DKYL4 00 78 44 00 00 03 41 00 00 71 44 00 03 21 00 00

DKYL5 00 7B 44 00 00 03 41 00 00 71 44 00 03 21 00 00

DKYL6 00 7D 44 00 00 03 41 00 00 71 44 00 03 21 00 00

DKYL7 00 7E 44 00 00 03 41 00 00 71 44 00 03 21 00 00

ENCIPHER 00 03 60 00 03 00 00 00

ENCIPHER (double-length) 00 03 60 00 03 41 00 00 00 03 60 00 03 21 00 00

EXPORTER 00 41 7D 00 03 41 00 00 00 41 7D 00 03 21 00 00

IKEYXLAT 00 42 42 00 03 41 00 00 00 42 42 00 03 21 00 00

IMP-PKA 00 42 05 00 03 41 00 00 00 42 05 00 03 21 00 00

990 Common Cryptographic Architecture Application Programmer's Guide

Table 296. Default control vector values (continued)

Key Type

Control Vector Value (Hex)
Value for Single-length Key
or Left Half of
Double-length Key

Control Vector Value (Hex)
Value for Right Half of
Double-length Key

IMPORTER 00 42 7D 00 03 41 00 00 00 42 7D 00 03 21 00 00

IPINENC 00 21 5F 00 03 41 00 00 00 21 5F 00 03 21 00 00

MAC 00 05 4D 00 03 00 00 00

MAC (double-length) 00 05 4D 00 03 41 00 00 00 05 4D 00 03 21 00 00

MACVER 00 05 44 00 03 00 00 00

MACVER (double-length) 00 05 44 00 03 41 00 00 00 05 44 00 03 21 00 00

OKEYXLAT 00 41 42 00 03 41 00 00 00 41 42 00 03 21 00 00

OPINENC 00 24 77 00 03 41 00 00 00 24 77 00 03 21 00 00

PINGEN 00 22 7E 00 03 41 00 00 00 22 7E 00 03 21 00 00

PINVER 00 22 42 00 03 41 00 00 00 22 42 00 03 21 00 00

SECMSG with SMPIN set 00 0A 50 00 03 41 00 00 00 0A 50 00 03 21 00 00

SECMSG with SMKEY set 00 0A 60 00 03 41 00 00 00 0A 60 00 03 21 00 00

Note: The external control vectors for DATAC, DATAM MAC generation, and
DATAMV MAC verification keys are also referred to as data compatibility control
vectors.

Control-vector-base bit maps
Details of the control vector base bit maps.

Chapter 21. Control vectors with the Control Vector Translate verb 991

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

0000uu.P 01000001 0EgksixP 00000000 0000001P fff0K00P 00000000 HTC00u0P

0000uu.P 01000001 0E00001P 00000000 0000001P fff0K00P 00000000 HTC00u0P

0000 01000010 0E00001P 00000000 0000001P fff0K00P 00000000uu.P HTC00u0P

0000 01000010 0EgksixP 00000000 0000001P fff0K00P 00000000uu.P HTC00u0P

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

.......P P .E.....P 0P 1P fff.K..P P HTC..u.P

Control-Vector Base Bits

Most Significant Bit

E= XPORT-OK

P=Even Parity

EXPORTER

OKEYXLAT

IKEYXLAT

IMPORTER

Key-Encrypting Keys

K=KEY-PART

Common Bits

Anti-Variant Bits

Least Significant Bit

g=IMEX

k=OPEX

x=XLATE
i=IMPORT

s=IMIM
k=OPIM

g=IMEX

s=EXEX

i=EXPORT

x=XLATE

Key-Form

KEY-FORM H=ENH-ONLY
T=NOT31XPT

C=COMP-TAG

1=NOT-CCA

Figure 15. Control vector base bit map (common bits and key-encrypting keys)

992 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
|

0000uu.P 00000000 0Eedmv0P 00000000 00000011 fff0K00P 00000000 HTC00u0P

0000 00000000 0E11000P 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

0000 00000000 0E00110P 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

0000 00000000 0E00010P 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

0000 00001010 0E..000P 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

cccc 00000101 0E00110P 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

cccc 00000101 0E00010P 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

DATA

DATAC

DATAM

DATAMV

MACVER

SECMSG

MAC

01 PIN encryption

10 Key encryption

0000 ANY

0001 ANSI X9.9

0010 CVV KEY-A

0011 CVV KEY-B

0000 00000011 0E11000P 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

0000 00000011 0E01000P 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

0000 00000011 0E10000P 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

CIPHER

ENCIPHER

DECIPHER

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

Data Operation Keys

Least Significant Bit

Key-Form

e=ENCIPHER

d=DECIPHER
m=MACGEN

v=MACVER

0000 00001100 0E01000P 00000000 00000011 1ff0K00P 00000000uu.P HTC00u0P

0000 00001100 0E10000P 00000000 00000011 1ff0K00P 00000000uu.P HTC00u0P

0000 00001100 0E11000P 00000000 00000011 1ff0K00P 00000000uu.P HTC00u0P

CIPHERXI

CIPHERXL

CIPHERXO

0100 AMEX-CSC

Figure 16. Control vector base bit map (data operation keys)

Chapter 21. Control vectors with the Control Vector Translate verb 993

|

|
|
|

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

aaaauu0P 00100010 0E.....P 00000000 00000o1P fff0K00P 00000000 HTC00u0P

aaaauu0P 00100010 0E00001P 00000000 00000o1P fff0K00P 00000000 HTC00u0P

0000uu.P 00100001 0E0..trP 00000000 00000011 fff0K00P 00000000 HTC00u0P

0000 00100100 0E..0trP 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

0000 00111111 0EvvvvvP 00000000 00000011 fff0K00P 00000000uu.P HTC00u0P

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

Prohibit offsets:

NOOFFSET

PINGEN

PINVER

IPINENC

OPINENC

PIN Processing Keys

Cryptographic Variable-Encrypting Keys

Least Significant Bit

0000 NO-SPEC

CPINGEN

EPINVER

REFORMAT

Key-form

00000 CVARPINE

00001 CVARDEC

00010 CVARXCVL

00011 CVARXCVR

00100 CVARENC

CPINENC

EPINGEN TRANSLAT

CPINGENA

EPINGENA

EPINGEN

CPINGENA
EPINVER

0001 IBM-PIN/IBM-PINO

0010 VISA-PVV

0011 INBK-PIN

0100 GBP-PIN/GBP-PINO

0101 NL-PIN-1

Figure 17. Control vector base bit map (PIN processing keys and cryptographic
variable-encrypting keys)

994 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
|

Key Form Bits, fff
The key form bits, 40-42, and for a double-length key, bits 104-106, are designated
fff in the preceding illustration.

These bits can have the following values:

Value Description

000 Single length key

010 Double length key, left half

001 Double length key, right half

The following values could exist in some CCA implementations:

Value Description

110 Double-length key, left half, halves guaranteed unique

101 Double-length key, right half, halves guaranteed unique

Specifying a control-vector-base value
You can determine the value of a control vector by working through a series of
questions.

Procedure

Work through this series of questions:
1. Begin with a field of 64 bits (eight bytes) set to B'0'. The most significant bit is

referred to as bit 0. Define the key type and subtype (bits 8 - 14) as follows:

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

0000uu.P 01010011 0E..000P 00000000 00000011 fff0K00P 00000000 HTC00u0P

0000uu.P 0111vvvP 0E0vvvvP 00000000 00000011 fff0K00P 00000000 HTC00u0P

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

KEYGENKY

DKYGENKY

Key Generating Keys

Least Significant Bit

CLR8-ENC

0001 DDATA000 DKY Subtype 0

001 DKY Subtype 1

010 DKY Subtype 2

011 DKY Subtype 3

100 DKY Subtype 4

101 DKY Subtype 5

110 DKY Subtype 6

111 DKY Subtype 7

0010 DMAC
0011 DMV
0100 DIMP

0101 DEXP

0110 DPVR

1000 DMKEY

1001 DMPIN

1111 DALL

UKPT

Key-form

Figure 18. Control vector base bit map (key generating keys)

Chapter 21. Control vectors with the Control Vector Translate verb 995

|

|
|
|

v The main key type bits (bits 8 - 11). Set bits 8 - 11 to one of the following
values:

Table 297. Main key type bits

Bits 8 - 11 Main Key Type

0000 Data operation keys

0010 PIN keys

0011 Cryptographic variable-encrypting keys

0100 Key-encrypting keys

0101 Key-generating keys

0111 Diversified key-generating keys

v The key subtype bits (bits 12 - 14). Set bits 12 - 14 to one of the following
values:

Note: For Diversified Key Generating Keys, the subtype field specifies the
hierarchical level of the DKYGENKY. If the subtype is nonzero, the
DKYGENKY can generate only another DKYGENKY key with the hierarchy
level decremented by one. If the subtype is zero, the DKYGENKY can
generate only the final diversified key (a non-DKYGENKY key) with the
key type specified by the usage bits.

Table 298. Key subtype bits

Bits 12 - 14 Key Subtype

Data Operation Keys

000 Compatibility key (DATA)

001 Confidentiality key (CIPHER, DECIPHER, or ENCIPHER)

010 MAC key (MAC or MACVER)

101 Secure messaging keys

Key-Encrypting Keys

000 Transport-sending keys (EXPORTER and OKEYXLAT)

001 Transport-receiving keys (IMPORTER and IKEYXLAT)

PIN Keys

001 PIN-generating key (PINGEN, PINVER)

000 Inbound PIN-block decrypting key (IPINENC)

010 Outbound PIN-block encrypting key (OPINENC)

Cryptographic Variable-Encrypting Keys

111 Cryptographic variable-encrypting key (CVAR....)

Diversified Key Generating Keys

000 DKY Subtype 0

001 DKY Subtype 1

010 DKY Subtype 2

011 DKY Subtype 3

100 DKY Subtype 4

101 DKY Subtype 5

110 DKY Subtype 6

996 Common Cryptographic Architecture Application Programmer's Guide

Table 298. Key subtype bits (continued)

Bits 12 - 14 Key Subtype

111 DKY Subtype 7

2. For key-encrypting keys, set the following bits:
v The key-generating usage bits (gks, bits 18 - 20). Set the gks bits to B'111' to

indicate the Key Generate verb can use the associated key-encrypting key to
encipher generated keys when the Key Generate verb is generating various
key-pair key-form combinations (see the Key-Encrypting Keys section of
Figure 15 on page 992). Without any of the gks bits set to B'1', the Key
Generate verb cannot use the associated key-encrypting key. The Key Token
Build verb can set the gks bits to B'1' when you supply the OPIM, IMEX,
IMIM, OPEX, and EXEX keywords.

v The IMPORT and EXPORT bit and the XLATE bit (ix, bits 21 and 22). If the
‘i’ bit is set to B'1', the associated key-encrypting key can be used in the
Data Key Import, Key Import, Data Key Export, and Key Export verbs. If
the ‘x’ bit is set to B'1', the associated key-encrypting key can be used in the
Key Translate and Key Translate2 verbs.

v The key-form bits (fff, bits 40 - 42). The key-form bits indicate how the key
was generated and how the control vector participates in
multiple-enciphering. To indicate the parts can be the same value, set these
bits to B'010'. For information about the value of the key-form bits in the
right half of a control vector, see Step 8 on page 998.

3. For MAC and MACVER keys, set the following bits:
v The MAC control bits (bits 20 and 21). For a MAC-generate key, set bits 20

and 21 to B'11'. For a MAC-verify key, set bits 20 and 21 to B'01'.
v The key-form bits (fff, bits 40 - 42). For a single-length key, set the bits to

B'000'. For a double-length key, set the bits to B'010'.
4. For PINGEN and PINVER keys, set the following bits:
v The PIN calculation method bits (aaaa, bits 0 - 3). Set these bits to one of

the following values:

Table 299. Calculation method keyword bits

Bits 0 - 3 Calculation Method
Keyword

Description

0000 NO-SPEC A key with this control vector can
be used with any PIN calculation
method.

0001 IBM-PIN or IBM-PINO A key with this control vector can
be used only with the IBM PIN or
PIN Offset calculation method.

0010 VISA-PVV A key with this control vector can
be used only with the VISA-PVV
calculation method.

0100 GBP-PIN or GBP-PINO A key with this control vector can
be used only with the German
Banking Pool PIN or PIN Offset
calculation method.

0011 INBK-PIN A key with this control vector can
be used only with the Interbank
PIN calculation method.

Chapter 21. Control vectors with the Control Vector Translate verb 997

v The prohibit-offset bit (o, bit 37) to restrict operations to the PIN value. If
set to B'1', this bit prevents operation with the IBM 3624 PIN Offset
calculation method and the IBM German Bank Pool PIN Offset calculation
method.

5. For PINGEN, IPINENC, and OPINENC keys, set bits 18 - 22 to indicate
whether the key can be used with the following verbs:

Table 300. INGEN, IPINENC, and OPINENC key bits

Service Allowed Bit Name Bit

Clear PIN Generate CPINGEN 18

Encrypted PIN Generate Alternate EPINGENA** 19

Encrypted PIN Generate EPINGEN 20 for PINGEN

19 for OPINENC

Clear PIN Generate Alternate CPINGENA 21 for PINGEN

20 for IPINENC

Encrypted PIN Verify EPINVER 19

Clear PIN Encrypt CPINENC 18

** EPINGENA is no longer supported, although the bit retains this definition for
compatibility There is no Encrypted Pin Generate Alternate verb.

6. For the IPINENC (inbound) and OPINENC (outbound) PIN-block ciphering
keys, do the following:
v Set the TRANSLAT bit (t, bit 21) to B'1' to permit the key to be used in the

PIN Translate verb. The Control Vector Generate verb can set the
TRANSLAT bit to B'1' when you supply the TRANSLAT keyword.

v Set the REFORMAT bit (r, bit 22) to B'1' to permit the key to be used in the
PIN Translate verb. The Control Vector Generate verb can set the
REFORMAT bit and the TRANSLAT bit to B'1' when you supply the
REFORMAT keyword.

7. For the cryptographic variable-encrypting keys (bits 18 - 22), set the
variable-type bits (bits 18 - 22) to one of the following values:

Table 301. Generic key type bits

Bits 18 - 22 Generic Key Type Description

00000 CVARPINE Used in the Encrypted PIN
Generate Alternate verb to encrypt
a clear PIN.

00010 CVARXCVL Used in the Control Vector
Translate verb to decrypt the left
mask array.

00011 CVARXCVR Used in the Control Vector
Translate verb to decrypt the right
mask array.

8. For key-generating keys, set the following bits:
v For KEYGENKY, set bit 18 for UKPT usage and bit 19 for CLR8-ENC usage.
v For DKYGENKY, bits 12–14 will specify the hierarchical level of the

DKYGENKY key. If the subtype CV bits are nonzero, the DKYGENKY can
generate only another DKYGENKY key with the hierarchical level

998 Common Cryptographic Architecture Application Programmer's Guide

decremented by one. If the subtype CV bits are zero, the DKYGENKY can
generate only the final diversified key (a non-DKYGENKY key) with the
key type specified by usage bits.
To specify the subtype values of the DKYGENKY, keywords DKYL0,
DKYL1, DKYL2, DKYL3, DKYL4, DKYL5, DKYL6, and DKYL7 will be used.

v For DKYGENKY, bit 18 is reserved and must be zero.
v Usage bits 18-22 for the DKYGENKY key type are defined as follows. They

will be encoded as the final key type that the DKYGENKY key generates.

Table 302. DKYGENKY key type bits

Bits 19 - 22 Keyword Usage

0001 DDATA DATA, DATAC, single or double
length

0010 DMAC MAC, DATAM

0011 DMV MACVER, DATAMV

0100 DIMP IMPORTER, IKEYXLAT

0101 DEXP EXPORTER, OKEYXLAT

0110 DPVR PINVER

1000 DMKEY Secure message key for encrypting
keys

1001 DMPIN Secure message key for encrypting
PINs

1111 DALL All key types can be generated
except DKYGENKY and
KEYGENKY keys. Usage of the
DALL keyword is controlled by a
separate access control point.

9. For secure messaging keys, set the following bits:
v Set bit 18 to B'1' if the key will be used in the secure messaging for PINs

service. Set bit 19 to B'1' if the key will be used in the secure messaging for
keys service.

10. For all keys, set the following bits:
v The export bit (E, bit 17). If set to B'0', the export bit prevents a key from

being exported. By setting this bit to B'0', you can prevent the receiver of a
key from exporting or translating the key for use in another cryptographic
subsystem. After this bit is set to B'0', it cannot be set to B'1' by any service
other than Control Vector Translate. The Prohibit Export verb can reset the
export bit.

v The key-part bit (K, bit 44). Set the key-part bit to B'1' in a control vector
associated with a key part. When the final key part is combined with
previously accumulated key parts, the key-part bit in the control vector for
the final key part is set to B'0'. The Control Vector Generate verb can set the
key-part bit to B'1' when you supply the KEY-PART keyword.

v The anti-variant bits (bit 30 and bit 38). Set bit 30 to B'0' and bit 38 to B'1'.
Many cryptographic systems have implemented a system of variants where
a 7-bit value is XORed with each 7-bit group of a key-encrypting key before
enciphering the target key. By setting bits 30 and 38 to opposite values,
control vectors do not produce patterns that can occur in variant-based
systems.

Chapter 21. Control vectors with the Control Vector Translate verb 999

v Control vector bits 64 - 127. If bits 40 - 42 are B'000' (single-length key), set
bits 64 - 127 to B'0'. Otherwise, copy bits 0 - 63 into bits 64 - 127 and set bits
105 and 106 to B'01'.

v Set the parity bits (low-order bit of each byte, bits 7, 15, ..., 127). These bits
contain the parity bits (P) of the control vector. Set the parity bit of each
byte so the number of zero-value bits in the byte is an even number.

v For secure messaging keys, usage bit 18 on will enable the encryption of
keys in a secure message and usage bit 19 on will enable the encryption of
PINs in a secure message.

Changing control vectors with the Control Vector Translate verb
What you need to do when you use the Control Vector Translate verb.

About this task

Do the following when using the verb:
v Provide the control information for testing the control vectors of the source,

target, and key-encrypting keys to ensure that only sanctioned changes can be
performed

v Select the key-half processing mode.

Note: This verb is not available for compliance-tagged key tokens.

Providing the control information for testing the control
vectors

To minimize your security exposure, the Control Vector Translate verb requires
control information (mask array information) to limit the range of allowable control
vector changes.

To ensure that this verb is used only for authorized purposes, the source-key
control vector, target-key control vector, and key-encrypting key (KEK) control
vector must pass specific tests. The tests on the control vectors are performed
within the secured cryptographic engine.

The tests consist of evaluating four logic expressions, the results of which must be
a string of binary zeros. The expressions operate bitwise on information that is
contained in the mask arrays and in the portions of the control vectors associated
with the key or key-half that is being processed. If any of the expression
evaluations do not result in all zero bits, the verb is ended with a control vector
violation return and reason code (8/39). See Figure 19 on page 1002. Only the 56-bit
positions that are associated with a key value are evaluated. The low-order bit that
is associated with key parity in each key byte is not evaluated.

Mask array preparation
A mask array consists of seven 8-byte elements: A1, B1, A2, B2, A3, B3, and B4.

You choose the values of the array elements such that each of the following four
expressions evaluates to a string of binary zeros. (See Figure 19 on page 1002.) Set
the A bits to the value you require for the corresponding control vector bits. In
expressions 1 on page 1001 through 3 on page 1001, set the B bits to select the
control vector bits to be evaluated. In expression 4 on page 1001, set the B bits to
select the source and target control vector bits to be evaluated. Also, use the
following control vector information:

1000 Common Cryptographic Architecture Application Programmer's Guide

|

C1 is the control vector associated with the left half of the KEK.
C2 is the control vector associated with the source key or selected source-key
half/halves.
C3 is the control vector associated with the target key or selected target-key
half/halves.

1. (C1 XOR A1) logical-AND B1

This expression tests whether the KEK used to encipher the key meets your
criteria for the desired translation.

2. (C2 XOR A2) logical-AND B2

This expression tests whether the control vector associated with the source key
meets your criteria for the desired translation.

3. (C3 XOR A3) logical-AND B3

This expression tests whether the control vector associated with the target key
meets your criteria for the desired translation.

4. (C2 XOR C3) logical-AND B4

This expression tests whether the control vectors associated with the source key
and the target key meet your criteria for the desired translation.

Encipher two copies of the mask array, each under a different
cryptographic-variable key (key type CVARENC). Use two different keys so the
enciphered-array copies are unique values. When using the Control Vector
Translate verb, the mask_array_left parameter and the mask_array_right parameter
identify the enciphered mask arrays. The array_key_left parameter and the
array_key_right parameter identify the internal keys for deciphering the mask
arrays. The array_key_left parameter must have a key type of CVARXCVL and the
array_key_right parameter must have a key type of CVARXCVR. The cryptographic
process deciphers the arrays and compares the results; for the service to continue,
the deciphered arrays must be equal. If the results are not equal, the service
returns the return and reason code for data that is not valid (8/385).

Use the Key Generate verb to create the key pairs CVARENC-CVARXCVL and
CVARENC-CVARXCVR. Each key in the key pair must be generated for a different
node. The CVARENC keys are generated for, or imported into, the node where the
mask array will be enciphered. After enciphering the mask array, you should
destroy the enciphering key. The CVARXCVL and CVARXCVR keys are generated
for, or imported into, the node where the Control Vector Translate verb will be
performed.

If using the BOTH keyword to process both halves of a double-length key,
remember that bits 41, 42, 104, and 105 are different in the left and right halves of
the CCA control vector and must be ignored in your mask-array tests (that is,
make the corresponding B2 and/or B3 bits equal to zero).

When the control vectors pass the masking tests, the verb does the following:
v Deciphers the source key. In the decipher process, the service uses a key that is

formed by the XOR of the KEK and the control vector in the key token variable
the source_key_token parameter identifies.

v Enciphers the deciphered source key. In the encipher process, the verb uses a
key that is formed by the XOR of the KEK and the control vector in the key
token variable the target_key_token parameter identifies.

v Places the enciphered key in the key field in the key token variable the
target_key_token parameter identifies.

Chapter 21. Control vectors with the Control Vector Translate verb 1001

Selecting the key-half processing mode
Use the Control Vector Translate verb to change a control vector associated with a
key.

rule_array keywords determine which key halves are processed in the call, as
shown in Figure 20 on page 1003.

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 1 1 1 1 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 0 1 1 0 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 0 0 0 0 1 1 0 …

0 0 0 0 … 1 1 1 1 …

Control Vector
Under Test

For expression
1: KEK CV
2: Source CV
3: Target CV

A_Values

Intermediate
Result

B_Values

Final Result

For Expression
4: Source CV

Target CV

Intermediate
Result

B_Values

Final Result

Exclusive-OR

Exclusive-OR

Logical-AND

Logical-AND

Set Tested Positions
to the Value that
the Control Vector
Must Match

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
Bit Position is 1

Source Control Vector

Target Control Vector

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
bit Position is 1

Figure 19. Control Vector Translate verb mask_array processing

1002 Common Cryptographic Architecture Application Programmer's Guide

Keyword
Description

SINGLE
This keyword causes the control vector of the left half of the source key to
be changed. The updated key half is placed into the left half of the target
key in the target key token. The right half of the target key is unchanged.

The SINGLE keyword is useful when processing a single-length key or
when first processing the left half of a double-length key (to be followed
by processing the right half).

RIGHT
This keyword causes the control vector of the right half of the source key
to be changed. The updated key half is placed into the right half of the
target key of the target key token. The left half of the source key is copied
unchanged into the left half of the target key in the target key token.

BOTH This keyword causes the control vector of both halves of the source key to
be changed. The updated key is placed into the target key in the target key
token.

A single set of control information must permit the control vector changes
applied to each key half. Normally, control vector bit positions 41, 42, 105,
and 106 are different for each key half. Therefore, set bits 41 and 42 to B'00'
in mask array elements B1, B2, and B3.

You can verify that the source and target key tokens have control vectors
with matching bits in bit positions 40-42 and 104-106, the “form field” bits.
Ensure bits 40-42 of mask array B4 are set to B'111'.

LEFT This keyword enables you to supply a single-length key and obtain a
double-length key. The source key token must contain:
v The KEK-enciphered single-length key
v The control vector for the single-length key (often this is a null value)
v A control vector, stored in the source token where the right-half control

vector is normally stored, used in decrypting the single-length source
key when the key is being processed for the target right half of the key.

The verb first processes the source and target tokens as with the SINGLE
keyword. Then the source token is processed using the single-length
enciphered key and the source token right-half control vector to obtain the
actual key value. The key value is then enciphered using the KEK and the
control vector in the target token for the right-half of the key.

Figure 20. Control Vector Translate verb

Chapter 21. Control vectors with the Control Vector Translate verb 1003

This approach is frequently of use when you must obtain a double-length
CCA key from a system that supports only a single-length key, for example
when processing PIN keys or key-encrypting keys received from non-CCA
systems.

To prevent the verb from ensuring each key byte has odd parity, you can specify
the NOADJUST keyword. If you do not specify the NOADJUST keyword, or if
you specify the ADJUST keyword, the verb ensures each byte of the target key has
odd parity.

When the target key-token CV is null
When you use any of the LEFT, BOTH, or RIGHT keywords, and when the
control vector in the target key token is null (all B'0'), bit 3 in byte 59 will be set to
B'1' to indicate this is a double-length DATA key.

Control vector translate example
As an example, consider the case of receiving a single-length PIN-block encrypting
key from a non-CCA system.

Often such a key will be encrypted by an unmodified transport key (no control
vector or variant is used). In a CCA system, an inbound PIN encrypting key is
double-length.

First use the Key Token Build verb to insert the single-length key value into the
left-half key-space in a key token. Specify USE-CV as a key type and a control
vector value set to 16 bytes of X'00'. Also specify EXTERNAL, KEY, and CV
keywords in the rule_array. This key token will be the source key key-token.

Second, the target key token can also be created using the Key Token Build verb.
Specify a key type of IPINENC and the NO-EXPORT rule_array keyword.

Then call the Control Vector Translate verb and specify a rule_array keyword of
LEFT. The mask arrays can be constructed as follows:
v A1 is set to the value of the KEK's control vector, most likely the value of an

IMPORTER key, perhaps with the NO-EXPORT bit set. B1 is set to eight bytes of
X'FF' so all bits of the KEK's control vector will be tested.

v A2 is set to eight bytes of X'00', the (null) value of the source key control vector.
B2 is set to eight bytes of X'FF' so all bits of the source-key “control vector” will
be tested.

v A3 is set to the value of the target key's left-half control vector. B3 is set to
X'FFFF FFFF FF9F FFFF'. This will cause all bits of the control vector to be
tested except for the two (“fff”) bits used to distinguish between the left-half and
right-half target-key control vector.

v B4 is set to eight bytes of X'00' so no comparison is made between the source
and target control vectors.

1004 Common Cryptographic Architecture Application Programmer's Guide

Chapter 22. PIN formats and algorithms

Personal identification number (PIN) notation, PIN block formats, PIN extraction
rules, and PIN algorithms.

For PIN calculation procedures, see IBM Common Cryptographic Architecture:
Cryptographic Application Programming Interface Reference.

PIN notation
The content of PIN blocks are assigned a letter that represents the content.

The following notations describe the contents of PIN blocks:

P = A 4-bit decimal digit that is one digit of the PIN value.

C = A 4-bit hexadecimal control value. The valid values are X'0', X'1', and X'2'.

L = A 4-bit hexadecimal value that specifies the number of PIN digits. This
value is in the range 4 - 12.

F = A 4-bit field delimiter of value X'F'.

f = A 4-bit delimiter filler that is either P or F, depending on the length of the
PIN.

D = A 4-bit decimal padding value. All pad digits in the PIN block have the
same value.

X = A 4-bit hexadecimal padding value. All pad digits in the PIN block have
the same value.

x = A 4-bit hexadecimal filler that is either P or X, depending on the length of
the PIN.

R = A 4-bit hexadecimal random digit. The sequence of R digits can each take a
different value.

r = A 4-bit random filler that is either P or R, depending on the length of the
PIN.

Z = A 4-bit hexadecimal zero (X'0').

z = A 4-bit zero filler that is either P or Z, depending on the length of the PIN.

S = A 4-bit hexadecimal digit that constitutes one digit of a sequence number.

A = A 4-bit decimal digit that constitutes one digit of a user-specified constant.

PIN block formats
All PIN block formats have a code assigned to them.

ANSI X9.8
This format is also named ISO format 0, VISA format 1, VISA format 4, and ECI
format 1.

P1 = CLPPPPffffffffFF

P2 = ZZZZAAAAAAAAAAAA

© Copyright IBM Corp. 2007, 2018 1005

PIN Block = P1 XOR P2

where C = X’0’
L = X’4’ to X’C’

Programming Note: The rightmost 12 digits (excluding the check digit) in P2 are
the rightmost 12 digits of the account number for all formats except VISA format 4.
For VISA format 4, the rightmost 12 digits (excluding the check digit) in P2 are the
leftmost 12 digits of the account number.

ISO Format 1
Example code for ISO Format 1.

This format is also named ECI format 4.
PIN Block = CLPPPPrrrrrrrrRR

where C = X’1’
L = X’4’ to X’C’

ISO Format 2
Example code for ISO Format 2.

PIN Block = CLPPPPffffffffFF

where C = X’2’
L = X’4’ to X’C’

ISO Format 3
The formats of the intermediate PIN-block, the PAN block, and the ISO-3
PIN-block.

An ISO-3 PIN-block format is equivalent to the ANSI X9.8, VISA-1, and ECI-1
PIN-block formats in length. A PIN that is longer than 12 digits is truncated on the
right.

where:

3 Is the value X'3' for ISO-3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ 3 │ L │ P │ P │ P │ P │P/R│P/R│P/R│P/R│P/R│P/R│P/R│P/R│ R │ R │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

Intermediate PIN-Block = IPB

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ 0 │ 0 │ 0 │ 0 │PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

PAN Block

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ │ P │ P │P/R│P/R│P/R│P/R│P/R│P/R│P/R│P/R│ R │ R │
│ 3 │ L │ P │ P │XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│
│ │ │ │ │PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

PIN Block = IPB XOR PAN Block

Figure 21. ISO-3 PIN-block format

1006 Common Cryptographic Architecture Application Programmer's Guide

L Is the length of the PIN, which is a 4-bit value from X'4' - X'C'.

P Is a PIN digit, which is a 4-bit value from X'0' - X'9'. The values of the PIN
digits are independent.

P/R Is a PIN digit or pad value. A PIN digit has a 4-bit value from X'0' - X'9'. A
pad value has a random 4-bit value of X'A' - X'F'. The number of pad
values in the intermediate PIN block (IPB) is from 2 - 10.

R Is the random value X'A' - X'F' for the pad value.

PAN Is twelve 4-bit digits that represent one of the following:
v The rightmost 12 digits of the primary account-number (excluding the

check digit) if the format of the PIN block is ISO-3, ANSI X9.8, VISA-1,
or ECI-1.

v The leftmost 12 digits of the primary account-number (excluding the
check digit) if the format of the PIN block is VISA-4.

Each PAN digit has a value from X'0' - X'9'.

The PIN block is the result of XORing the 64-bit IPB with the 64-bit PAN block.

Example:
L = 6, PIN = 123456, Personal Account Number = 111222333444555
36123456AFBECDDC : IPB
0000222333444555 : PAN block for ISO-3 (ANSI X9.8, VISA-1, ECI-1) format
361216759CFA8889 : PIN block for ISO-3 (ANSI X9.8, VISA-1, ECI-1) format

Visa Format 2
Example code for Visa Format 2.

PIN Block = LPPPPzzDDDDDDDDD

where L = X’4’ to X’6’

Visa Format 3
Example code for Visa Format 3.

This format specifies that the PIN length can be in the range of 4 - 12 digits. The
PIN starts from the leftmost digit and ends by the delimiter (‘F’), and the
remaining digits are padding digits.

An example of a 6-digit PIN:
PIN Block = PPPPPPFXXXXXXXXX

IBM 4700 Encrypting PINPAD Format
Example code for IBM 4700 Encrypting PINPAD Format. This format uses the
value X'F' as the delimiter for the PIN.

PIN Block = LPPPPffffffffFSS

where L = X’4’ to X’C’

IBM 3624 Format
This format requires the program to specify the delimiter, X, for determining the
PIN length.

PIN Block = PPPPxxxxxxxxXXXX

Chapter 22. PIN formats and algorithms 1007

IBM 3621 Format
This format requires the program to specify the delimiter, X, for determining the
PIN length.

PIN Block = SSSSPPPPxxxxxxxx

ECI Format 2
This format defines the PIN to be 4 digits.

PIN Block = PPPPRRRRRRRRRRRR

ECI Format 3
Example code for ECI Format 3.

PIN Block = LPPPPzzRRRRRRRRR

where L = X’4’ to X’6’

PIN extraction rules
There are PIN extraction rules for the Encrypted PIN Verify and Encrypted PIN
Translate verbs.

Encrypted PIN Verify verb
This verb extracts the customer-entered PIN from the input PIN block.

It extracts the PIN according to the following rules:
v If the input PIN block format is ANSI X9.8, ISO format 0, VISA format 1, VISA

format 4, ECI format 1, ISO format 1, ISO format 2, ISO format 3, VISA format 2,
IBM Encrypting PINPAD format, or ECI format 3, the verb extracts the PIN
according to the length specified in the PIN block.

v If the input PIN block format is VISA format 3, the specified delimiter (padding)
determines the PIN length. The search starts at the leftmost digit in the PIN
block. If the input PIN block format is 3624, the specification of a PIN extraction
method for the 3624 is supported through rule_array keywords. If no PIN
extraction method is specified in the rule_array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is 3621, the specification of a PIN extraction
method for the 3621 is supported through rule_array keywords. If no PIN
extraction method is specified in the rule_array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is ECI format 2, the PIN is the leftmost 4 digits.

For the VISA algorithm, if the extracted PIN length is less than 4, the verb sets a
reason code that indicates verification failed. If the length is greater than or equal
to 4, the verb uses the leftmost 4 digits as the referenced PIN.

For the IBM German Banking Pool algorithm, if the extracted PIN length is not 4,
the verb sets a reason code that indicates verification failed.

For the IBM 3624 algorithm, if the extracted PIN length is less than the PIN check
length, the verb sets a reason code that indicates verification failed.

1008 Common Cryptographic Architecture Application Programmer's Guide

Clear PIN Generate Alternate verb
This verb extracts the customer-entered PIN from the input PIN block.

It extracts the PIN from the input PIN block according to the following rules:
v This verb supports the specification of a PIN extraction method for the 3624 and

3621 PIN block formats through the use of the rule_array keyword. The
rule_array points to an array of one or two 8-byte elements. The first element in
the rule_array specifies the PIN calculation method. The second element in the
rule_array (if specified) indicates the PIN extraction method. Refer to the “Clear
PIN Generate Alternate (CSNBCPA)” on page 518 for an explanation of PIN
extraction method keywords.

Encrypted PIN Translate verb
This verb extracts the customer-entered PIN from the input PIN block.

It extracts the PIN from the input PIN block according to the following rules:
v If the input PIN block format is ANSI X9.8, ISO format 0, VISA format 1, VISA

format 4, ECI format 1, ISO format 1, ISO format 2, ISO format 3, VISA format 2,
IBM Encrypting PINPAD format, or ECI format 3 and, if the specified PIN
length is less than 4, the verb sets a reason code to reject the operation. If the
specified PIN length is greater than 12, the operation proceeds to normal
completion with unpredictable contents in the output PIN block. Otherwise, the
verb extracts the PIN according to the specified length.

v If the input PIN block format is VISA format 3, the specified delimiter (padding)
determines the PIN length. The search starts at the leftmost digit in the PIN
block. If the input PIN block format is 3624, the specification of a PIN extraction
method for the 3624 is supported through rule_array keywords. If no PIN
extraction method is specified in the rule_array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is 3621, the specification of a PIN extraction
method for the 3621 is supported through rule_array keywords. If no PIN
extraction method is specified in the rule_array, the specified delimiter (padding)
determines the PIN length.

v If the input block format is ECI format 2, the PIN is always the leftmost 4 digits.

If the maximum PIN length allowed by the output PIN block is shorter than the
extracted PIN, only the leftmost digits of the extracted PIN that form the allowable
maximum length are placed in the output PIN block. The PIN length field in the
output PIN block, it if exists, specifies the allowable maximum length.

PIN Change/Unblock verb
The PIN Block calculation PIN Change/Unblock.
1. Form three 8-byte, 16-digit blocks, -1, -2, and -3, and set all digits to X'0'.
2. Replace the rightmost four bytes of block-1 with the authentication code

described in the previous section.
3. Set the second digit of block-2 to the length of the new PIN (4 to 12), followed

by the new PIN, and padded to the right with X'F'.
4. Include any current PIN by placing it into the leftmost digits of block-3.
5. Exclusive-OR blocks -1, -2, and -3 to form the 8-byte PIN block.
6. Pad the PIN block with other portions of the message for the smart card:
v prepend X'08'

Chapter 22. PIN formats and algorithms 1009

v append X'80'
v append an additional six bytes of X'00'.

The resulting message is ECB-mode triple-encrypted with an appropriate session
key.

IBM PIN algorithms
There are several PIN algorithms, including the IBM PIN generation algorithms,
IBM PIN offset generation algorithm, and IBM PIN verification algorithms.

3624 PIN generation algorithm
This algorithm generates an n-digit PIN based on account-related data or
person-related data, namely the validation data. The assigned PIN length
parameter specifies the length of the generated PIN.

The algorithm requires the following input parameters:
v A 64-bit validation data
v A 64-bit decimalization table
v A 4-bit assigned PIN length
v A 128-bit PIN-generation key

The service uses the PIN generation key to encipher the validation data. Each digit
of the enciphered validation data is replaced by the digit in the decimalization
table whose displacement from the leftmost digit of the table is the same as the
value of the digit of the enciphered validation data. The result is an intermediate
PIN. The leftmost n digits of the intermediate PIN are the generated PIN, where n
is specified by the assigned PIN length.

Figure 22 on page 1011 illustrates the 3624 PIN generation algorithm.

1010 Common Cryptographic Architecture Application Programmer's Guide

German Banking Pool PIN Generation algorithm
This algorithm generates a 4-digit PIN based on account-related data or
person-related data, namely the validation data.

The algorithm requires the following input parameters:
v A 64-bit validation data
v A 64-bit decimalization table
v A 128-bit PIN-generation key

The validation data is enciphered using the PIN generation key. Each digit of the
enciphered validation data is replaced by the digit in the decimalization table
whose displacement from the leftmost digit of the table is the same as the value of
the digit of enciphered validation data. The result is an intermediate PIN. The
rightmost 4 digits of the leftmost 6 digits of the intermediate PIN are extracted.
The leftmost digit of the extracted 4 digits is checked for zero. If the digit is zero,
the digit is changed to one; otherwise, the digit remains unchanged. The resulting
four digits is the generated PIN.

Figure 23 on page 1012 illustrates the German Banking Pool (GBP) PIN generation
algorithm.

Assigned PIN Length

PIN
Generation
Key

Validation Data

Intermediate PIN

Generated PIN

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure 22. 3624 PIN generation algorithm

Chapter 22. PIN formats and algorithms 1011

PIN offset generation algorithm
To allow the customer to select his own PIN, a PIN offset is used by the IBM 3624
and GBP PIN generation algorithms to relate the customer-selected PIN to the
generated PIN.

The PIN offset generation algorithm requires two parameters in addition to those
used in the 3624 PIN generation algorithm. They are a customer-selected PIN and
a 4-bit PIN check length. The length of the customer-selected PIN is equal to the
assigned-PIN length, n.

The “3624 PIN generation algorithm” on page 1010 is performed. The offset data
value is the result of subtracting (modulo 10) the leftmost n digits of the
intermediate PIN from the customer-selected PIN. The modulo 10 subtraction
ignores borrows. The rightmost m digits of the offset data form the PIN offset,
where m is specified by the PIN check length. Note that n cannot be less than m.
To generate a PIN offset for a GBP PIN, m is set to 4 and n is set to 6.

Figure 24 on page 1013 illustrates the PIN offset generation algorithm.

6 Digits

4 Digits

PIN
Generation
Key

Validation Data

Intermediate PIN

If A = 0, then Z = 1; otherwise, Z = A.

A P P P

Z P P P
(Generated PIN)

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure 23. GBP PIN generation algorithm

1012 Common Cryptographic Architecture Application Programmer's Guide

3624 PIN verification algorithm
This algorithm generates an intermediate PIN based on the specified validation
data. A part of the intermediate PIN is adjusted by adding an offset data. A part of
the result is compared with the corresponding part of the customer-entered PIN.

The algorithm requires the following input parameters:
v A 64-bit validation data
v A 64-bit decimalization table
v A 128-bit PIN-verification key
v A 4-bit PIN check length
v An offset data
v A customer-entered PIN

The rightmost m digits of the offset data form the PIN offset, where m is the PIN
check length.
1. The validation data is enciphered using the PIN verification key. Each digit of

the enciphered validation data is replaced by the digit in the decimalization

Assigned PIN Length

Assigned PIN Length

PIN Check Length

PIN
Generation
Key

Validation Data

Intermediate PIN

A

B

Customer
Selected PIN

A - B,
where B is leftmost
n digits of the
intermediate PIN

Offset Data

PIN Offset

E
D
E

Digit
Replacement

Subtraction
modulo 10

Decimalization
Table

Multiple
Encryption

Figure 24. PIN-Offset generation algorithm

Chapter 22. PIN formats and algorithms 1013

table whose displacement from the leftmost digit of the table is the same as the
value of the digit of enciphered validation data.

2. The leftmost n digits of the result is added (modulo 10) to the offset data value,
where n is the length of the customer-entered PIN. The modulo 10 addition
ignores carries.

3. The rightmost m digits of the result of the addition operation form the PIN
check number. The PIN check number is compared with the rightmost m digits
of the customer-entered PIN. If they match, PIN verification is successful;
otherwise, verification is unsuccessful.

When a nonzero PIN offset is used, the length of the customer-entered PIN is
equal to the assigned PIN length.

Figure 25 on page 1015 illustrates the PIN verification algorithm.

1014 Common Cryptographic Architecture Application Programmer's Guide

German Banking Pool PIN Verification algorithm
This algorithm generates an intermediate PIN based on the specified validation
data.

A part of the intermediate PIN is adjusted by adding an offset data. A part of the
result is extracted. The extracted value might or might not be modified before it
compares with the customer-entered PIN.

The algorithm requires the following input parameters:

Length of CE PIN

Length of CE PIN

PIN Check
Length

PIN Check Length

PIN CN: PIN Check Number
CE PIN: Customer-entered PIN

PIN
Verification
Key

Validation Data

Intermediate PIN

A

Offset Data

B, the leftmost
n digits of the
intermediate
PIN

A + B

=?

CE PIN

PIN CN

E
D
E

Digit
Replacement

Addition
modulo 10

Decimalization
Table

Multiple
Encryption

Figure 25. PIN verification algorithm

Chapter 22. PIN formats and algorithms 1015

v A 64-bit validation data
v A 64-bit decimalization table
v A 128-bit PIN verification key
v An offset data
v A customer-entered PIN

The rightmost 4 digits of the offset data form the PIN offset.
1. The validation data is enciphered using the PIN verification key. Each digit of

the enciphered validation data is replaced by the digit in the decimalization
table whose displacement from the leftmost digit of the table is the same as the
value of the digit of enciphered validation data.

2. The leftmost 6 digits of the result is added (modulo 10) to the offset data. The
modulo 10 addition ignores carries.

3. The rightmost 4 digits of the result of the addition (modulo 10) are extracted.
4. The leftmost digit of the extracted value is checked for zero. If the digit is zero,

the digit is set to one; otherwise, the digit remains unchanged. The resulting
four digits are compared with the customer-entered PIN. If they match, PIN
verification is successful; otherwise, verification is unsuccessful.

Figure 26 on page 1017 illustrates the GBP PIN verification algorithm.

1016 Common Cryptographic Architecture Application Programmer's Guide

VISA PIN algorithms
The VISA PIN verification algorithm performs a multiple encipherment of a value,
called the transformed security parameter (TSP), and a extraction of a 4-digit PIN
verification value (PVV) from the ciphertext.

The calculated PVV is compared with the referenced PVV and stored on the plastic
card or data base. If they match, verification is successful.

6 Digits

6 Digits4 Digits

4 Digits

CE PIN: Customer-entered PIN

If A = 0, then Z = 1;
otherwise, Z = A

PIN
Verification
Key

Validation Data

Intermediate PIN

A

Offset Data

B, the leftmost
6 digits of the
intermediate PIN

A + B

=?

CE PIN

A P P P

Z P P P

E
D
E

Digit
Replacement

Addition
modulo 10

Decimalization
Table

Multiple
Encryption

Figure 26. GBP PIN verification algorithm

Chapter 22. PIN formats and algorithms 1017

PVV Generation algorithm
The algorithm generates a 4-digit PIN verification value (PVV) based on the
transformed security parameter (TSP).

The algorithm requires the following input parameters:
v A 64-bit TSP
v A 128-bit PVV generation key
1. A multiple encipherment of the TSP using the double-length PVV generation

key is performed.
2. The ciphertext is scanned from left to right. Decimal digits are selected during

the scan until four decimal digits are found. Each selected digit is placed from
left to right according to the order of selection. If four decimal digits are found,
those digits are the PVV.

3. If, at the end of the first scan, less than four decimal digits have been selected,
a second scan is performed from left to right. During the second scan, all
decimal digits are skipped and only non-decimal digits can be processed.
Non-decimal digits are converted to decimal digits by subtracting 10. The
process proceeds until four digits of PVV are found.

Figure 27 illustrates the PVV generation algorithm.

Programming Note: For VISA PVV algorithms, the leftmost 11 digits of the TSP
are the personal account number (PAN), the leftmost 12th digit is a key table index
to select the PVV generation key, and the rightmost 4 digits are the PIN. The key
table index should have a value in the range 1 - 6.

PGK = PVV Generation Key
= PGKL PGKR

Scan the result from left to
right to select 4 digits

PGKL

PGKR

PGKL

TSP

Encipherment Result

4-digit PVV

E

D

E

Figure 27. PVV generation algorithm

1018 Common Cryptographic Architecture Application Programmer's Guide

PVV Verification algorithm
The PVV verification algorithm requires specific parameters.

The algorithm requires the following input parameters:
v A 64-bit TSP
v A 16-bit referenced PVV
v A 128-bit PVV verification key

A PVV is generated using the PVV generation algorithm, except a PVV verification
key rather than a PVV generation key is used. The generated PVV is compared
with the referenced PVV. If they match, verification is successful.

Interbank PIN Generation algorithm
A description of the Interbank PIN calculation method.

The Interbank PIN calculation method consists of the following steps:
1. Let X denote the transaction_security parameter element converted to an array of

16 4-bit numeric values. This parameter consists of (in the following sequence)
the 11 rightmost digits of the customer PAN (excluding the check digit), a
constant of 6, a 1-digit key indicator, and a 3-digit validation field.

2. Encrypt X with the double-length PINGEN (or PINVER) key to get 16
hexadecimal digits (64 bits).

3. Perform decimalization on the result of the previous step by scanning the 16
hexadecimal digits from left to right, skipping any digit greater than X'9' until 4
decimal digits (for example, digits that have values from X'0' - X'9') are found.
If all digits are scanned but 4 decimal digits are not found, repeat the scanning
process, skipping all digits that are X'9' or less and selecting the digits that are
greater than X'9'. Subtract 10 (X'A') from each digit selected in this scan.
If the 4 digits that were found are all zeros, replace the 4 digits with 0100.

4. Concatenate and use the resulting digits for the Interbank PIN. The 4-digit PIN
consists of the decimal digits in the sequence in which they are found.

Chapter 22. PIN formats and algorithms 1019

1020 Common Cryptographic Architecture Application Programmer's Guide

Chapter 23. Cryptographic algorithms and processes

CCA algorithms and processes include key verification algorithms, data-encryption
processes, as well as key format and encryption processes.

These processing details are described for these aspects:
v “Cryptographic key-verification techniques”
v “Modification Detection Code calculation” on page 1024
v “Ciphering methods” on page 1026
v “MAC calculation methods” on page 1033
v “RSA key-pair generation” on page 1035
v “Multiple decipherment and encipherment” on page 1036
v “PKA92 key format and encryption process” on page 1042
v “Formatting hashes and keys in public-key cryptography” on page 1044

Cryptographic key-verification techniques
The key-verification implementations described in this document employ several
mechanisms for assuring the integrity and value of the key.

Information is presented about these topics:
v “Master-key verification algorithms”
v “CCA DES-key verification algorithm” on page 1023
v “Encrypt zeros AES-key verification algorithm” on page 1023
v “Encrypt zeros DES-key verification algorithm” on page 1024

Master-key verification algorithms
The CEX*C implementations employ triple-length DES and PKA master keys (three
DES keys) that are internally represented in 24 bytes (168 bits).

Beginning with Release 4.1.0, the CEX*C employs an APKA master key represented
in 32 bytes (256 bits). Verification patterns on the contents of the new, current, and
old master-key registers can be generated and verified when the selected register is
not in the empty state. For the AES master key, the SHA-256 verification method is
used.

The CEX*C employ several verification pattern generation methods.

SHA-1 based master-key verification method
A SHA-1 hash algorithm is calculated on the quantity X'01' prepended to the
24-byte register contents.

The resulting 20-byte hash value is used in the following ways:
v The Key Test and Key Test2 verbs use the first eight bytes of the 20-byte hash

value as the random_number variable, and uses the second eight bytes as the
verification_pattern.

v A SHA-1 based master-key verification pattern stored in a two-byte or an
eight-byte master-key verification pattern field in a key token consists of the first
two or the first eight bytes of the calculated SHA-1 value, respectively.

© Copyright IBM Corp. 2007, 2018 1021

z/OS-based master-key verification method
When the first and third portions of the symmetric master key have the same
value, the master key is effectively a double-length DES key.

In this case, the master-key verification pattern (MKVP) is based on this algorithm:
v C = X'4545454545454545'
v IR = MKfirst-part XOR eC(MKfirst-part)
v MKVP = MKsecond-part XOR eIR(MKsecond-part)

where:
v ex(Y) is the DES encoding of Y using x as a key
v XOR means bitwise exclusive OR

Version X'00' internal CCA DES key tokens use this eight-byte master-key
verification pattern.

SHA-256 based master-key verification method
A SHA-256 hash algorithm is calculated on the quantity X'01' prep-ended to the
24-byte register contents.

For AES, there will be verification patterns for both the AES master key and for
AES operational keys that are used to encipher or decipher data. The verification
pattern on the master key is called the MKVP. The verification pattern on
operational keys is referred to as a key-verification pattern (KVP).

Both the MKVP and KVP for AES will use the same algorithm. Both will be
computed with the following process.
1. Compute the SHA-256 hash of the string formed by prepending the byte X'01'

to the cleartext key value.
2. Take the leftmost eight bytes of the hash as the verification pattern.

This value is truncated to eight bytes because this is the length allocated for the
verification in several CCA structures and APIs. For example, the AES key token
has eight bytes for the MKVP, and the Key Test and Key Test2 verbs have an
eight-byte parameter for the verification pattern.

Asymmetric master key MDC-based verification method
The verification pattern for the asymmetric master keys is based on hashing the
value of the master-key using the MDC-4 hashing algorithm.

The master key is not parity adjusted.

The RSA private key sections X'06' and X'08' use this 16-byte master-key version
number.

Key-token verification patterns
These verification pattern techniques are used in the several types of CCA key
tokens.

The techniques are:
v AES and ECC key tokens: leftmost 8 bytes of SHA-256 hash of the string formed

by pre-pending X'01' to the cleartext key value.
v DES key tokens:

1022 Common Cryptographic Architecture Application Programmer's Guide

– Triple-length master key, key token version X'00': leftmost 8 bytes of SHA-1
hash

– Triple-length master key, key token version X'03': leftmost 2 bytes of SHA-1
hash

– Double-length master key, key token version X'00': leftmost 8 bytes of z/OS
hash

– Double-length master key, key token version X'03': leftmost 2 bytes of SHA-1
hash

v RSA key tokens:
– Private-key section types X'06' and X'08': 16-byte MDC-4 value
– Private-key section types X'02' and X'05': leftmost 2 bytes of SHA-1 hash

v Trusted blocks: 16-byte MDC-4 value

CCA DES-key verification algorithm
The cryptographic engines provide a method for verifying the value of a DES
cryptographic key or key part without revealing information about the value of the
key or key part.

The CCA verification method first creates a random number. A one-way
cryptographic function combines the random number with the key or key part.
The verification method returns the result of this one-way cryptographic function
(the verification pattern) and the random number.

Note: A one-way cryptographic function is a function in which it is easy to
compute the output from a given input, but it is not computationally feasible to
compute the input given an output.

For information about how you can use an application program to invoke this
verification method, see “Key Test (CSNBKYT)” on page 245.

The CCA DES key verification algorithm does the following:
1. Sets KKR′ = KKR XOR RN

2. Sets K1 = X'4545454545454545'
3. Sets X1 = DES encoding of KKL using key K1

4. Sets K2 = X1 XOR KKL

5. Sets X2 = DES encoding of KKR′ using key K2

6. Sets VP = X2 XOR KKR′

where:

RN Is the random number generated or provided

KKL Is the value of the single-length key, or is the left half of the double-length
key

KKR Is XL8'00' if the key is a single-length key, or is the value of the right half
of the double-length key

VP Is the verification pattern

Encrypt zeros AES-key verification algorithm
The cryptographic engine provides a method for verifying the value of an AES
cryptographic key or key part without revealing information about the value of the
key or key part.

Chapter 23. Cryptographic algorithms and processes 1023

In this method, the AES key data encryption algorithm encodes a 128-bit value that
is all zero bits. The leftmost 32 bits of the result are compared to the trial input
value or returned from the Key Test2 verb in an 8-byte variable that is padded
with bits valued to zero.

Encrypt zeros DES-key verification algorithm
The cryptographic engine provides a method for verifying the value of a DES
cryptographic key or key part without revealing information about the value of the
key or key part.

In this method the single-length or double-length key DEA encodes a 64-bit value
that is all zero bits. The leftmost 32 bits of the result are compared to the trial
input value or returned from the Key Test and Key Test2 verbs.

For a single-length key, the key DEA encodes an 8-byte, all-zero-bits value.

For a double-length key, the key DEA triple-encodes an 8-byte, all-zero-bits value.
The left half (high-order half) key encodes the zero-bit value, this result is DEA
decoded by the right key half, and that result is DEA encoded by the left key half.

SHAVP1 algorithm
This algorithm is used by the Key Test2 callable service to generate and verify the
verification pattern.
VP = Trunc128(SHA256(KA || KT || KL || K))

where:

VP Is the 128-bit verification pattern

TruncN(x)
Is truncation of the string x to the left most N bits

SHA256(x)
is the SHA-256 hash of the string x

KA Is the one-byte CCA variable-length key token constant for the algorithm
of key (HMAC X'03')

KT Is the two-byte CCA variable-length key token constant for the type of key
(MAC X'0002')

KL Is the two-byte bit length of the clear key value

K Is the clear key value left-aligned and padded on the right with binary
zeros to byte boundary

|| Is string concatenation

Modification Detection Code calculation
The Modification Detection Code (MDC) calculation method defines a one-way
cryptographic function.

A one-way cryptographic function is a function in which it is easy to compute the
input into output (a digest) but very difficult to compute the output into input.
MDC uses DES encryption only and a default key of X'5252 5252 5252 5252 2525
2525 2525 2525'.

1024 Common Cryptographic Architecture Application Programmer's Guide

The MDC Generate verb supports four versions of the MDC calculation method
that you specify by using one of the keywords shown in Table 303. All versions use
the MDC-1 calculation.

Table 303. Versions of the MDC calculation method

Keyword Version of the MDC calculation

MDC-2, PADMDC-2 Specifies two encipherments for each 8-byte input data block.
These versions use the MDC-2 calculation procedure described
in Table 304.

MDC-4, PADMDC-4 Specifies four encipherments for each 8-byte input data block.
These versions use the MDC-4 calculation procedure described
in Table 304.

When the keywords PADMDC-2 and PADMDC-4 are used, the supplied text is
always padded as follows:
v If the total supplied text is less than 16 bytes in length, pad bytes are appended

to make the text length equal to 16 bytes. A length of zero is allowed.
v If the total supplied text is a minimum of 16 bytes in length, pad bytes are

appended to make the text length equal to the next-higher multiple of eight
bytes. One or more pad bytes are always added.

v All appended pad bytes, other than the last pad byte, are set to X'FF'.
v The last pad byte is set to a binary value equal to the count of all appended pad

bytes (X'01' - X'10').

Use the resulting pad text in the Table 304. The MDC Generate verb uses these
MDC calculation methods. See “MDC Generate (CSNBMDG)” on page 441 for
more information.

Table 304. MDC calculation procedures

Calculation Procedure

MDC-1 MDC-1(KD1, KD2, IN1, IN2, OUT1, OUT2);
Set KD1mod := set KD1 bit 1 to B’1’ and bit 2 to B’0’ (bits 0-7)
Set KD2mod := set KD2 bit 1 to B’0’ and bit 2 to B’1’ (bits 0-7)
Set F1 := IN1 XOR eKD1mod(IN1)
Set F2 := IN2 XOR eKD2mod(IN2)
Set OUT1 := (bits 0..31 of F1) || (bits 32..63 of F2)
Set OUT2 := (bits 0..31 of F2) || (bits 32..63 of F1)
End procedure

MDC-2 MDC-2(n, text, KEY1, KEY2, MDC);
For i := 1, 2, ..., n do
Call MDC-1(KEY1, KEY2, T8<i>, T8<i>, OUT1, OUT2)
Set KEY1 := OUT1
Set KEY2 := OUT2
End do
Set output MDC := (KEY1 || KEY2)
End procedure

Chapter 23. Cryptographic algorithms and processes 1025

Table 304. MDC calculation procedures (continued)

Calculation Procedure

MDC-4 MDC-4(n, text, KEY1, KEY2, MDC);
For i := 1, 2, ..., n do
Call MDC-1(KEY1, KEY2, T8<i>, T8<i>, OUT1, OUT2)
Set KEY1int := OUT1
Set KEY2int := OUT2
Call MDC-1(KEY1int, KEY2int, KEY2, KEY1, OUT1, OUT2)
Set KEY1 := OUT1
Set KEY2 := OUT2
End do
Set output MDC := (KEY1 || KEY2)
End procedure

Notation:
eK(X) DES encryption of plaintext X using key K
|| Concatenation operation
XOR Exclusive-OR operation
:= Assignment operation
T8<1> First 8-byte block of text
T8<2> Second 8-byte block of text
KD1, KD2

64-bit quantities
IN1, IN2

64-bit quantities
OUT1, OUT2

64-bit quantities
n Number of 8-byte blocks

Ciphering methods
The Data Encryption Standard (DES) algorithm defines operations on 8-byte data
strings.

The DES algorithm is used in many different processes within CCA:
v Encrypting and decrypting general data
v Triple-encrypting and triple-decrypting PIN blocks
v Triple-encrypting and triple-decrypting CCA DES keys
v Triple-encrypting and triple-decrypting RSA private keys with several processes
v Deriving keys, hashing data, generating CVV values, and so forth

The Encipher and Decipher verbs describe how you can request encryption or
decryption of application data. See the following topic: “General data-encryption
processes” on page 1027 for a description of the two standardized processes you
can use.

In CCA, PIN blocks are encrypted with double-length keys. The PIN block is
encrypted with the left-half key, for which the result is decrypted with the
right-half key and this result is encrypted with the left-half key.

See “Triple-DES ciphering algorithms” on page 1030 and “Ciphering methods,”
which describe how CCA DES keys are enciphered.

1026 Common Cryptographic Architecture Application Programmer's Guide

General data-encryption processes
Although the fundamental concepts of enciphering and deciphering data are
simple, different methods exist to process data strings that are not a multiple of
eight bytes in length.

Two widely used methods for enciphering general data are defined in these ANSI
standards:
v ANSI X3.106 cipher block chaining (CBC)
v ANSI X9.23

These methods also differ in how they define the initial chaining value (ICV).

This section describes how the Encipher and Decipher verbs implement these
methods.

Single-DES and Triple-DES encryption algorithms for general
data
Using the CEX*C, you can use the triple-DES algorithm in addition to the classical
single-DES algorithm.

In the subsequent descriptions of the CBC method and ANSI X9.23 method, the
actions of the Encipher and Decipher verbs encompass both single-DES and
triple-DES algorithms. The triple-DES processes are depicted in Figure 28 where
“left key” and “right key” refer to the two halves of a double-length DES key.

ANSI X3.106 Cipher Block Chaining (CBC) method
ANSI standard X3.106 defines four modes of operation for ciphering, and one of
these modes, Cipher Block Chaining (CBC), defines the basic method for ciphering
multiple 8-byte data strings.

Cleartext, 8 bytes Ciphertext, 8 bytes
────────┬───────── ─────────┬─────────

│ │
↓ ↓

┌───────────────────┐ ┌───────────────────┐
│ │ │ │

Left key──────→│ Encipher │ Left key──────→│ Decipher │
│ │ │ │
└─────────┬─────────┘ └─────────┬─────────┘

│ │
↓ ↓

┌───────────────────┐ ┌───────────────────┐
│ │ │ │

Right key─────→│ Decipher │ Right key─────→│ Encipher │
│ │ │ │
└─────────┬─────────┘ └─────────┬─────────┘

│ │
↓ ↓

┌───────────────────┐ ┌───────────────────┐
│ │ │ │

Left key──────→│ Encipher │ Left key──────→│ Decipher │
│ │ │ │
└─────────┬─────────┘ └─────────┬─────────┘

│ │
↓ ↓

Ciphertext Cleartext

Figure 28. Triple-DES data encryption and decryption

Chapter 23. Cryptographic algorithms and processes 1027

Figure 29 and Figure 30 on page 1029 show CBC using the Encipher and Decipher
verbs. A plaintext data string that must be a multiple of eight bytes is processed as
a series of 8-byte blocks. The ciphered result from processing an 8-byte block is
XORed with the next block of 8 input bytes. The last 8-byte ciphered result is
defined as an output chaining value (OCV). The security server stores the OCV in
bytes 0 - 7 of the chaining_vector variable.

An ICV is XORed with the first block of eight bytes. When you call the Encipher
or Decipher verb, specify the INITIAL or CONTINUE keywords. If you specify
the INITIAL keyword, the default, the initialization vector from the verb
parameter is XORed with the first eight bytes of data. If you specify the
CONTINUE keyword, the OCV identified by the chaining_vector parameter is
XORed with the first eight bytes of data.

┌──────────────┐
│Verb parameter│
└──────┬───────┘

│
┌──────↓───────┐ ←────── Plaintext from application program ────────────→
│Initialization│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ vector │ │ Data (1,8) │ │ Data (9,16) │ │Data (N*8─7,N*8)│
└──────┬───────┘ └───────┬────────┘ └───────┬────────┘ └───────┬────────┘

│INITIAL │ │ │
│keyword │ │ │
↓ ┌───┐ ┌─↓─┐ ┌─↓─┐ ┌─↓─┐
or───→ICV├──────→XOR│ ┌──────→XOR│ ┌ ─ ───→XOR│
↑ └───┘ └─┬─┘ │ └─┬─┘ └─┬─┘
│CONTINUE │ │ │ │
│keyword ┌─────↓─────┐ │ ┌─────↓─────┐ │ ┌─────↓─────┐
│ │ Encipher │ │ │ Encipher │ │ Encipher │
│ └─────┬─────┘ │ └─────┬─────┘ │ └─────┬─────┘
│ │ │ │ │ ┌───┐
│ ├─────────┘ ├────── ─ ┘ ├─────────────→OCV│
│ │ │ │ └─┬─┘
│ ┌───────↓────────┐ ┌───────↓────────┐ ┌───────↓────────┐ │
│ │ Data (1,8) │ │ Data (9,16) │ │Data (N*8─7,N*8)│ │
│ └────────────────┘ └────────────────┘ └────────────────┘ │
│ ←───────── Ciphertext to application program ──────────→ │
│ ┌────────↓──────┐
└──┤Chaining vector│

└───────────────┘

Figure 29. Enciphering using the ANSI X3.106 CBC method

1028 Common Cryptographic Architecture Application Programmer's Guide

ANSI X9.23 cipher block chaining
ANSI X9.23 defines an enhancement to the basic cipher block chaining (CBC) mode
of ANSI X3.106 so that the system can process data with a length that is not an
exact multiple of eight bytes.

The ANSI X9.23 method always appends from 1 - 8 bytes to the plaintext before
encipherment. The last appended byte is the count of the added bytes and is in the
range of X'01' - X'08'. The standard defines that any other added bytes, or pad
characters, be random.

When the coprocessor enciphers the plaintext, the resulting ciphertext is always 1 -
8 bytes longer than the plaintext. See Figure 31 on page 1030. This is true even if
the length of the plaintext is a multiple of eight bytes. When the coprocessor
deciphers the ciphertext, it uses the last byte of the deciphered data as the number
of bytes to remove from the end (pad bytes, if any, and count byte). The result is
the original plaintext. See Figure 32 on page 1030.

The output chaining vector can be used as feedback with this method in the same
way as with the X3.106 method.

The ANSI X9.23 method requires the caller to supply an initialization vector, and it
does not allow specification of a pad character.

Note: The ANSI X9.23 standard has been withdrawn, but the X9.23 padding
method is retained in CCA for compatibility with applications that rely on this
method.

┌──────────────┐
│Verb parameter│
└──────┬───────┘

│
┌──────↓───────┐ ←──────── Ciphertext from application program ─────────→
│Initialization│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ vector │ │ Data (1,8) │ │ Data (9,16) │ │Data (N*8─7,N*8)│
└──────┬───────┘ └───────┬────────┘ └───────┬────────┘ └───────┬────────┘

│ │ │ │ ┌───┐
│ ├─────────┐ ├────── ─ ┐ ├─────────────→OCV│
│ │ │ │ │ └─┬─┘
│ ┌─────↓─────┐ │ ┌─────↓─────┐ │ ┌─────↓─────┐ │
│ │ Decipher │ │ │ Decipher │ │ Decipher │ │
│INITIAL └─────┬─────┘ │ └─────┬─────┘ │ └─────┬─────┘ │
│keyword │ │ │ │ │
↓ ┌───┐ ┌─↓─┐ │ ┌─↓─┐ ┌─↓─┐ │
or───→ICV├──────→XOR│ └──────→XOR│ └ ─ ───→XOR│ │
↑ └───┘ └─┬─┘ └─┬─┘ └─┬─┘ │
│CONTINUE │ │ │ │
│keyword │ │ │ │
│ ┌───────↓────────┐ ┌───────↓────────┐ ┌───────↓────────┐ │
│ │ Data (1,8) │ │ Data (9,16) │ │Data (N*8─7,N*8)│ │
│ └────────────────┘ └────────────────┘ └────────────────┘ │
│ ←──────── Plaintext to application program ────────────→ │
│ ┌────────↓──────┐
└──┤Chaining vector│

└───────────────┘

Figure 30. Deciphering using the CBC method

Chapter 23. Cryptographic algorithms and processes 1029

Triple-DES ciphering algorithms
A triple-DES (TDES) algorithm is used to encrypt keys, PIN blocks, and general
data.

Several techniques are employed:

TDES ECB
DES keys, when triple encrypted under a double-length DES key, are
ciphered using an e-d-e scheme without feedback.

┌──────────────┐
│Verb parameter│
└──────┬───────┘

│
┌──────↓───────┐ ←── Plaintext from application program ───→
│Initialization│ ┌────────────────┐ ┌────────────────┐ ┌────┬─────┬─────┐
│ vector │ │ Data (1,8) │ │Data (N*8─7,N*8)│ │Data│ Pad │Count│
└──────┬───────┘ └───────┬────────┘ └───────┬────────┘ └────┴──┬──┴─────┘

│ │ │ │
│ ┌─↓─┐ ┌─↓─┐ ┌─↓─┐
└───────────────→XOR│ ┌ ─ ───→XOR│ ┌──────→XOR│

└─┬─┘ └─┬─┘ │ └─┬─┘
│ │ │ │ │
│ │ │ │

┌─────↓─────┐ │ ┌─────↓─────┐ │ ┌─────↓─────┐
│ Encipher │ │ Encipher │ │ │ Encipher │
└─────┬─────┘ │ └─────┬─────┘ │ └─────┬─────┘

│ │ │ │
├────── ─ ┘ ├─────────┘ │
│ │ │

┌───────↓────────┐ ┌───────↓────────┐ ┌───────↓────────┐
│ Data (1,8) │ │Data (N*8─7,N*8)│ │ Last block │
└────────────────┘ └────────────────┘ └────────────────┘
←─────── Ciphertext to application program ────────────→

Figure 31. Enciphering using the ANSI X9.23 method

┌──────────────┐
│Verb parameter│
└──────┬───────┘

│
┌──────↓───────┐ ←──────── Ciphertext from application program ─────────→
│Initialization│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ vector │ │ Data (1,8) │ │Data (N*8─7,N*8)│ │ Last block │
└──────┬───────┘ └───────┬────────┘ └───────┬────────┘ └───────┬────────┘

│ │ │ │
│ ├────── ─ ┐ ├─────────┐ │
│ │ │ │ │
│ ┌─────↓─────┐ │ ┌─────↓─────┐ │ ┌─────↓─────┐
│ │ Decipher │ │ Decipher │ │ │ Decipher │
│ └─────┬─────┘ │ └─────┬─────┘ │ └─────┬─────┘
│ │ │ │ │
│ ┌─↓─┐ │ ┌─↓─┐ │ ┌─↓─┐
└───────────────→XOR│ └ ─ ───→XOR│ └──────→XOR│

└─┬─┘ └─┬─┘ └─┬─┘
│ │ │

┌───────↓────────┐ ┌───────↓────────┐ ┌────┬──↓──┬─────┐
│ Data (1,8) │ │Data (N*8─7,N*8)│ │Data│ Pad │Count│
└────────────────┘ └────────────────┘ └────┴─────┴─────┘
←─── Plaintext to application program ────→

Figure 32. Deciphering using the ANSI X9.23 method

1030 Common Cryptographic Architecture Application Programmer's Guide

TDES CBC
Encryption of general data, and RSA section type X'08' CRT-format private
keys and OPK keys, employs the scheme depicted in Figure 33 and
Figure 34 on page 1032. This is often referred to as “outer CBC mode.”

This CCA supports double-length DES keys for triple-DES data encryption
using the Encipher and Decipher verbs. The triple-length asymmetric
master key is used to CBC encrypt CRT-format OPK keys.

EDEx / DEDx
CCA employs EDEx processes for encrypting several of the RSA private
key formats (section types X'02', X'05', and X'06') and the OPK key in
section type X'06'. The EDEx processes make successive use of single-key
DES CBC processes. EDE2, EDE3, and EDE5 processes have been defined,
based on the number of keys and initialization vectors used in the process.
See Figure 35 on page 1032 and Figure 36 on page 1033. K1, K2, and K3 are
true keys while “K4” and “K5” are initialization vectors. See Figure 35 on
page 1032 and Figure 36 on page 1033.

┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
│ T1←64→ │ T2←64→ │ T3←64→ │ │ Tn←64→ │
└──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘

↓ ↓ ↓ ↓
┌───┐ ┌───┐ ┌───┐ ┌───┐

IV─→│XOR│ ┌─────→│XOR│ ┌─────→│XOR│ ┌──//───→│XOR│
└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

↓ │ ↓ │ ↓ │ ↓
┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

Ka─→│ e │ │ Ka─→│ e │ │ Ka─→│ e │ │ Ka─→│ e │
└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

↓ │ ↓ │ ↓ │ ↓
┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

Kb─→│ d │ │ Kb─→│ d │ │ Kb─→│ d │ │ Kb─→│ d │
└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

↓ │ ↓ │ ↓ │ ↓
┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

Kc─→│ e │ │ Kc─→│ e │ │ Kc─→│ e │ │ Kc─→│ e │
└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

├────┘ ├────┘ ├────┘ │
↓ ↓ ↓ ↓

┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
│ S1←64→ │ S2←64→ │ S3←64→ │ │ Sn←64→ │
└─────────────┴─────────────┴─────────────┴/┴─────────────┘

For 2-key triple-DES, Kc = Ka

Figure 33. Triple-DES CBC encryption process

Chapter 23. Cryptographic algorithms and processes 1031

┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
│ S1←64→ │ S2←64→ │ S3←64→ │ │ Sn←64→ │
└──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘

├────┐ ├────┐ ├────┐ │
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
Kc─→│ d │ │ Kc─→│ d │ │ Kc─→│ d │ │ Kc─→│ d │

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
Kb─→│ e │ │ Kb─→│ e │ │ Kb─→│ e │ │ Kb─→│ e │

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
Ka─→│ d │ │ Ka─→│ d │ │ Ka─→│ d │ │ Ka─→│ d │

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
IV─→│XOR│ └─────→│XOR│ └─────→│XOR│ └──//───→│XOR│

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
↓ ↓ ↓ ↓

┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
│ T1←64→ │ T2←64→ │ T3←64→ │ │ Tn←64→ │
└─────────────┴─────────────┴─────────────┴/┴─────────────┘

For 2-key triple-DES, Kc = Ka

Figure 34. Triple-DES CBC decryption process

┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
EDE2 EDE3 EDE5 │ T1<64> │ T2<64> │ T3<64> │ │ Tn<64> │

└──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
↓ ↓ ↓ ↓

┌───┐ ┌───┐ ┌───┐ ┌───┐
0 0 K4 IVa─→│XOR│ ┌─────→│XOR│ ┌─────→│XOR│ ┌──//───→│XOR│

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
K1 K1 K1 Ka─→│ e │ │ Ka─→│ e │ │ Ka─→│ e │ │ Ka─→│ e │

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
├────┘ ├────┘ ├────┘ │
├────┐ ├────┐ ├────┐ │
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
K2 K2 K2 Kb─→│ d │ │ Kb─→│ d │ │ Kb─→│ d │ │ Kb─→│ d │

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
0 0 0 IVb─→│XOR│ └─────→│XOR│ └─────→│XOR│ └──//───→│XOR│

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
↓ ↓ ↓ ↓

┌───┐ ┌───┐ ┌───┐ ┌───┐
0 0 K5 IVc─→│XOR│ ┌─────→│XOR│ ┌─────→│XOR│ ┌──//───→│XOR│

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
K1 K3 K3 Kc─→│ e │ │ Kc─→│ e │ │ Kc─→│ e │ │ Kc─→│ e │

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
├────┘ ├────┘ ├────┘ │
↓ ↓ ↓ ↓

┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
│ S1<64> │ S2<64> │ S3<64> │ │ Sn<64> │
└─────────────┴─────────────┴─────────────┴/┴─────────────┘

Figure 35. EDE algorithm

1032 Common Cryptographic Architecture Application Programmer's Guide

MAC calculation methods
Four variations of DES-based message authentication can be used by the MAC
Generate and MAC Verify verbs.

These variations are:
v “ANSI X9.9 MAC”
v “ANSI X9.19 Optional Procedure 1 MAC” on page 1034
v “EMV MAC” on page 1034
v “ISO 16609 TDES MAC” on page 1034

A keyed-hash MAC (HMAC) based message authentication can be used by the
HMAC Generate and HMAC Verify verbs.

ANSI X9.9 MAC
The Financial Institution (Wholesale) Message Authentication Standard (ANSI
X9.9-1986) defines a process for the authentication of messages from originator to
recipient, and this process is called the Message Authentication Code (MAC)
calculation method.

The ANSI X9.9 standard defines five options. The MAC Generate and MAC Verify
verbs implement option 1, binary data.

┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
EDE2 EDE3 EDE5 │ S1<64> │ S2<64> │ S3<64> │ │ Sn<64> │

└──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
├────┐ ├────┐ ├────┐ │
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
K1 K3 K3 Kc─→│ d │ │ Kc─→│ d │ │ Kc─→│ d │ │ Kc─→│ d │

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
0 0 K5 IVc─→│XOR│ └─────→│XOR│ └─────→│XOR│ └──//───→│XOR│

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
↓ ↓ ↓ ↓

┌───┐ ┌───┐ ┌───┐ ┌───┐
0 0 0 IVb─→│XOR│ ┌─────→│XOR│ ┌─────→│XOR│ ┌──//───→│XOR│

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
K2 K2 K2 Kb─→│ e │ │ Kb─→│ e │ │ Kb─→│ e │ │ Kb─→│ e │

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
├────┘ ├────┘ ├────┘ │
├────┐ ├────┐ ├────┐ │
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
K1 K1 K1 Ka─→│ d │ │ Ka─→│ d │ │ Ka─→│ d │ │ Ka─→│ d │

└─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
↓ │ ↓ │ ↓ │ ↓

┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
0 0 K4 IVa─→│XOR│ └─────→│XOR│ └─────→│XOR│ └──//───→│XOR│

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
↓ ↓ ↓ ↓

┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
│ T1<64> │ T2<64> │ T3<64> │ │ Tn<64> │
└─────────────┴─────────────┴─────────────┴/┴─────────────┘

Figure 36. DED process

Chapter 23. Cryptographic algorithms and processes 1033

Figure 37 shows the MAC calculation for binary data. In this figure, KEY is a 64-bit
key, and T1 - Tn are 64-bit data blocks of text. If Tn is less than 64 bits long, binary
zeros are appended to the right of Tn. Data blocks T1...Tn are DES CBC-encrypted
with all output discarded except for the final output block, On.

ANSI X9.19 Optional Procedure 1 MAC
The Financial Institution (Retail) Message Authentication Standard, ANSI X9.19
Optional Procedure 1 (ISO/IEC 9797-1, Algorithm 3) specifies additional processing
of the 64-bit On MAC value.

The CCA “X9.19OPT” process employs a double-length DES key. After calculating
the 64-bit MAC as above with the left half of the double-length key, the result is
decrypted using the right half of the double-length key. This result is then
encrypted with the left half of the double-length key. The resulting MAC value is
processed according to other specifications supplied to the verb call.

EMV MAC
The EMV smart card standards define MAC generation and verification processes
that are the same as ANSI X9.9 and ANSI X9.19 Optional Procedure 1 (ISO/IEC
9797-1, Algorithm 3), except for padding added to the end of the message.

Append one byte of X'80' to the original message. Then append additional bytes,
as required, of X'00' to form an extended message, which is a multiple of eight
bytes in length.

In the ANSI X9.9 and ANSI X9.19 Optional Procedure 1 standards, the leftmost 32
bits (4 bytes) of On are taken as the MAC. In the EMV standards, the MAC value is
between four and eight bytes in length. CCA provides support for the leftmost
four, six, and eight bytes of MAC value.

ISO 16609 TDES MAC
ISO 16609 defines a process for protecting the integrity of transmitted banking
messages and for verifying that a message has originated from an authorized
source and this process is called the ISO 16609 TDES MAC method.

XOR

T
2

T
1

O
1

KEY KEY KEY KEY

XOR

T
n -1

XOR

EncEnc Enc Enc

T
n

O
2

O
n -1

O
n

(OCV)

ANSI X9.9 MAC

(and to decipher and

encipher for ANSI X9.19)

Figure 37. MAC calculation method

1034 Common Cryptographic Architecture Application Programmer's Guide

The ISO 16609 TDES MAC method corresponds to ISO/IEC 9797-1, algorithm 1
using T-DEA (ANSI X9.52:1998). ISO/FDIS 16609 identifies this method as one of
the recommended ways to generate a MAC using symmetric techniques.

The ISO 16609 TDES MAC method uses a double-length DES key and operates on
data blocks that are a multiple of eight bytes. If the last input data block is not a
multiple of eight bytes, binary zeros are appended to the right of the block. A CBC
mode triple-DES (TDES) encryption operation is performed on the data, with all
output discarded except for the final output block.

The resulting MAC value is processed according to other specifications supplied to
the verb call.

Keyed-hash MAC (HMAC)
The Keyed-Hash Message Authentication Code (HMAC) standard (FIPS PUB 198-1)
describes a mechanism for message authentication using cryptographic hash
functions.

HMAC can be used with a hash function in combination with a shared secret key.

To see how to compute a MAC over the data, see FIPS PUB 198-1 available at:
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf.

RSA key-pair generation
RSA key-pair generation is determined based on user input of the modulus bit
length, public exponent, and key type.

The output is based on creating primes p and q in conformance with ANSI X9.31
requirements as follows:
v prime p bit length = ((modulus_bit_length +1)/2)
v prime q bit length = modulus_bit_length - p_bit_length
v p and q are randomly chosen prime numbers
v p > q
v The Rabin-Miller Probabilistic Primality Test is iterated 8 times for each prime.

This test determines that a false prime is produced with probability no greater
then 1/4c, where c is the number of iterations. Refer to the ANSI X9.31 standard
and see the section entitled “Miller-Rabin Probabilistic Primality Test.”

v Primes p and q are relatively prime with the public exponent.
v Primes p and q are different in at least one of the first 100 most significant bits,

that is, |p-q| > 2(prime bit length - 100). For example, when the modulus bit length is
1024, then both primes bit length are 512 bits and the difference of the two
primes is |p-q| > 2412.

1. For each key generation, and for any size of key, the PKA manager seeds an
internal FIPS-approved, SHA-1 based psuedo random number generator
(PRNG) with the first 24 bytes of information that it receives from three
successive calls to the random number generator (RNG) manager's PRNG
interface.

2. The RNG manager can supply random number in two ways, but with the CCA
Support Program only one way is used, namely, the PRNG method. The PKA
manager seeds an internal FIPS-approved, SHA-1 based PRNG with 24 bytes
obtained.

Chapter 23. Cryptographic algorithms and processes 1035

The RNG manager can respond to requests for random numbers from other
processes with such responses interspersed between responses to PKA manager
requests. An RSA key is generated from random information obtained from two
cascaded SHA-1 PRNGs.

3. An RSA key is based on one or more 24-byte seeds from the RNG manager
source, depending on the dynamic mix of tasks running inside the coprocessor.

There exists a system RNG manager (ANSI X9.31 compliant) that is used as the
source for pseudo random numbers. The PKA manager also has a PRNG that is
DSA compliant for generating primes. The PKA manager PRNG is re-seeded from
the system RNG manager, for every new key pair generation, which is for every
generation of a public/private key pair.

Multiple decipherment and encipherment
CCA uses multiple encipherment and decipherment to protect and retrieve
cryptographic keys and PIN data.

CCA uses multiple encipherment whenever it enciphers a key under a
key-encrypting key such as the master key or the transport key and in triple-DES
encipherment for data privacy. Multiple encipherment is superior to single
encipherment because multiple encipherment increases the work needed to “break”
a key. CCA provides extra protection for a key by enciphering it under an
enciphering key multiple times rather than once. The multiple encipherment
method for keys enciphered under a key-encrypting key uses a double-length
(128-bit) key split into two 64-bit halves. Like single encipherment, multiple
encipherment uses a DES based on the electronic code book (ECB) mode of
encipherment.

Keys can either be double-length or single-length depending on the installation
and their cryptographic function. When a single-length key is encrypted under a
double-length key, multiple encipherment is performed on the key. In the multiple
encipherment method, the key is encrypted under the left half of the enciphering
key. The result is then decrypted under the right half of the enciphering key.
Finally, this result is encrypted under the left half of the enciphering key again.

When a double-length key is encrypted with multiple encipherment, the method is
similar, except CCA uses two enciphering keys. One enciphering key encrypts each
half of the double-length key. Double-length keys active on the system have two
master key variants used when enciphering them.

Multiple encipherment and decipherment is not only used to protect or retrieve a
cryptographic key, but they are also used to protect or retrieve 64-bit data in the
area of PIN applications. For example, the following two sections use a
double-length *KEK as an example to cipher a single-length key even though the
same algorithms apply to cipher 64-bit data by a double-length PIN-related
cryptographic key.

CCA also supports triple-DES encipherment for data privacy using double-length
and triple-length DATA keys. For this procedure the data is first enciphered using
the first DATA key. The result is then deciphered using the second DATA key. This
second result is then enciphered using the third DATA key when a triple-length
key is provided or reusing the first DATA key when a double-length key is
provided.

1036 Common Cryptographic Architecture Application Programmer's Guide

Note that an asterisk (*) preceding the key means the key is double-length.
Notations in this chapter have the following meaning:
v eK(x), where x is enciphered under K
v dK(y) represents plaintext, where K is the key and y is the ciphertext

Therefore, dK(eK(x)) equals x for any 64-bit key K and any 64-bit plaintext x.

When a key (*K) to be protected is double-length, two double-length *KEKs are
used. One *KEK is used for protecting the left half of the key (*K); another is for
the right half. Multiple encipherment is used with the appropriate *KEK for
protecting each half of the key.

Multiple encipherment of single-length keys
Definition of the multiple encipherment of a single-length key (K) using a
double-length *KEK.

The multiple encipherment of a single-length key (K) using a double-length *KEK
is defined as follows:

e*KEK(K) = eKEKL(dKEKR(eKEKL(K)))

where KEKL is the left 64 bits of *KEK and KEKR is the right 64 bits of *KEK.

Figure 38 illustrates the definition.

Multiple decipherment of single-length keys
Definition of the multiple encipherment of an encrypted single-length key (Y =
e*KEK(K)) using a double-length *KEK.

The multiple encipherment of an encrypted single-length key (Y = e*KEK(K)) using
a double-length *KEK is defined as follows:

d*KEK(Y) = dKEKL(eKEKR(dKEKL(Y)))
= d*KEK(e*KEK(K))
= K

KEKL

KEKR

KEKL

K

e*KEK(K)

E

D

E

Figure 38. Multiple encipherment of single-length keys

Chapter 23. Cryptographic algorithms and processes 1037

where KEKL is the left 64 bits of *KEK and KEKR is the right 64 bits of *KEK.

Figure 39 illustrates the definition.

Multiple encipherment of double-length keys
Definition of the multiple encipherment of a double-length key (*K) using two
double-length *KEKs, *KEKa, and *KEKb.

The multiple encipherment of a double-length key (*K) using two double-length
*KEKs, *KEKa, and *KEKb is defined as follows:
e*KEKa(KL) || e*KEKb(KR) =

eKEKaL(dKEKaR(eKEKaL(KL))) ||
eKEKbL(dKEKbR(eKEKbL(KR)))

where:
v KL is the left 64 bits of *K
v KR is the right 64 bits of *K
v KEKaL is the left 64 bits of *KEKa
v KEKaR is the right 64 bits of *KEKa
v KEKbL is the left 64 bits of *KEKb
v KEKbR is the right 64 bits of *KEKb
v || means concatenation

Figure 40 on page 1039 illustrates the definition.

KEKL

KEKR

KEKL

K

e*KEK(K)

D

E

D

Figure 39. Multiple decipherment of single-length keys

1038 Common Cryptographic Architecture Application Programmer's Guide

Multiple decipherment of double-length keys
Definition of the multiple decipherment of an encrypted double-length key, *Y =
e*KEKa(KL) || e*KEKb(KR), using two double-length *KEKs, *KEKa, and *KEKb.

The multiple decipherment of an encrypted double-length key, *Y = e*KEKa(KL)
|| e*KEKb(KR), using two double-length *KEKs, *KEKa, and *KEKb, is defined as
follows:

D*KEKa(YL) || d*KEKb(YR)
= dKEKaL(eKEKaR(dKEKaL(YL))) ||

dKEKbL(eKEKbR(dKEKbL(YR)))
= d*KEKa(e*KEKa(KL)) ||

d*KEKb(e*KEKb(KR))
= *K

where
v YL is the left 64 bits of *Y
v YR is the right 64 bits of *Y
v KEKaL is the left 64 bits of *KEKa
v KEKaR is the right 64 bits of *KEKa
v KEKbL is the left 64 bits of *KEKb
v KEKbR is the right 64 bits of *KEKb
v || means concatenation

Figure 41 on page 1040 illustrates the definition.

KEKaL KEKbL

KEKaR KEKbR

KEKaL KEKbL

e*KEKa(KL) e*KEKb(KR)

KL KR

E E

D D

E E

Figure 40. Multiple encipherment of double-length keys

Chapter 23. Cryptographic algorithms and processes 1039

Multiple encipherment of triple-length keys
Definition of the multiple encipherment of a triple-length key (**K) using two
double-length *KEKs, *KEKa, and *KEKb.

The multiple encipherment of a triple-length key (**K) using two double-length
*KEKs, *KEKa, and *KEKb is defined as follows:
e*KEKa(KL) || e*KEKb(KM) || e*KEKa(KR) =

eKEKaL(dKEKaR(eKEKaL(KL))) ||
eKEKbL(dKEKbR(eKEKbL(KM))) ||
eKEKaL(dKEKaR(eKEKaL(KR)))

where:
v KL is the left 64 bits of **K
v KM is the next 64 bits of **K
v KR is the right 64 bits of **K
v KEKaL is the left 64 bits of *KEKa
v KEKaR is the right 64 bits of *KEKa
v KEKbL is the left 64 bits of *KEKb
v KEKbR is the right 64 bits of *KEKb
v || means concatenation

Figure 42 on page 1041 illustrates the definition.

KEKaL KEKbL

KEKaR KEKbR

KEKaL KEKbL

YL = e*KEKa(KL) YR = e*KEKb(KR)

KL KR

D D

E E

D D

Figure 41. Multiple decipherment of double-length keys

1040 Common Cryptographic Architecture Application Programmer's Guide

Multiple decipherment of triple-length keys
Definition of the multiple decipherment of an encrypted triple-length key **Y =
e*KEKa(KL) || e*KEKb(KM) || e*KEKa(KR), using two double-length *KEKs,
*KEKa, and *KEKb.

The multiple decipherment of an encrypted triple-length key **Y = e*KEKa(KL) ||
e*KEKb(KM) || e*KEKa(KR), using two double-length *KEKs, *KEKa, and *KEKb,
is defined as follows:
d*KEKa(YL) || d*KEKb(YM) || d*KEKa(YR)

= dKEKaL(eKEKaR(dKEKaL(YL))) ||
dKEKbL(eKEKbR(dKEKbL(YM))) ||
dKEKaL(eKEKaR(dKEKaL(YR)))

= d*KEKa(e*KEKa(KL)) ||
d*KEKb(e*KEKb(KM)) ||
d*KEKa(e*KEKa(KR))

= **K

where:
v YL is the left 64 bits of **Y
v YM is the next 64 bits of **Y
v YR is the right 64 bits of **Y
v KEKaL is the left 64 bits of *KEKa
v KEKaR is the right 64 bits of *KEKa
v KEKbL is the left 64 bits of *KEKb
v KEKbR is the right 64 bits of *KEKb
v || means concatenation

Figure 43 on page 1042 illustrates the definition.

KEKaL KEKbL KEKaL

KEKaR KEKbR KEKaR

KEKaL KEKbL KEKaL

YL = e*KEKa(KL) YM = e*KEKb(KM) YR = e*KEKa(KR)

KL KM KR

D D D

E E E

D D D

Figure 42. Multiple encipherment of triple-length keys

Chapter 23. Cryptographic algorithms and processes 1041

PKA92 key format and encryption process
The Symmetric Key Generate and the Symmetric Key Import verbs optionally
support a PKA92 method of encrypting a DES key with an RSA public key.

This format is adapted from the IBM Transaction Security System (TSS) 4753 and
4755 product's implementation of PKA92. The verbs do not create or accept the
complete PKA92 AS key token as defined for the TSS products. Rather, the verbs
support only the actual RSA-encrypted portion of a TSS PKA92 key token, the AS
External Key Block.

Forming an external key block - The PKA96 implementation forms an AS External
Key Block by RSA-encrypting a key block using a public key. The key block is
formed by padding the key record detailed in Table 305 with zero bits on the left,
high-order end of the key record. The process completes the key block with three
sub-processes: masking, overwriting, and RSA encrypting.

Table 305. PKA96 clear DES key record

Offset
(bytes)

Length
(bytes) Description

Zero-bit padding to form a structure as long as the length of the public key modulus. The
implementation constrains the public key modulus to a multiple of 64 bits in the range of
512 - 1024 bits. Note that government export or import regulations can impose limits on
the modulus length. The maximum length is validated by a check against a value in the
Function Control Vector.

000 005 Header and flags: X'01 0000 0000.'

005 016 Environment Identifier (EID), encoded in ASCII.

021 008 Control vector base for the DES key.

029 008 Repeat of the CV data at offset 021.

KEKaL KEKbL KEKaL

KEKaR KEKbR KEKaR

KEKaL KEKbL KEKaL

e*KEKa(KL) e*KEKb(KM) e*KEKa(KR)

KL KM KR

E E E

D D D

E E E

Figure 43. Multiple decipherment of triple-length keys

1042 Common Cryptographic Architecture Application Programmer's Guide

Table 305. PKA96 clear DES key record (continued)

Offset
(bytes)

Length
(bytes) Description

037 008 The single-length DES key or the left half of a double-length DES
key.

045 008 The right half of a double-length DES key or a random number.
This value is locally designated "K."

053 008 Random number, "IV."

061 001 Ending byte, X'00.'

Masking Sub-process - Create a mask by CBC encrypting a multiple of eight bytes of
binary zeros using K as the key and IV as the initialization vector as defined in the
key record at offsets 45 and 53. XOR the mask with the key record and call the
result PKR.

Overwriting Sub-process - Set the high-order bits of PKR to B'01' and set the
low-order bits to B'0110'.

XOR K and IV and write the result at offset 45 in PKR.

Write IV at offset 53 in PKR. This causes the masked and overwritten PKR to have
IV at its original position.

Encrypting Sub-process - RSA encrypt the overwritten PKR masked key record using
the public key of the receiving node.

Recovering a key from an external key block - Recover the encrypted DES key
from an AS External Key Block by performing decrypting, validating, unmasking,
and extraction sub-processes.

Decrypting Sub-process - RSA decrypt the AS External Key Block using an RSA
private key and call the result of the decryption PKR. The private key must be
usable for key management purposes.

Validating Sub-process - Verify the high-order two bits of the PKR record are valued
to B'01' and the low-order four bits of the PKR record are valued to B'0110'.

Unmasking Sub-process - Set IV to the value of the eight bytes at offset 53 of the
PKR record. Note that there is a variable quantity of padding prior to offset 0. See
Table 305 on page 1042.

Set K to the XOR of IV and the value of the eight bytes at offset 45 of the PKR
record.

Create a mask equal in length to the PKR record by CBC encrypting a multiple of
eight bytes of binary zeros using K as the key and IV as the initialization vector.
XOR the mask with PKR and call the result the key record.

Copy K to offset 45 in the PKR record.

Extraction Sub-process. Confirm that:
v The four bytes at offset 1 in the key record are valued to X'0000 0000' .
v The two control vector fields at offsets 21 and 29 are identical.

Chapter 23. Cryptographic algorithms and processes 1043

v If the control vector is an IMPORTER or EXPORTER key class, the Environment
Identifier (EID) in the key record is not the same as the EID stored in the
cryptographic engine.

The control vector base of the recovered key is the value at offset 21. If the control
vector base bits 40 - 42 are valued to B'010' or B'110', the key is double length. Set
the right half of the received key's control vector equal to the left half and reverse
bits 41 and 42 in the right half.

The recovered key is at offset 37 and is either 8 or 16 bytes long based on the
control vector base bits 40 - 42. If these bits are valued to B'000', the key is single
length. If these bits are valued to B'010' or B'110', the key is double length.

Formatting hashes and keys in public-key cryptography
The Digital Signature Generate and Digital Signature Verify verbs support several
methods for formatting a hash and, in some cases, a descriptor for the hashing
method, into a bit-string to be processed by the cryptographic algorithm.

This section provides information about the ANSI X9.31 and PKCS #1 methods.
The ISO 9796-1 method can be found in the ISO standard.

This section also describes the PKCS #1, version 1, 1.5, and 2.0, methods for
placing a key in a bit string for RSA ciphering as part of a key exchange.

ANSI X9.31 hash format
With ANSI X9.31, the string that is processed by the RSA algorithm is formatted by
the concatenation of a header, padding, the hash value and a trailer, from the most
significant bit to the least significant bit, so that the resulting string is the same
length as the modulus of the key.

For CCA, the modulus length must be a multiple of 8 bits.
v The header consists of the value X'6B'.
v The padding consists of the value X'BB', repeated as many times as required,

and ended with X'BA'.
v The hash value follows the padding.
v The trailer consists of a hashing mechanism specifier and final byte. The hashing

mechanism specifier is defined as one of the following values:

X'31' RIPEMD-160

X'32' RIPEMD-128

X'33' SHA-1

X'34' SHA-256
v The final byte is X'CC'.

PKCS #1 hash formats
Version 2.0 and 2.1 of the PKCS #1 standard defines methods for formatting keys
and hashes prior to RSA encryption of the resulting data structures.

1044 Common Cryptographic Architecture Application Programmer's Guide

The earlier versions of the PKCS #1 standard defined block types 0, 1, and 2, but in
the current standard that terminology is dropped.

CCA implemented these processes using the terminology of the Version 2.0
standard:
v For formatting keys for secured transport (Symmetric Key Export, Digital

Signature Generate, Symmetric Key Import):
– RSAES-OAEP, the preferred method for key-encipherment when exchanging

DATA keys between systems. Keyword PKCSOAEP (Version 2.0) and
PKOAEP2 (Version 2.1) is used to invoke this formatting technique. The P
parameter described in the standard is not used and its length is set to zero.

– RSAES-PKCS1-v1_5, is an older method for formatting keys. It is included for
compatibility with existing applications. Keyword PKCS-1.2 is used to invoke
this formatting technique.

v For formatting hashes for digital signatures (Digital Signature Generate and
Digital Signature Verify):
– RSASSA-PKCS1-v1_5, the newer name for the block-type 1 format. Keyword

PKCS-1.1 is used to invoke this formatting technique.
– The PKCS #1 specification no longer describes the use of block-type 0.

Keyword PKCS-1.0 is used to invoke this formatting technique. Use of
block-type 0 is discouraged.

Using the terminology from older versions of the PKCS #1 standard, block types 0
and 1 are used to format a hash and block type 2 is used to format a DES key. The
blocks consist of the following (“||” means concatenation):
v X'00' || BT || PS || X'00' || D
v
v where:

BT Is the block type, X'00', X'01', or X'02'.
PS Is the padding of as many bytes as required to make the block the same

length as the modulus of the RSA key. Padding of X'00' is used for block
type 0, X'FF' for block type 1, and random and non-X'00' for block type
2. The length of PS must be a minimum of eight bytes.

D Is the key, or the concatenation of the BER-encoded hash identifier and
the hash value.

You can create the ASN.1 BER encoding of an MD5, SHA-1, or SHA-256 value by
attaching these strings at the beginning of the 16-byte or 20-byte hash values,
respectively:

MD5 X’3020300C 06082A86 4886F70D 02050500 0410’

SHA-1
X’30213009 06052B0E 03021A05 000414’

SHA-256
X’3031300D 06096086 48016503 04020105 000420’

2. PKCS standards can be retrieved from http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/public-key-cryptography-
standards.htm.

3. The PKA 92 method and the method incorporated into the SET standard are other examples of the Optimal Asymmetric
Encryption Padding (OAEP) technique. The OAEP technique is attributed to Bellare and Rogaway.

Chapter 23. Cryptographic algorithms and processes 1045

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/public-key-cryptography-standards.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/public-key-cryptography-standards.htm

1046 Common Cryptographic Architecture Application Programmer's Guide

Chapter 24. Access control points and verbs

Verbs use access control points (ACPs). ACPs are also referred to as commands.

Important: By default, you should disable commands that allow an action and
enable commands that disallow an action. Enabling or disabling ACPs requires
knowledge about the underlying action, so that you are aware why to set the ACP
on or off.

For instructions on how to enable and disable these ACPs using the TKE
workstation, see z/OS Cryptographic Services ICSF Trusted Key Entry Workstation
User’s Guide.

For systems that do not use the optional TKE workstation, most ACPs (current and
new) are enabled in the default role with the appropriate licensed internal code on
the CEX*C.

Note:

1. Each domain in the CEX*C (with hardware enforced access permissions) starts
out with its own default role with the default ACP values as shown. However,
it is possible to use the TKE to change ACP values in the default role or to
define other roles.

2. With the panel.exe, you can show the settings of all or specific ACPs (see
“Using panel.exe to show the active role and ACPs” on page 1129).

As described in Chapter 25, “Access control data structures,” on page 1073, you
can assign a role to a user. The user's permissions (permitted or disallowed
operations) are attached to each role in the form of an access control point (ACP)
list. Thus, the assigned role determines the commands (or ACPs) available to that
user.

Full coverage of TKE use for configuration is outside the scope of this document.
For details, see z/OS Cryptographic Services ICSF Trusted Key Entry Workstation User’s
Guide.

Table 306 on page 1048 lists the CCA ACPs. The name of each ACP is given as it
appears on the panels of the TKE user interface. Note that the group names are
also given to aid locating the ACPs. The table includes the following columns:

ACP number
The hexadecimal offset, or ACP code, for the command. Offsets between
X'0000' and X'FFFF' that are not listed in this table are reserved.

Name of ACP from TKE interface
The name of the ACP as it appears on the TKE interface

Verb name
The names of the verbs that require that ACP to be enabled; for example,
the Encipher (CSNBENC) verb fails without permission to use the
Encipher - DES ACP.

Entry point
The entry-point name of the verb.

© Copyright IBM Corp. 2007, 2018 1047

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm

Initial setting
Whether the ACP is ON or OFF by default.

Usage Usage recommendations for the ACP. The abbreviations in this column are
explained at the end of the table.

See the Restrictions, Required commands, or Usage notes sections at the end of
each verb description for access control information.

Table 306. Access Control Points and corresponding CCA verbs

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

0001 GROUP: ISPF Services
Note: This group name refers to ISPF, a z/OS feature. Although ISPF is not relevant to Linux on Z, it is listed here
as shown on the TKE panels to avoid confusion.

X'0018' DES Master Key - Load first
key part

Master Key Process1 CSNBMKP ON SC, SEL

X'0019' DES Master Key - Combine key
parts

Master Key Process1 CSNBMKP ON SC, SEL

X'001A' DES Master Key - Set master
key

Master Key Process1 CSNBMKP ON SC, SEL

X'001E' Reencipher CKDS
Note: The TKE name for this
ACP refers to z/OS key storage
(CKDS). However z/OS key
storage is not impacted. This
ACP refers to a service for
Linux, see verb for details.

Key Token Change CSNBKTC ON O

X'0032' DES Master Key - Clear new
master key register

Master Key Process1 CSNBMKP ON O, SUP

X'0053' RSA Master Key - Load first
key part

Master Key Process1 CSNBMKP ON SC, SEL

X'0054' RSA Master Key - Combine key
parts

Master Key Process1 CSNBMKP ON SC, SEL

X'0057' RSA Master Key - Set master
key

Master Key Process1 CSNBMKP ON SC, SEL

X'0060' RSA Master Key - Clear new
master key register

Master Key Process1 CSNBMKP ON SC, SEL

X'00F0' Reencipher CKDS2

X'0124' AES Master Key - Clear new
master key register

Master Key Process1 CSNBMKP ON O, SUP

X'0125' AES Master Key - Load first
key part

Master Key Process1 CSNBMKP ON O, SUP

X'0126' AES Master Key - Combine key
parts

Master Key Process1 CSNBMKP ON O, SUP

X'0128' AES Master Key - Set master
key

Master Key Process1 CSNBMKP ON O, SUP

X'0146' CKDS Conversion2 - Allow
wrapping override keywords

Key Token Change CSNBKTC ON O

X'0147' CKDS Conversion2 - Convert
from enhanced to original

Key Token Change
Key Translate2

CSNBKTC
CSNBKTR2

ON O, NRP

1048 Common Cryptographic Architecture Application Programmer's Guide

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'014B' Key Translate2 - Allow use of
REFORMAT

Key Translate2 CSNBKTR2 ON

X'014C' CKDS Conversion2 - Allow use
of REFORMAT

Key Token Change CSNBKTC ON O

X'0240' Authorize UDX - no verb - - no verb - ON O

X'0241' Reencipher PKDS PKA Key Token Change CSNDKTC ON O, R

X'0303' PCF CKDS conversion utility PCF/CUSP Key Conversion -
indirect verb

- indirect
verb/indirect
usage -

ON R

X'031F' ECC Master Key - Clear new
master key register

Master Key Process CSNBMKP ON O

X'0320' ECC Master Key - Load first
key part

Master Key Process CSNBMKP ON O

X'0321' ECC Master Key - Combine key
parts

Master Key Process CSNBMKP ON O

X'0322' ECC Master Key - Set master
key

Master Key Process CSNBMKP ON O

X'0330' DES master key - 24-byte key Master Key Process
Note: This ACP forces the SYM
and ASYM master keys to be full
24 byte DES keys.

CSNBMKP OFF O

0002 GROUP: Coprocessor Configuration

X'0034' Log Query: System Log Query CSUALGQ ON O

X'0035' Log Query: CCA Log Query CSUALGQ ON O

X'0036' Log Query: Set Log Level -4- Log Query CSUALGQ ON O

X'0037' Log Query: Set Log Level -8- Log Query CSUALGQ ON O

X'0116' Access Control Manager - Read
role

Note: This ACP is included for reference only. The
service impacted is available only for IBM System
x, IBM System p, or using the TKE interface.

ON O

X'0139' Symmetric token wrapping -
internal enhanced method

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'013A' Symmetric token wrapping -
internal original method

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'013B' Symmetric token wrapping -
external enhanced method

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'013C' Symmetric token wrapping -
external original method

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'0328' Variable-length Symmetric
Token - disallow weak wrap

EC Diffie-Hellman1

Key Generate21

PKA Key Generate1

Symmetric Key Export1

CSNDEDH
CSNBKGN2
CSNDPKG
CSNDSYX

OFF O, R

Chapter 24. Access control points and verbs 1049

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'032C' Variable-length Symmetric
Token - warn when weak wrap

EC Diffie-Hellman1

Key Generate21

Symmetric Key Export1

Symmetric Key Import21

CSNDEDH
CSNBKGN2
CSNDSYX
CSNDSYI2J

OFF O, R

X'032D' Disallow 24-byte DATA wrapped
with 16-byte Key

PKA Key Generate CSNDPKG OFF O

X'0332' Warn when weak wrap - Master
keys

Clear Key Import
Data Key Import
Diversified Key Generate
EC Diffie-Hellman
Key Generate
Key Generate2
Key Import
Key Part Import
Key Part Import2
Key Token Change
Key Token Change2
Master Key Process
Multiple Clear Key Import
PKA Key Generate
PKA Key Import
PKA Key Token Change
Prohibit Export
Restrict Key Attribute
Symmetric Key Generate
Symmetric Key Import
Symmetric Key Import2
TR31 Key Import
Unique Key Derive

CSNBCKI
CSNBDKM
CSNBDKG
CSNDEDH
CSNBKGN
CSNBKGN2
CSNBKIM
CSNBKPI
CSNBKPI2
CSNBKTC
CSNBKTC2
CSNBMKP
CSNBCKM
CSNDPKG
CSNDPKI
CSNDKTC
CSNBPEX
CSNBRKA
CSNDSYG
CSNDSYI
CSNDSYI2
CSNBT31I
CSNBUKD

ON O, R

X'0333' Prohibit weak wrapping -
Master keys

Same as ACP X'0332' Same as ACP
X'0332'

ON O, R

0003 GROUP: API Cryptographic Services

X'000E' Encipher - DES Encipher CSNBENC ON O

X'000F' Decipher - DES Decipher CSNBDEC ON O

X'0010' MAC Generate MAC Generate CSNBMGN ON O

X'0011' MAC Verify MAC Verify CSNBMVR ON O

X'0012' Key Import Key Import CSNBKIM ON O

X'0013' Key Export Key Export CSNBKEX ON O

X'001B' Key Part Import - first key
part

Key Part Import1 CSNBKPI ON SC, SEL

X'001C' Key Part Import - middle and
last

Key Part Import1 CSNBKPI ON SC, SEL

X'001D' Compute Verification Pattern Key Storage Initialization
Key Test
Key Test2
Key Test Extended

CSNBKSI
CSNBKYT
CSNBKYT2
CSNBKYTX

ON R

X'001F' Key Translate Key Translate CSNBKTR ON O

X'0021' Key Test2 - AES, ENC-ZERO Key Test21 CSNBKYT2 ON O

1050 Common Cryptographic Architecture Application Programmer's Guide

|||
|
|
|

|
|
|
|

||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0022' Key Test2 - AES, CMAC-ZERO Key Test21 CSNBKYT2 ON O

X'0023' Key Test2 - DES, CMAC-ZERO Key Test21 CSNBKYT2 ON O

X'003A' Public Key Import: Disallow
Clear Key Import

PKA Key Import CSNDPKI OFF O, SC

X'0040' Diversified Key Generate -
CLR8-ENC

Diversified Key Generate2 CSNBDKG ON O, SEL

X'0041' Diversified Key Generate -
TDES-ENC

Diversified Key Generate2 CSNBDKG ON O, SEL

X'0042' Diversified Key Generate -
TDES-DEC

Diversified Key Generate2 CSNBDKG ON O, SEL

X'0043' Diversified Key Generate -
SESS-XOR

Diversified Key Generate2 CSNBDKG ON O, SEL

X'0044' Diversified Key Generate -
Single length or same halves

Diversified Key Generate2 CSNBDKG ON SC, SEL

X'0045' Diversified Key Generate -
TDES-XOR

Diversified Key Generate2 CSNBDKG ON O, SEL

X'0046' Diversified Key Generate -
TDESEMV2/TDESEMV4

Diversified Key Generate2 CSNBDKG ON O, SEL

X'0048' Log Query: Set secure log
range

Log Query CSUALGQ
Note: This
ACP is
required for a
TKE service.

OFF

X'0049' Log Query: Secure log clear
range inactive

Log Query CSUALGQ
Note: This
ACP is
required for a
TKE service.

OFF

X'004A' Log Query: Secure log clear
range active

Log Query CSUALGQ
Note: This
ACP is
required for a
TKE service.

OFF

X'004B' Log Query: Secure log clear
all inactive

Log Query CSUALGQ
Note: This
ACP is
required for a
TKE service.

OFF

X'004C' Log Query: Secure log clear
all active

Log Query CSUALGQ
Note: This
ACP is
required for a
TKE service.

OFF

X'0070' Public Infrastructure
Certificate

Public Infrastructure Certificate CSNDPIC ON

X'0071' PIC Signature Algorithm
SHA+RSA

Public Infrastructure Certificate CSNDPIC OFF

X'0072' PIC Signature Algorithm ECDSA Public Infrastructure Certificate CSNDPIC OFF

Chapter 24. Access control points and verbs 1051

||
|
||
|
|
|
|

||

||
|
||
|
|
|
|

||

||
|
||
|
|
|
|

||

||
|
||
|
|
|
|

||

||
|
||
|
|
|
|

||

||
|
||||

||
|
||||

||||||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0073' PIC Signature Algorithm
RSASSA_PSS

Public Infrastructure Certificate CSNDPIC OFF

X'0076' PIC Signature Algorithm SHA-1 Public Infrastructure Certificate CSNDPIC OFF

X'0077' PIC Signature Algorithm
SHA-224

Public Infrastructure Certificate CSNDPIC OFF

X'0078' PIC Signature Algorithm
SHA-256

Public Infrastructure Certificate CSNDPIC OFF

X'0079' PIC Signature Algorithm
SHA-384

Public Infrastructure Certificate CSNDPIC OFF

X'007A' PIC Signature Algorithm
SHA-512

Public Infrastructure Certificate CSNDPIC OFF

X'007B' Create x509 certificate Public Infrastructure Certificate CSNDPIC OFF

X'007C' Public Infrastructure
Certificate - PK10SNRQ

Public Infrastructure Certificate CSNDPIC ON

X'008A' MDC Generate MDC Generate CSNBMDG OFF R

X'008C' Key Generate - Key set Key Generate2 CSNBKGN ON O

X'008E' Key Generate - OP Key Generate2

Random Number Generate
CSNBKGN
CSNBRNG

ON R

X'0090' Symmetric Key Token Change -
RTCMK

Key Token Change CSNBKTC ON R

X'00A0' Clear PIN Generate - 3624 Clear PIN Generate CSNBPGN ON O

X'00A1' Clear PIN Generate - GBP Clear PIN Generate CSNBPGN ON O

X'00A2' Clear PIN Generate - VISA PVV Clear PIN Generate CSNBPGN ON O

X'00A3' Clear PIN Generate - Interbank Clear PIN Generate CSNBPGN ON O

X'00A4' Clear PIN Generate Alternate -
3624 Offset

Clear PIN Generate Alternate1 CSNBCPA ON O

X'00AB' Encrypted PIN Verify - 3624 Encrypted PIN Verify1 CSNBPVR ON O

X'00AC' Encrypted PIN Verify - GBP Encrypted PIN Verify1 CSNBPVR ON O

X'00AD' Encrypted PIN Verify - VISA
PVV

Encrypted PIN Verify1 CSNBPVR ON O

X'00AE' Encrypted PIN Verify -
Interbank

Encrypted PIN Verify1 CSNBPVR ON O

X'00AF' Clear PIN Encrypt Clear PIN Encrypt CSNBCPE ON O

X'00B0' Encrypted PIN Generate - 3624 Encrypted PIN Generate1 CSNBEPG ON O

X'00B1' Encrypted PIN Generate - GBP Encrypted PIN Generate1 CSNBEPG ON O

X'00B2' Encrypted PIN Generate -
Interbank

Encrypted PIN Generate1 CSNBEPG ON O

X'00B3' Encrypted PIN Translate -
Translate

Encrypted PIN Translate1 CSNBPTR ON O

X'00B7' Encrypted PIN Translate -
Reformat

Encrypted PIN Translate1 CSNBPTR ON O

X'00BB' Clear PIN Generate Alternate -
VISA PVV

Clear PIN Generate Alternate1 CSNBCPA ON O

1052 Common Cryptographic Architecture Application Programmer's Guide

||
|
||||

||||||

||
|
||||

||
|
||||

||
|
||||

||
|
||||

||||||

||
|
||||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'00BC' PIN Change/Unblock - change
EMV PIN with OPINENC

PIN Change/Unblock1 CSNBPCU ON O

X'00BD' PIN Change/Unblock - change
EMV PIN with IPINENC

PIN Change/Unblock1 CSNBPCU ON O

X'00C3' Clear Key Import/Multiple
Clear Key Import - DES

Clear Key Import
Multiple Clear Key Import

CSNBCKI
CSNBCKM

ON SC

X'00C4' Secure Key Import - DES, OP Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'00CD' Prohibit Export Prohibit Export CSNBPEX ON O

X'00D6' Control Vector Translate Control Vector Translate CSNBCVT ON SC

X'00D7' Key Generate - Key set
extended

Key Generate2 CSNBKGN ON SC, SUP

X'00DA' Cryptographic Variable
Encipher

Cryptographic Variable Encipher CSNBCVE ON NRP, O,
SUP

X'00DB' Key Generate - SINGLE-R Key Generate2

Remote Key Export2
CSNBKGN
CSNDRKX

ON NR, SC

X'00DC' Secure Key Import - DES, IM Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'00DF' VISA CVV Generate CVV Generate CSNBCSG ON O

X'00E0' VISA CVV Verify CVV Verify CSNBCSV ON O

X'00E1' UKPT - PIN Verify_ PIN
Translate

Encrypted PIN Translate1

Encrypted PIN Verify1
CSNBPTR
CSNBPVR

ON O

X'00E4' HMAC Generate - SHA-1 HMAC Generate CSNBHMG ON O

X'00E5' HMAC Generate - SHA-224 HMAC Generate CSNBHMG ON O

X'00E6' HMAC Generate - SHA-256 HMAC Generate CSNBHMG ON O

X'00E7' HMAC Generate - SHA-384 HMAC Generate CSNBHMG ON O

X'00E8' HMAC Generate - SHA-512 HMAC Generate CSNBHMG ON O

X'00E9' Restrict Key Attribute -
Export Control

Restrict Key Attribute CSNBRKA ON O

X'00EA' Key Generate2 - OP Key Generate2 CSNBKGN2 ON O

X'00EB' Key Generate2 - Key set Key Generate2 CSNBKGN2 ON O

X'00EC' Key Generate2 - Key set
extended

Key Generate2 CSNBKGN2 ON O

X'00F1' Symmetric Key Token Change2 -
RTCMK

Key Token Change2 CSNBKTC2 ON O

X'00F2' Secure Key Import2 - OP Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'00F3' Secure Key Import2 - IM Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

Chapter 24. Access control points and verbs 1053

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'00F4' Symmetric Key Import2 - HMAC,
PKCSOAEP2

Symmetric Key Import2 CSNDSYI2 ON O

X'00F5' Symmetric Key Export - HMAC,
PKCSOAEP2

Symmetric Key Export CSNDSYX ON O

X'00F7' HMAC Verify - SHA-1 HMAC Verify CSNBHMV ON O

X'00F8' HMAC Verify - SHA-224 HMAC Verify CSNBHMV ON O

X'00F9' HMAC Verify - SHA-256 HMAC Verify CSNBHMV ON O

X'00FA' HMAC Verify - SHA-384 HMAC Verify CSNBHMV ON O

X'00FB' HMAC Verify - SHA-512 HMAC Verify CSNBHMV ON O

X'00FC' Symmetric Key Export - AES,
PKOAEP2

Symmetric Key Export1 CSNDSYX ON O

X'00FD' Symmetric Key Import2 -
AES,PKOAEP2

Symmetric Key Import21 CSNDSYI2 ON O

X'00FE' PKA Key Translate - Translate
internal key token

PKA Key Translate CSNDPKT ON O

X'00FF' PKA Key Translate - Translate
external key token

PKA Key Translate CSNDPKT ON O

X'0100' Digital Signature Generate Digital Signature Generate CSNDDSG ON O, SC

X'0101' Digital Signature Verify Digital Signature Verify CSNDDSV ON O

X'0102' PKA Key Token Change RTCMK PKA Key Token Change CSNDKTC ON O

X'0103' PKA Key Generate PKA Key Generate1 CSNDPKG ON O, SUP

X'0104' PKA Key Import PKA Key Import CSNDPKI ON O, SUP

X'0105' Symmetric Key Export - DES,
PKCS-1.2

Symmetric Key Export CSNDSYX ON SC

X'0106' Symmetric Key Import - DES,
PKCS-1.2

Symmetric Key Import1 CSNDSYI ON O

X'0109' Data Key Import Data Key Import CSNBDKM ON O

X'010A' Data Key Export Data Key Export CSNBDKX ON O

X'010B' SET Block Compose Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'010C' SET Block Decompose Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'010D' Symmetric Key Generate - DES,
PKA92

Symmetric Key Generate1 CSNDSYG ON SC

X'011E' PKA Encrypt PKA Encrypt CSNDPKE ON O, SEL

X'011F' PKA Decrypt PKA Decrypt CSNDPKD ON SC, SEL

X'0121' SET Block Decompose - PIN
Extension IPINENC

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON O

X'0129' Multiple Clear Key
Import/Multiple Secure Key
Import - AES

Multiple Clear Key Import CSNBCKM ON SC

1054 Common Cryptographic Architecture Application Programmer's Guide

||
|
|
|
|

||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'012A' Symmetric Algorithm Encipher -
secure AES keys

Symmetric Algorithm Encipher1 CSNBSAE ON O

X'012B' Symmetric Algorithm Decipher -
secure AES keys

Symmetric Algorithm Decipher1 CSNBSAD ON O

X'012C' Symmetric Key Generate - AES,
PKCSOAEP, PKCS-1.2

Symmetric Key Generate CSNDSYG ON SC

X'012D' Symmetric Key Generate - AES,
ZERO-PAD

Symmetric Key Generate CSNDSYG ON SC

X'012E' Symmetric Key Import - AES,
PKCSOAEP, PKCS-1.2

Symmetric Key Import CSNDSYI ON O

X'012F' Symmetric Key Import - AES,
ZERO-PAD

Symmetric Key Import CSNDSYI ON O

X'0130' Symmetric Key Export - AES,
PKCSOAEP. PKCS-1.2

Symmetric Key Export CSNDSYX ON SC

X'0131' Symmetric Key Export - AES,
ZERO-PAD

Symmetric Key Export CSNDSYX ON SC

X'013D' Diversified Key Generate -
Allow wrapping override
keywords

Diversified Key Generate CSNBDKG ON O

X'013E' Symmetric Key Generate - Allow
wrapping override keywords

Symmetric Key Generate CSNDSYG ON O

X'013F' Remote Key Export - include
RKX in default wrap config

Remote Key Export CSNDRKX ON SC

X'0140' Key Part Import - Allow
wrapping override keywords

Key Part Import CSNBKPI ON O

X'0141' Multiple Clear Key Import -
Allow wrapping override
keywords

Multiple Clear Key Import CSNBCKM ON O

X'0142' Multiple Secure Key Import -
Allow wrapping override
keywords

This ACP is for verbs CSNBSKI / CSNBSKM but
these are not supported on Linux on Z, but are
supported on z/OS.

ON O

X'0144' Symmetric Key Import - Allow
wrapping override keywords

Symmetric Key Import CSNDSYI ON O

X'0149' Key Translate2 Key Translate2 CSNBKTR2 ON O

X'014A' Key Translate2 - Allow
wrapping override keywords

Key Translate2 CSNBKTR2 ON O

X'014D' TR31 Export - Permit version A
TR-31 key blocks

Key Export to TR311 CSNBT31X ON O

X'014E' TR31 Export - Permit version B
TR-31 key blocks

Key Export to TR311 CSNBT31X ON O

X'014F' TR31 Export - Permit version C
TR-31 key blocks

Key Export to TR311 CSNBT31X ON O

X'0150' TR31 Import - Permit version A
TR-31 key blocks

TR31 Key Import1 CSNBT31I ON O

X'0151' TR31 Import - Permit version B
TR-31 key blocks

TR31 Key Import1 CSNBT31I ON O

Chapter 24. Access control points and verbs 1055

||
|
|

|
|
|

||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0152' TR31 Import - Permit version C
TR-31 key blocks

TR31 Key Import1 CSNBT31I ON O

X'0153' TR31 Import - Permit override
of default wrapping method

TR31 Key Import1 CSNBT31I ON O, SC

X'0154' Restrict Key Attribute -
Permit setting the TR-31
export bit

Restrict Key Attribute1 CSNBRKA ON O

X'0155' CVV Key Combine CVV Key Combine CSNBCKC ON O

X'0156' CVV Key Combine - Allow
wrapping override keywords

CVV Key Combine1 CSNBCKC ON O, SC

X'0157' CVV Key Combine - Permit mixed
key types

CVV Key Combine1 CSNBCKC ON O, SC

X'0158' TR31 Export - Permit any CCA
key if INCL-CV is specified

Key Export to TR311 CSNBT31X ON O, SC

X'015A' TR31 Import - Permit C0 to
MAC/MACVER:CVVKEY-A

TR31 Key Import1 CSNBT31I OFF O, SC

X'015B' TR31 Import - Permit C0 to
MAC/MACVER:AMEX-CSC

TR31 Key Import1 CSNBT31I OFF O, SC

X'015C' TR31 Import - Permit K0:E to
EXPORTER/OKEYXLAT

TR31 Key Import1 CSNBT31I OFF O, SC

X'015D' TR31 Import - Permit K0:D to
IMPORTER/IKEYXLAT

TR31 Key Import1 CSNBT31I OFF O

X'015E' TR31 Import - Permit K0:B to
EXPORTER/OKEYXLAT

TR31 Key Import1 CSNBT31I OFF O

X'015F' TR31 Import - Permit K0:B to
IMPORTER/IKEYXLAT

TR31 Key Import1 CSNBT31I OFF O

X'0160' TR31 Import - Permit K1:E to
EXPORTER/OKEYXLAT

TR31 Key Import1 CSNBT31I OFF O

X'0161' TR31 Import - Permit K1:D to
IMPORTER/IKEYXLAT

TR31 Key Import1 CSNBT31I OFF O

X'0162' TR31 Import - Permit K1:B to
EXPORTER/OKEYXLAT

TR31 Key Import1 CSNBT31I OFF O

X'0163' TR31 Import - Permit K1:B to
IMPORTER/IKEYXLAT

TR31 Key Import1 CSNBT31I OFF O

X'0164' TR31 Import - Permit M0/M1/M3
to MAC/MACVER:ANY-MAC

TR31 Key Import1 CSNBT31I ON O

X'0165' TR31 Import - Permit P0:E to
OPINENC

TR31 Key Import1 CSNBT31I ON O

X'0166' TR31 Import - Permit P0:D to
IPINENC

TR31 Key Import1 CSNBT31I ON O

X'0167' TR31 Import - Permit V0 to
PINGEN:NO-SPEC

TR31 Key Import1 CSNBT31I OFF O

X'0168' TR31 Import - Permit V0 to
PINVER:NO-SPEC

TR31 Key Import1 CSNBT31I OFF O

X'0169' TR31 Import - Permit V1 to
PINGEN:IBM-PIN/IBM-PINO

TR31 Key Import1 CSNBT31I ON O

1056 Common Cryptographic Architecture Application Programmer's Guide

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'016A' TR31 Import - Permit V1 to
PINVER:IBM-PIN/IBM-PINO

TR31 Key Import1 CSNBT31I ON O

X'016B' TR31 Import - Permit V2 to
PINGEN:VISA-PVV

TR31 Key Import1 CSNBT31I ON O

X'016C' TR31 Import - Permit V2 to
PINVER:VISA-PVV

TR31 Key Import1 CSNBT31I ON O

X'016D' TR31 Import - Permit E0 to
DKYGENKY:DKYL0+DMAC

TR31 Key Import1 CSNBT31I OFF O

X'016E' TR31 Import - Permit E0 to
DKYGENKY:DKYL0+DMV

TR31 Key Import1 CSNBT31I OFF O

X'016F' TR31 Import - Permit E0 to
DKYGENKY:DKYL1+DMAC

TR31 Key Import1 CSNBT31I OFF O

X'0170' TR31 Import - Permit E0 to
DKYGENKY:DKYL1+DMV

TR31 Key Import1 CSNBT31I OFF O

X'0171' TR31 Import - Permit E1 to
DKYGENKY:DKYL0+DMPIN

TR31 Key Import1 CSNBT31I OFF O

X'0172' TR31 Import - Permit E1 to
DKYGENKY:DKYL0+DDATA

TR31 Key Import1 CSNBT31I OFF O

X'0173' TR31 Import - Permit E1 to
DKYGENKY:DKYL1+DMPIN

TR31 Key Import1 CSNBT31I OFF O

X'0174' TR31 Import - Permit E1 to
DKYGENKY:DKYL1+DDATA

TR31 Key Import1 CSNBT31I OFF O

X'0175' TR31 Import - Permit E2 to
DKYGENKY:DKYL0+DMAC

TR31 Key Import1 CSNBT31I OFF O

X'0176' TR31 Import - Permit E2 to
DKYGENKY:DKYL1+DMAC

TR31 Key Import1 CSNBT31I OFF O

X'0177' TR31 Import - Permit E3 to
ENCIPHER

TR31 Key Import1 CSNBT31I OFF O

X'0178' TR31 Import - Permit E4 to
DKYGENKY:DKYL0+DDATA

TR31 Key Import1 CSNBT31I ON O

X'0179' TR31 Import - Permit E5 to
DKYGENKY:DKYL0+DMAC

TR31 Key Import1 CSNBT31I OFF O

X'017A' TR31 Import - Permit E5 to
DKYGENKY:DKYL0+DDATA

TR31 Key Import1 CSNBT31I OFF O

X'017B' TR31 Import - Permit E5 to
DKYGENKY:DKYL0+DEXP

TR31 Key Import1 CSNBT31I OFF O

X'017C' TR31 Import - Permit
V0/V1/V2:N to PINGEN/PINVER

TR31 Key Import1 CSNBT31I OFF O, SC

X'0180' TR31 Export - Permit
KEYGENKY:UKPT to B0

Key Export to TR311 CSNBT31X ON O

X'0181' TR31 Export - Permit
MAC/MACVER:AMEX-CSC to
C0:G/C/V

Key Export to TR311 CSNBT31X OFF O

X'0182' TR31 Export - Permit
MAC/MACVER:CVV-KEYA to
C0:G/C/V

Key Export to TR311 CSNBT31X OFF O

Chapter 24. Access control points and verbs 1057

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0183' TR31 Export - Permit
MAC/MACVER:ANY-MAC to C0:G/C/V

Key Export to TR311 CSNBT31X ON O

X'0184' TR31 Export - Permit DATA to
C0:G/C

Key Export to TR311 CSNBT31X ON O

X'0185' TR31 Export - Permit
ENCIPHER/DECIPHER/CIPHER to
D0:E/D/B

Key Export to TR311 CSNBT31X ON O

X'0186' TR31 Export - Permit DATA to
D0:B

Key Export to TR311 CSNBT31X ON O

X'0187' TR31 Export - Permit
EXPORTER/OKEYXLAT to K0:E

Key Export to TR311 CSNBT31X OFF O

X'0188' TR31 Export - Permit
IMPORTER/IKEYXLAT to K0:D

Key Export to TR311 CSNBT31X OFF O

X'0189' TR31 Export - Permit
EXPORTER/OKEYXLAT to K1:E

Key Export to TR311 CSNBT31X OFF O

X'018A' TR31 Export - Permit
IMPORTER/IKEYXLAT to K1:D

Key Export to TR311 CSNBT31X OFF O

X'018B' TR31 Export - Permit
MAC/DATA/DATAM to M0:G/C

Key Export to TR311 CSNBT31X OFF O

X'018C' TR31 Export - Permit
MACVER/DATAMV to M0:V

Key Export to TR311 CSNBT31X ON O

X'018D' TR31 Export - Permit
MAC/DATA/DATAM to M1:G/C

Key Export to TR311 CSNBT31X ON O

X'018E' TR31 Export - Permit
MACVER/DATAMV to M1:V

Key Export to TR311 CSNBT31X ON O

X'018F' TR31 Export - Permit
MAC/DATA/DATAM to M3:G/C

Key Export to TR311 CSNBT31X ON O

X'0190' TR31 Export - Permit
MACVER/DATAMV to M3:V

Key Export to TR311 CSNBT31X ON O

X'0191' TR31 Export - Permit OPINENC
to P0:E

Key Export to TR311 CSNBT31X ON O

X'0192' TR31 Export - Permit IPINENC
to P0:D

Key Export to TR311 CSNBT31X ON O

X'0193' TR31 Export - Permit
PINVER:NO-SPEC to V0

Key Export to TR311 CSNBT31X OFF O

X'0194' TR31 Export - Permit
PINGEN:NO-SPEC to V0

Key Export to TR311 CSNBT31X OFF O

X'0195' TR31 Export - Permit
PINVER:NO-SPEC/IBM-PIN/IBM-
PINO to V1

Key Export to TR311 CSNBT31X ON O

X'0196' TR31 Export - Permit
PINGEN:NO-SPEC/IBM-PIN/IBM-
PINO to V1

Key Export to TR311 CSNBT31X ON O

X'0197' TR31 Export - Permit
PINVER:NO-SPEC/VISA-PVV to V2

Key Export to TR311 CSNBT31X ON O

1058 Common Cryptographic Architecture Application Programmer's Guide

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0198' TR31 Export - Permit
PINGEN:NO-SPEC/VISA-PVV to V2

Key Export to TR311 CSNBT31X ON O

X'0199' TR31 Export - Permit
DKYGENKY:DKYL0+DMAC to E0

Key Export to TR311 CSNBT31X OFF O

X'019A' TR31 Export - Permit
DKYGENKY:DKYL0+DMV to E0

Key Export to TR311 CSNBT31X OFF O

X'019B' TR31 Export - Permit
DKYGENKY:DKYL0+DALL to E0

Key Export to TR311 CSNBT31X OFF O

X'019C' TR31 Export - Permit
DKYGENKY:DKYL1+DMAC to E0

Key Export to TR311 CSNBT31X OFF O

X'019D' TR31 Export - Permit
DKYGENKY:DKYL1+DMV to E0

Key Export to TR311 CSNBT31X OFF O

X'019E' TR31 Export - Permit
DKYGENKY:DKYL1+DALL to E0

Key Export to TR311 CSNBT31X OFF O

X'019F' TR31 Export - Permit
DKYGENKY:DKYL0+DDATA to E1

Key Export to TR311 CSNBT31X OFF O

X'01A0' TR31 Export - Permit
DKYGENKY:DKYL0+DMPIN to E1

Key Export to TR311 CSNBT31X OFF O

X'01A1' TR31 Export - Permit
DKYGENKY:DKYL0+DALL to E1

Key Export to TR311 CSNBT31X OFF O

X'01A2' TR31 Export - Permit
DKYGENKY:DKYL1+DDATA to E1

Key Export to TR311 CSNBT31X OFF O

X'01A3' TR31 Export - Permit
DKYGENKY:DKYL1+DMPIN to E1

Key Export to TR311 CSNBT31X OFF O

X'01A4' TR31 Export - Permit
DKYGENKY:DKYL1+DALL to E1

Key Export to TR311 CSNBT31X OFF O

X'01A5' TR31 Export - Permit
DKYGENKY:DKYL0+DMAC to E2

Key Export to TR311 CSNBT31X OFF O

X'01A6' TR31 Export - Permit
DKYGENKY:DKYL0+DALL to E2

Key Export to TR311 CSNBT31X OFF O

X'01A7' TR31 Export - Permit
DKYGENKY:DKYL1+DMAC to E2

Key Export to TR311 CSNBT31X OFF O

X'01A8' TR31 Export - Permit
DKYGENKY:DKYL1+DALL to E2

Key Export to TR311 CSNBT31X OFF O

X'01A9' TR31 Export - Permit
DATA/MAC/CIPHER/ENCIPHER to E3

Key Export to TR311 CSNBT31X OFF O

X'01AA' TR31 Export - Permit
DKYGENKY:DKYL0+DDATA to E4

Key Export to TR311 CSNBT31X ON O

X'01AB' TR31 Export - Permit
DKYGENKY:DKYL0+DALL to E4

Key Export to TR311 CSNBT31X ON O

X'01AC' TR31 Export - Permit
DKYGENKY:DKYL0+DEXP to E5

Key Export to TR311 CSNBT31X OFF O

X'01AD' TR31 Export - Permit
DKYGENKY:DKYL0+DMAC to E5

Key Export to TR311 CSNBT31X OFF O

X'01AE' TR31 Export - Permit
DKYGENKY:DKYL0+DDATA to E5

Key Export to TR311 CSNBT31X OFF O

Chapter 24. Access control points and verbs 1059

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'01AF' TR31 Export - Permit
DKYGENKY:DKYL0+DALL to E5

Key Export to TR311 CSNBT31X ON O

X'01B0' TR31 Export - Permit
PINGEN/PINVER to V0/V1/V2:N

Key Export to TR311 CSNBT31X OFF O, SC

X'01B1' Public Infrastructure
Management

Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01B2' PIM: Load Root Certificate Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01B3' PIM: Activate Root Certificate Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01B4' PIM: Renew Certificate Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01B5' Change Certificate Label Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01B6' Delete Certificate Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01B7' Signature Algorithm SHA+RSA Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01B8' Signature Algorithm ECDSA Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01B9' Signature Algorithm RSASSA_PSS Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

1060 Common Cryptographic Architecture Application Programmer's Guide

||
|
||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'01BA' Signature Algorithm SHA-1 Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01BB' Signature Algorithm SHA-224 Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01BC' Signature Algorithm SHA-256 Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01BD' Signature Algorithm SHA-384 Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01BE' Signature Algorithm SHA-512 Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01BF' Load Sub-CA Certificate Public Infrastructure Manage CSNDPIM
Note: This
ACP is
required for a
TKE service.

ON O

X'01C0' Cipher Text Translate2 Cipher Text Translate2 CSNBCTT2 ON O

X'01C1' Cipher Text Translate2 - Allow
translate from AES to TDES

Cipher Text Translate2 CSNBCTT2 ON SC

X'01C2' Cipher Text Translate2 - Allow
translate to weaker AES

Cipher Text Translate2 CSNBCTT2 ON SC

X'01C3' Cipher Text Translate2 - Allow
translate to weaker DES

Cipher Text Translate2 CSNBCTT2 ON SC

X'01C4' Cipher Text Translate2 - Allow
only cipher text translate
types

Cipher Text Translate2 CSNBCTT2 OFF O

X'01C8' Unique Key Derive Unique Key Derive CSNBUKD ON O

X'01C9' Unique Key Derive - Allow
PIN-DATA processing

Unique Key Derive CSNBUKD OFF NR

X'01CA' Unique Key Derive - Override
default wrapping

Unique Key Derive CSNBUKD ON O

X'01CB' Key Test - Warn when keyword
inconsistent with key length

Key Test Extended CSNBKYTX OFF O

X'01CC' Access Control Tracking -
Enable

Access Control Tracking CSUAACT OFF O

Chapter 24. Access control points and verbs 1061

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

||||
|
|
|
|

||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'01CD' Symmetric Algorithm Encipher -
AES GCM

Symmetric Algorithm Encipher CSNBSAE ON O

X'01CE' Symmetric Algorithm Decipher -
AES GCM

Symmetric Algorithm Decipher CSNBSAD ON O

X'0203' Retained Key Delete Retained Key Delete CSNDRKD ON O, SEL

X'0204' PKA Key Generate - Clone PKA Key Generate1 CSNDPKG ON O

X'0205' PKA Key Generate - Clear PKA Key Generate1 CSNDPKG ON O, SUP

X'0206' PKA Encipher - Clear Key
Disallow PKCS-1.2

PKA Encrypt CSNDPKE ON O

X'0207' PKA Encipher - Clear Key
Disallow ZERO-PAD

PKA Encrypt CSNDPKE ON O

X'0208' PKA Encipher - Clear Key
Disallow MRP

PKA Encrypt CSNDPKE ON O

X'0209' PKA Encipher - Clear Key
Disallow PKCSOAEP

PKA Encrypt CSNDPKE ON O

X'020A' PKA Decipher - Key Data
Disallow PKCS-1.2

PKA Decrypt CSNDPKD ON O

X'020B' PKA Decipher - Key Data
Disallow ZERO-PAD

PKA Decrypt CSNDPKD ON O

X'020C' PKA Decipher - Key Data
Disallow PKCSOAEP

PKA Decrypt CSNDPKD ON O

X'0230' Retained Key List Retained Key List CSNDRKL ON O

X'0235' Symmetric Key Import - DES,
PKA92 KEK

Symmetric Key Import1 CSNDSYI ON O

X'023C' Symmetric Key Generate - DES,
ZERO-PAD

Symmetric Key Generate1 CSNDSYG ON O, SC

X'023D' Symmetric Key Import - DES,
ZERO-PAD

Symmetric Key Import1 CSNDSYI ON O, SC

X'023E' Symmetric Key Export - DES,
ZERO-PAD

Symmetric Key Export1 CSNDSYX ON O, SC

X'023F' Symmetric Key Generate - DES,
PKCS-1.2

Symmetric Key Generate1 CSNDSYG ON O, SC

X'0261' TKE Authorization for domain 0 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0262' TKE Authorization for domain 1 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0263' TKE Authorization for domain 2 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0264' TKE Authorization for domain 3 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

1062 Common Cryptographic Architecture Application Programmer's Guide

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0265' TKE Authorization for domain 4 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0266' TKE Authorization for domain 5 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0267' TKE Authorization for domain 6 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0268' TKE Authorization for domain 7 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0269' TKE Authorization for domain 8 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'026A' TKE Authorization for domain 9 Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'026B' TKE Authorization for domain
10

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'026C' TKE Authorization for domain
11

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'026D' TKE Authorization for domain
12

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'026E' TKE Authorization for domain
13

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'026F' TKE Authorization for domain
14

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0270' TKE Authorization for domain
15

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0273' Secure Messaging for Keys Secure Messaging for Keys CSNBSKY ON O

X'0274' Secure Messaging for PINs Secure Messaging for PINs CSNBSPN ON O

X'0275' DATAM Key Management Control Diversified Key Generate
Data Key Import
Data Key Export
Key Export
Key Generate
Key Import

CSNBDKG
CSNBDKM
CSNBDKX
CSNBKEX
CSNBKGN
CSNBKIM

ON O

X'0276' Key Export - Unrestricted Key Export CSNBKEX ON O, SC

X'0277' Data Key Export - Unrestricted Data Key Export CSNBDKX ON O, SC

X'0278' Key Part Import - ADD-PART Key Part Import1 CSNBKPI ON SC, SEL

Chapter 24. Access control points and verbs 1063

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0279' Key Part Import - COMPLETE Key Part Import1 CSNBKPI ON SC, SEL

X'027A' Key Part Import - Unrestricted Key Part Import CSNBKPI ON O, SC

X'027B' Key Import - Unrestricted Key Import CSNBKIM ON O, SC

X'027C' Data Key Import - Unrestricted Data Key Import CSNBDKM ON O, SC

X'027D' PKA Key Generate - Permit
Regeneration Data

PKA Key Generate1 CSNDPKG ON O, NRP,
SC

X'027E' PKA Key Generate - Permit
Regeneration Data Retain

PKA Key Generate1 CSNDPKG ON O, NRP,
SC

X'0290' Diversified Key Generate -
DKYGENKY - DALL

Diversified Key Generate2

PIN Change/Unblock2
CSNBDKG
CSNBPCU

OFF O, SC

X'0291' Transaction Validation -
Generate

Transaction Validation1 CSNBTRV ON O, SEL

X'0292' Transaction Validation -
Verify CSC-3

Transaction Validation1 CSNBTRV ON O

X'0293' Transaction Validation -
Verify CSC-4

Transaction Validation1 CSNBTRV ON O

X'0294' Transaction Validation -
Verify CSC-5

Transaction Validation1 CSNBTRV ON O

X'0295' High-performance secure DES
keys

Enables CPACF key translation for
DES keys.

N/A ON O

X'0296' High-performance secure AES
keys

Enables CPACF key translation for
AES keys.

N/A ON O

X'0297' Key Part Import2 - Load first
key part, require 3 key parts

Key Part Import2 CSNBKPI2 ON O

X'0298' Key Part Import2 - Load first
key part, require 2 key parts

Key Part Import2 CSNBKPI2 ON O

X'0299' Key Part Import2 - Load first
key part, require 1 key parts

Key Part Import2 CSNBKPI2 ON O

X'029A' Key Part Import2 - Add second
of 3 or more key parts

Key Part Import2 CSNBKPI2 ON O

X'029B' Key Part Import2 - Add last
required key part

Key Part Import2 CSNBKPI2 ON O

X'029C' Key Part Import2 - Add
optional key part

Key Part Import2 CSNBKPI2 ON O

X'029D' Key Part Import2 - Complete
key

Key Part Import2 CSNBKPI2 ON SEL

X'029E' Operational Key Load -
Variable-Length Tokens

Key Part Import2 CSNBKPI2 ON O

X'02B0' Recover PIN from Offset Recover PIN from Offset CSNBPFO ON O

X'02B1' Authentication Parameter
Generate

Authentication Parameter Generate CSNBAPG ON O

X'02B2' Authentication Parameter
Generate - Clear

Authentication Parameter Generate1 CSNBAPG ON O

X'02B3' Symmetric Key Export - AESKWCV Symmetric Key Export CSNDSYX ON O

1064 Common Cryptographic Architecture Application Programmer's Guide

||
|
|
|
|||

|

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'02B4' Symmetric Key Import2 -
AESKWCV

Symmetric Key Import2 CSNDSYI2 ON O

X'02B5' Symmetric Key Export with Data Symmetric Key Export with Data CSNDSXD ON O

X'02B6' Symmetric Key Export with Data
- Special

Symmetric Key Export with Data CSNDSXD ON O

X'02B8' Diversified Key Generate -
TDES-CBC

Diversified Key Generate CSNBDKG2 ON O

X'02B9' Symmetric Key Import2 - Allow
wrapping override keywords

Symmetric Key Import21 CSNDSYI2 ON O

X'02BA' Remote Key Export - Allow
wrapping override keywords

Remote Key Export1 CSNDRKX ON O

X'02BB' Key Generate2 - DK PIN key set Key Generate21 CSNBKGN2 ON O

X'02BC' Key Generate2 - DK PIN print
key

Key Generate21 CSNBKGN2 ON O

X'02BD' Key Generate2 - DK PIN admin1
key set PINPROT

Key Generate21 CSNBKGN2 ON O

X'02BE' Key Generate2 - DK PIN admin1
key set MAC

Key Generate21 CSNBKGN2 ON O

X'02BF' Key Generate2 - DK PIN admin2
key set MAC

Key Generate21 CSNBKGN2 ON O

X'02C0' DK Random PIN Generate DK Random PIN Generate CSNBDRPG ON O

X'02C1' DK PIN Verify DK PIN Verify CSNBDPV ON O

X'02C2' DK PIN Change DK PIN Change CSNBDPC ON O

X'02C3' DK PRW Card Number Update DK PRW Card Number Update CSNBDPNU ON O

X'02C4' DK PRW CMAC Generate DK PRW CMAC Generate CSNBDPCG ON O

X'02C5' DK PAN Modify in Transaction DK PAN Modify in Transaction CSNBDPMT ON O

X'02C6' DK Deterministic PIN Generate DK Deterministic PIN Generate CSNBDDPG ON O

X'02C7' DK PAN Translate DK PAN Translate CSNBDPT ON O

X'02C8' DK Regenerate PRW DK Regenerate PRW CSNBDRP ON O

X'02CC' Diversified Key Generate2 -
AES EMV1 SESS

Diversified Key Generate21 CSNBDKG2 ON O

X'02CD' Diversified Key Generate2 -
DALL

Diversified Key Generate21 CSNBDKG2 ON O

X'02CE' DK Migrate PIN DK Migrate PIN CSNBDMP ON O

X'02CF' FPE Encrypt FPE Encipher CSNBFPEE ON ID, R

X'02D0' FPE Decrypt FPE Decipher CSNBFPED ON ID, R

X'02D1' FPE Translate FPE Translate CSNBFPET ON ID, R

X'02D2' Diversified Key Generate2 -
MK-OPTC

Diversified Key Generate2 CSNBDKG2

X'02D3' Diversified Key Generate2 -
KDFFM-DK

Diversified Key Generate2 CSNBDKG2

X'02D4' Diversified Key Generate2 -
KDFFM-DK

Diversified Key Generate2 CSNBDKG2

Chapter 24. Access control points and verbs 1065

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'02D5' Encrypted PIN Translate
Enhanced

Encrypted PIN Translate Enhanced CSNBPTRE

X'02D6' DM load role Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF

X'02D7' DM load profile Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF

X'02D8' DM load role cos Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF

X'02D9' DM load profile cos Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF

X'02DA' DM delete role Access Control Maintenance
Note: This ACP is required for a
TKE service.

CSUAACM OFF

X'02DB' DM delete profile Access Control Maintenance
Note: This ACP is required for a
TKE service.

CSUAACM OFF

X'02DC' DM delete role cos Access Control Maintenance
Note: This ACP is required for a
TKE service.

CSUAACM OFF

X'02DD' DM delete profile cos Access Control Maintenance
Note: This ACP is required for a
TKE service.

CSUAACM OFF

X'02E0' CFC:COMPIMPR Note: This ACP is included for TKE reference
only.

OFF

X'02E1' CFC:COMPIMPR cos Note: This ACP is included for TKE reference
only.

OFF

X'02E2' CFC:COMP-SET Note: This ACP is included for TKE reference
only.

OFF

X'02E3' CFC:COMP-SET cos Note: This ACP is included for TKE reference
only.

OFF

X'02E4' CFC:COMP-RMV Note: This ACP is included for TKE reference
only.

OFF

X'02E5' CFC:COMP-RMV cos Note: This ACP is included for TKE reference
only.

OFF

X'02E6' CFC:COMP-RMV imprint mode Note: This ACP is included for TKE reference
only.

OFF

X'02E7' CFC:COMPMIGB Note: This ACP is included for TKE reference
only.

OFF

X'02E8' CFC:COMPMIGB cos Note: This ACP is included for TKE reference
only.

OFF

X'02E9' CFC:COMPMIGE Note: This ACP is included for TKE reference
only.

OFF

1066 Common Cryptographic Architecture Application Programmer's Guide

|||
|
|

||

|||
|
|

||

|||
|
|

||

|||
|
|

||

|||
|
|

|||

|||
|
|

|||

|||
|
|

|||

|||
|
|

|||

|||
|
||

|||
|
||

|||
|
||

|||
|
||

|||
|
||

|||
|
||

|||
|
||

|||
|
||

|||
|
||

|||
|
||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'02EA' CFC:COMPMIGE cos Note: This ACP is included for TKE reference
only.

OFF

X'02EB' IGN_EFF_MK (Allow weak
wrapping of compliance-tagged
keys by DES MK)

All callable services that use PCI-HSM 2016
compliant-tagged DES key tokens.

OFF

X'02EC' IGN_RKA_DATAXMAC Reserved for future use. OFF

X'02ED' CMD_RKA_DATAXCIP Reserved for future use. OFF

X'02EE' CMD_PKT_INTUSCHG Reserved for future use. OFF

X'02EF' CMD_PKT_EXTUSCHG Reserved for future use. OFF

X'02F0' PUB_X_MACDPUB Reserved for future use. OFF

X'02F1' RSAPRV_X_MACDPUB Reserved for future use. OFF

X'02F2' ECCPRV_X_MACDPUB Reserved for future use. OFF

X'02F3' X509_X_MACDPUB Reserved for future use. OFF

X'02F4' ALLOW_SHA1_X509 Multiple services that accept the
X.509 certificates.

OFF

X'02F5' Authenticated Key Export -
SETSNKEY

Note: This ACP is included for TKE reference
only.

ON

X'02F6' Authenticated Key Export -
DRVTXKEY

Note: This ACP is included for TKE reference
only.

ON

X'02F7' Authenticated Key Export -
EXPTSK

Note: This ACP is included for TKE reference
only.

ON

X'02F8' Key Translate2 - COMP-TAG Key Translate2 CSNBKTR2 ON

X'02F9' Key Translate2 - COMP-CHK Key Translate2 CSNBKTR2 ON

X'0300' NOCV KEK usage for
export-related functions

Data Key Export
Key Export
Key Generate
Remote Key Export

CSNBDKX
CSNBKEX
CSNBKGN
CSNDRKX

ON O

X'0301' Prohibit Export Extended Prohibit Export Extended CSNBPEXX ON O

X'0309' Operational Key Load Key Part Import CSNBKPI ON O

X'030A' NOCV KEK usage for
import-related functions

Data Key Import
Key Import
Key Generate
Remote Key Export

CSNBDKM
CSNBKIM
CSNBKGN
CSNDRKX

ON O

X'030C' DSG ZERO-PAD unrestricted hash
length

Digital Signature Generate CSNDDSG OFF O, SC

X'030D' Key Encryption Translate - CBC
to ECB

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON

X'030E' Key Encryption Translate - ECB
to CBC

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

ON

X'030F' Trusted Block Create - Create
Block in inactive form

Trusted Block Create CSNDTBC ON O, SUP

Chapter 24. Access control points and verbs 1067

|||
|
||

||
|
|

|
|
||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

|||
|
|||

||
|
|
|
||

||
|
|
|
||

||
|
|
|
||

||||||

||||||

||
|
|
|
|

||

||
|
|
|
|

||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0310' Trusted Block Create -
Activate an inactive block

Trusted Block Create CSNDTBC ON O, SUP

X'0311' PKA Key Import - Import an
external trusted block

PKA Key Import CSNDPKI ON O, SEL

X'0312' Remote Key Export - Gen or
export a non-CCA node key

Remote Key Export CSNDRKX ON O, SEL

X'0313' Enhanced PIN Security Clear PIN Generate Alternate
Clear PIN Encrypt
Encrypted PIN Generate
Encrypted PIN Translate
Encrypted PIN Verify
PIN Change/Unblock

CSNBCPA
CSNBCPE
CSNBEPG
CSNBPTR
CSNBPVR
CSNBPCU

OFF O, SC,
SEL

X'0318' PKA Key Translate - from CCA
RSA to SC Visa Format

PKA Key Translate CSNDPKT ON O

X'0319' PKA Key Translate - from CCA
RSA to SC ME Format

PKA Key Translate CSNDPKT ON O

X'031A' PKA Key Translate - from CCA
RSA to SC CRT Format

PKA Key Translate CSNDPKT ON O

X'031B' PKA Key Translate - from
source EXP KEK to target EXP
KEK

PKA Key Translate CSNDPKT ON O

X'031C' PKA Key Translate - from
source IMP KEK to target EXP
KEK

PKA Key Translate CSNDPKT ON O

X'031D' PKA Key Translate - from
source IMP KEK to target IMP
KEK

PKA Key Translate CSNDPKT ON O

X'0326' PKA Key Generate - Clear ECC
keys

PKA Key Generate CSNDPKG ON O

X'0327' Symmetric Key Export - AESKW Symmetric Key Export CSNDSYX ON O, R

X'0329' Symmetric Key Import2 - AESKW Symmetric Key Import21 CSNDSYI2 ON O, R

X'032A' Key Translate2 - Disallow AES
ver 5 to ver 4 conversion

Key Translate21 CSNBKTR2 OFF O, R

X'032B' Symmetric Key Import2 -
disallow weak import

Symmetric Key Import21 CSNDSYI2 OFF O, R

X'032E' TBC - Disallow triple-length
MAC key

Trusted Block Create CSNDTBC OFF O

X'0331' Allow weak DES wrap of RSA PKA Key Generate CSNDPKG OFF O, R

X'0334' Key Translate2 - Translate
fixed to variable payload

Key Translate2 CSNBKTR2 ON SC

X'0335' Unique Key Derive - K3IPEK Unique Key Derive CSNBUKD ON SC

X'0336' MAC Generate2 - AES CMAC MAC Generate2 CSNBMGN2 ON O

X'0337' MAC Verify2 - AES CMAC MAC Verify2 CSNBMVR2 ON O

X'0338' PKA Key Translate - from CCA
RSA CRT to EMV DDA format

PKA Key Translate1 CSNDPKT ON O

1068 Common Cryptographic Architecture Application Programmer's Guide

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0339' PKA Key Translate - from CCA
RSA CRT to EMV DDAE format

PKA Key Translate1 CSNDPKT ON O

X'033A' PKA Key Translate - from CCA
RSA CRT to EMV CRT format

PKA Key Translate1 CSNDPKT ON O

X'033B' Digital Signature Verify -
PKCS-PSS allow not exact salt
length

Digital Signature Verify CSNDDSV OFF

X'033C' Digital Signature Verify -
PKCS-PSS allow small salt

Digital Signature Verify CSNDDSV OFF

X'0350' ANSI X9.8 PIN - Enforce PIN
block restrictions

Clear PIN Generate Alternate
Encrypted PIN Translate
Secure Messaging for PINs

CSNBCPA
CSNBPTR
CSNBSPN

OFF O, R

X'0351' ANSI X9.8 PIN - Allow
modification of PAN_01_0350

Encrypted PIN Translate
Secure Messaging for PINs

CSNBPTR
CSNBSPN

OFF O, SC

X'0352' ANSI X9.8 PIN - Allow only
ANSI PIN blocks

Encrypted PIN Translate
Secure Messaging for PINs

CSNBPTR
CSNBSPN

OFF O, SC

X'0353' ANSI X9.8 PIN - Load
Decimalization Tables

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0354' ANSI X9.8 PIN - Delete
Decimalization Tables

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0355' ANSI X9.8 PIN - Activate
Decimalization Tables

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0356' ANSI X9.8 PIN - Use stored
decimmalization tables only

Clear PIN Generate1

Clear PIN Generate Alternate1

Encrypted PIN Generate1

Encrypted PIN Verify1

CSNBPGN
CSNBCPA
CSNBEPG
CSNBPVR

OFF O, R

X'035F' ECC Diffie-Hellman - Allow
DERIV02

EC Diffie-Hellman CSNDEDH ON O

X'0360' ECC Diffie-Hellmann EC Diffie-Hellman1 CSNDEDH ON O

X'0361' EC Diffie-Hellman - Allow
PASSTHRU

EC Diffie-Hellman1 CSNDEDH ON O

X'0362' ECC Diffie-Hellmann - Allow
key wrap override

EC Diffie-Hellman1 CSNDEDH ON O

X'0363' ECC Diffie-Hellmann - Allow
Prime Curve 192

EC Diffie-Hellman1 CSNDEDH ON O

X'0364' ECC Diffie-Hellmann - Allow
Prime Curve 224

EC Diffie-Hellman1 CSNDEDH ON O

X'0365' ECC Diffie-Hellmann - Allow
Prime Curve 256

EC Diffie-Hellman1 CSNDEDH ON O

X'0366' ECC Diffie-Hellmann - Allow
Prime Curve 384

EC Diffie-Hellman1 CSNDEDH ON O

X'0367' ECC Diffie-Hellmann - Allow
Prime Curve 521

EC Diffie-Hellman1 CSNDEDH ON O

Chapter 24. Access control points and verbs 1069

||
|
|

||||

||
|
||||

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'0368' ECC Diffie-Hellmann - Allow BP
Curve 160

EC Diffie-Hellman1 CSNDEDH ON O

X'0369' ECC Diffie-Hellmann - Allow BP
Curve 192

EC Diffie-Hellman1 CSNDEDH ON O

X'036A' ECC Diffie-Hellmann - Allow BP
Curve 224

EC Diffie-Hellman1 CSNDEDH ON O

X'036B' ECC Diffie-Hellmann - Allow BP
Curve 256

EC Diffie-Hellman1 CSNDEDH ON O

X'036C' ECC Diffie-Hellmann - Allow BP
Curve 320

EC Diffie-Hellman1 CSNDEDH ON O

X'036D' ECC Diffie-Hellmann - Allow BP
Curve 384

EC Diffie-Hellman1 CSNDEDH ON O

X'036E' ECC Diffie-Hellmann - Allow BP
Curve 512

EC Diffie-Hellman1 CSNDEDH ON O

X'036F' ECC Diffie-Hellman - Prohibit
weak key generate

EC Diffie-Hellman CSNDEDH OFF O

X'0370' CSNBKPIT: Allow load 1st key
part for a key with min 3 key
parts

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0371' CSNBKPIT: Allow load 1st key
part for a key with min 2 key
parts

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0372' CSNBKPIT: Allow load 1st key
part for a key with min 1 key
part

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0373' CSNBKPIT: Allow load 2nd and
later key part for a key
requiring more key parts

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0374' CSNBKPIT: Allow load last key
part for a key

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0375' CSNBKPIT: Allow load an
optional key part for a key

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0376' CSNBKPIT: Allow completing a
key that has all key parts
loaded

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0377' CSNBKPIT: Allow clearing a key
part register

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0378' CSNBKPIT: Allow HMAC load 1st
key part for a key with min 3
key parts

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'0379' CSNBKPIT: Allow HMAC load 1st
key part for a key with min 2
key parts

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

1070 Common Cryptographic Architecture Application Programmer's Guide

Table 306. Access Control Points and corresponding CCA verbs (continued)

ACP
number
(hex)

Name of ACP from TKE
interface Verb name Entry point

Initial
setting Usage

X'037A' CSNBKPIT: Allow HMAC load 1st
key part for a key with min 1
key part

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'037B' CSNBKPIT: Allow HMAC load 2nd
and later key part for a key
requiring more key parts

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'037C' CSNBKPIT: Allow HMAC load last
key part for a key

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'037D' CSNBKPIT: Allow HMAC load an
optional key part for a key

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'037E' CSNBKPIT: Allow HMAC
completing a key that has all
key parts loaded

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

X'037F' CSNBKPIT: Allow HMAC clearing
a key part register

Note: This ACP is included for TKE reference
only, the service impacted is available only (for
IBM Z) on z/OS.

OFF O

The following codes are used in this table:

ID Initial default.

O Usage of this command is optional; enable it as required for authorized usage.

R Enabling this command is recommended.

NR Enabling this command is not recommended.

NRP Enabling this command is not recommended for production.

SC Usage of this command requires special consideration.

SEL Usage of this command is normally restricted to one or more selected roles.

SUP This command is normally restricted to one or more supervisory roles.

1 This verb performs more than one function, as determined by the keyword in the rule_array parameter of
the verb call. Not all functions of the verb require the command in this row.

2 This verb does not always require the command in this row. Use as determined by the control vector for
the key and the action being performed.

Managing ACPs using a TKE workstation

The TKE workstation allows you to enable or disable access control points for
verbs.

For systems that do not use the optional TKE workstation, most access control
points (current and new) are enabled in the default role with the appropriate
licensed internal code on the CEX*C. For more information about the TKE
workstation, see z/OS Cryptographic Services ICSF Trusted Key Entry Workstation
User’s Guide.

For information about required TKE versions for accessing the various CEX*C
features, see “CEX6C information” on page 1117.

Chapter 24. Access control points and verbs 1071

|

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm

Use of particular cryptographic or key management verb functions with the CEX*C
are controlled through access control points. You can see the default settings of an
access control point in Table 306 on page 1048 in column Initial setting.

Note:

1. Access control points DKYGENKY-DALL and DSG ZERO-PAD unrestricted
hash length are always disabled in the default role for all customers (TKE and
non-TKE). A TKE workstation is required to enable these access control points.

2. When you modify the setting of an access control point, please be sure to use a
procedure according to your organization's security policy. TKE workstation
versions earlier than V6.0 do not show the current setting of the access control
points. TKE workstation versions 6.0 and higher show the current setting, but
neither show the default settings nor a change history of the listed access
control points. If you do not remember the change history, note that using the
Zeroize function of the card or the domain to reset all access control points to
their default values, discards all keys.

3. The TKE can save a current setting of ACPs under a given name. So if
something fails with ACP changes, you can restore the old setting on the TKE.

1072 Common Cryptographic Architecture Application Programmer's Guide

Chapter 25. Access control data structures

Learn about the data structures that are used in the access control system. You can
also view examples of the access-control data structures

Read the following topics which provide more detailed information in their
contained subtopics:
v “Role structures”
v “Examples of the access control data structures” on page 1078

Unless otherwise noted, all 2-byte and 4-byte integers are in big-endian format.
The high-order byte of the value is in the lowest-numbered address in memory.

Role structures
Read the description of the data structures of a role, which controls the permitted
operations a user can perform, and when those operations can be performed.

You can also use a defined default role. Its characteristics are described in “Default
role contents” on page 1077.

Basic structure of a role
View a table that describes how the role data is structured.

Table 307. Access-control system: basic structure of a role

Offset Length (bytes) Description

00 01 Role structure major version number: X'01'.

01 01 Role structure minor version number: X'00'.

02 02 Role structure length (big endian).

04 20 Comment.

A 20-character variable padded on the right with spaces,
containing a comment which describes the role. This
variable is not null (X'00') terminated.

24 02 Checksum (big endian).

The checksum value is not used in the current role
structure. It can be verified by the IBM Cryptographic
Coprocessor with a future version of the role structure.

26 02 Reserved (big endian): X'0000'.

28 08 Role ID.

36 02 Required authentication strength (big endian).

A 2-byte integer defining how secure the user
authentication must be in order to authorize this role.

© Copyright IBM Corp. 2007, 2018 1073

Table 307. Access-control system: basic structure of a role (continued)

Offset Length (bytes) Description

38 02 Lower time limit.

The earliest time of day that this role can be used. Format
is h : m where:

Value Meaning
h Hour in 24-hour format (binary integer, 0 - 23).
m Minute (binary integer, 0 - 59).

40 02 Upper time limit.

The latest time of day that this role can be used. Format is
the same as lower time limit (offset 38).

If the lower time limit and upper time limit are identical,
the role is valid for use at any time of the day.

42 01 Valid days of week (DOW):

Value Meaning
B'0xxx xxxx'

Role cannot be used on Sunday.
B'1xxx xxxx'

Role can be used on Sunday.
B'x0xx xxxx'

Role cannot be used on Monday.
B'x1xx xxxx'

Role can be used on Monday.
B'xx0x xxxx'

Role cannot be used on Tuesday.
B'xx1x xxxx'

Role can be used on Tuesday.
B'xxx0 xxxx'

Role cannot be used on Wednesday.
B'xxx1 xxxx'

Role can be used on Wednesday.
B'xxxx 0xxx'

Role cannot be used on Thursday.
B'xxxx 1xxx'

Role can be used on Thursday.
B'xxxx x0xx'

Role cannot be used on Friday.
B'xxxx x1xx'

Role can be used on Friday.
B'xxxx xx0x'

Role cannot be used on Saturday.
B'xxxx xx1x'

Role can be used on Saturday.
B'xxxx xxx0'

Reserved (must be 0).
B'xxxx xxx1'

Undefined.

43 01 Reserved (X'00')

44 variable Access-control-point list (permitted or disallowed
operations). The permitted operations are defined by the
access control point list, described in Table 308 on page
1075.

1074 Common Cryptographic Architecture Application Programmer's Guide

Access control point list
The user's permissions (permitted or disallowed operations) are attached to each
role in the form of an access control point list (ACP list).

This ACP list is a map of bits, and every bit is uniquely identified by its offset. A
single bit for each primitive function can be independently controlled. Refer to
Chapter 24, “Access control points and verbs,” on page 1047 for a list of all ACP
offsets that are defined, their command names, which verbs use a particular
command, and recommendations on command usage.

The Required commands section of each verb defines which bits of the ACP list, if
any, control the functions of that verb. Each offset that a verb defines has a
mnemonic command name. If an offset in an ACP list is B'1', the command is
enabled. Otherwise, the command is disabled. Typically, when a command is
enabled, the function associated with the command is permitted, provided that all
other access conditions are also satisfied. However, in some cases, enabling a
command disallows the function associated with the command. An offset that
disallows a function has "Disallow" as part of its mnemonic command name.

Each ACP identifier (offset) is a two-byte integer (X'0000' - X'FFFF'). This allows
addressability of 2¹⁶ (64K) bits. Only a small fraction of these addressable bits are
used, so storing the entire 64K bit (8K byte) table in each role would waste
memory space. Instead, the table is stored as a sparse matrix, where only the
necessary bits are included.

To accomplish this, each bit map is stored as a series of one or more bit-map
segments, where each can hold a variable number of bits. Each segment must start
with a bit that is the high-order bit in a byte, and each must end with a bit that is
the low order bit in a byte. This restriction results in segments that have no partial
bytes at the beginning or end. Any bits that do not represent defined access control
points must be set to zero, indicating that the corresponding function is not
permitted.

The bit-map portion of each segment is preceded by a header, providing
information about the segment. The header contains the following fields:

Starting bit number
The index of the first bit contained in the segment. The index of the first
access control point in the table is zero (X'0000').

Ending bit number
The index of the last bit contained in the segment.

Number of bytes in segment
The number of bytes of bit-map data contained in this segment.

The entire access control point structure is comprised of a header, followed by one
or more access control point segments. The header indicates how many segments
are contained in the entire structure.

The layout of this structure is illustrated in Table 308.

Table 308. Access-control-point list structure

Offset Length (bytes) Description

Header

00 2 Number of segments n in big endian format.

Chapter 25. Access control data structures 1075

Table 308. Access-control-point list structure (continued)

Offset Length (bytes) Description

02 2 Reserved, binary zero.

Bit-map segment 1 (refer to Table 309)

Bit-map segment 2 (optional)

...

Bit-map segment n

An ACP list contains one or more bit-map segments. Table 309 defines the layout
of a bit-map segment.

Table 309. Bit-map segment structure

Offset Length (bytes) Description

00 2 Start bit number of bit-map segment in big endian
format.

02 2 End bit number of bit-map segment in big endian
format.

04 2 Number of bit-map bytes in big endian format.

06 2 Reserved, binary zero.

08 variable Bit-map data of segment.

For a specific role, you can display the ACP segments using the panel.exe, for
example:

panel.exe --show-role --role=DEFALT02

As output, you receive the specific bit list of enabled/disabled ACPs:

1076 Common Cryptographic Architecture Application Programmer's Guide

|
|

|

|

Showing returned ROLE DATA:

API CALL details:
CSUAACM [GET-ROLE] card [DV73R354] ROLE [DEFALT02] size [215]

version: [0101]
comment: [System default role]
authstr: [0000]
time range: [00:00] - [00:00]
DOW: [fe]
ACP Segments for role: 5
ACP Segment [0] has [31] Bytes for bits [0x0008 - 0x00ff]
[03 f0] << ACP bits [0x0008 - 0x0017]
[ff 70] << ACP bits [0x0018 - 0x0027]
[00 20] << ACP bits [0x0028 - 0x0037]
[01 fe] << ACP bits [0x0038 - 0x0047]
[00 19] << ACP bits [0x0048 - 0x0057]
[00 80] << ACP bits [0x0058 - 0x0067]
...
[f8 fd] << ACP bits [0x00e8 - 0x00f7]
[ff] << ACP bits [0x00f8 - 0x00ff]

ACP Segment [1] has [31] Bytes for bits [0x0100 - 0x01f7]
[fe 7c] << ACP bits [0x0100 - 0x010f]
[02 03] << ACP bits [0x0110 - 0x011f]
...
[00 00] << ACP bits [0x01e0 - 0x01ef]
[00] << ACP bits [0x01f0 - 0x01f7]

ACP Segment [2] has [32] Bytes for bits [0x0200 - 0x02ff]
[1c 00] << ACP bits [0x0200 - 0x020f]
[00 00] << ACP bits [0x0210 - 0x021f]
...
[00 00] << ACP bits [0x02e0 - 0x02ef]
[07 c0] << ACP bits [0x02f0 - 0x02ff]

ACP Segment [3] has [16] Bytes for bits [0x0300 - 0x037f]
[d0 67] << ACP bits [0x0300 - 0x030f]
...
[00 00] << ACP bits [0x0370 - 0x037f]

ACP Segment [4] has [32] Bytes for bits [0x4000 - 0x40ff]
[00 00] << ACP bits [0x4000 - 0x400f]
...
[00 00] << ACP bits [0x40f0 - 0x40ff]

Default role contents
Read about the purpose and characteristics of the default role.

You can use the default role from a CEX*C coprocessor to access a certain domain
in order to process the appropriate verbs that are allowed by the ACP list assigned
to that role. Using the TKE, you can adapt the default role according to your needs
for each domain that you want to access and thus use one role for each domain.
The name that you apply to a default role for a domain depends on the domain
number.

There are two variants for naming the default role for a domain on an S390
system: DEFALTXX and DFLTXXXX, where the XX or XXXX stand for a multi-digit
decimal number indicating the domain number. The DFLTXXXX naming scheme was
introduced for z13 machines.

Examples:
v DEFALT02 is the default role ID for domain 2 on a z10 machine (CEX3C or

CEX4C).

Chapter 25. Access control data structures 1077

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

v DFLT0052 is the default role ID for domain 52 on a z13 (CEX5C) or on a z14
(CEX6C).

The role ID names are always 8 characters, ASCII. Role names on some platforms
and through some interfaces may end with ASCII space characters (0x20), therefore
every input mechanism is designed to explicitly allow space characters.

See a list of the current roles:

panel.exe --list-roles

The default role has the following characteristics:
v The required authentication strength level is zero.
v The role is valid at all times and on all days of the week.
v The only functions that are permitted are those related to access control

initialization. This guarantees that the owner initializes the coprocessor before
any cryptographic work can be done. This requirement prevents security
accidents in which unrestricted default authority might accidentally be left intact
when the system is put into service.

Examples of the access control data structures
View examples for access control data structures as they are used in the Common
Cryptographic Architecture.

Examples are provided in the following subtopics:
v “Access control point list - data structure example”
v “Role data structure example” on page 1079

Access control point list - data structure example
View an example of an access control point list together with explanations of the
contents.

Figure 44 shows the contents of a sample access control point list.

The access-control-point list contains the following data fields:

00 02 The number of segments of data in the access control point list. In this list,
there are two discontiguous segments of access control points. One starts at
access-control point 0, and the other starts at access control point X'200'.

00 00 A reserved field, which must be filled with zeros.

00 00 The number of the first access-control point in this segment.

01 17 The number of the last access control point in this segment. The segment
starts at access control point 0, and ends with access control point X'0117',
which is decimal 279.

00 02 00 00 00 00 01 17 00 23 00 00 f0 ff ff ff#......
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 02
00 02 17 00 03 00 00 8f 99 fe

Figure 44. Access-control-point list example

1078 Common Cryptographic Architecture Application Programmer's Guide

|
|

|

|
||

00 23 The number of bytes of data in the access control points for this segment.
There are X'23' bytes, which is 35 decimal.

00 00 A reserved field, which must be filled with zeros.

F0 FF FF FF ... FF FF (35 bytes)
The first set of access control points, with one bit corresponding to each
point. Thus, the first byte contains bits 0-7, the next byte contains 8-15, and
so on.

02 00 The number of the first access control point in the second segment.

02 17 The number of the last access control point in this segment. The segment
starts at access control point X'200' (decimal 512), and ends with access
control point X'217' (decimal 535).

00 03 The number of bytes of data in the access control points for this segment.
There are 3 bytes for the access control points from 512 through 535.

00 00 A reserved field, which must be filled with zeros.

8F 99 FE
The second set of access control points, with one bit corresponding to each
point. Thus, the first byte contains the bits 512-519, the second byte
contains bits 520-527, and the third byte contains bits 528-535.

For a specific role, you can display the ACP segments using the panel.exe, as
shown in “Access control point list” on page 1075 .

Role data structure example
View an example of a role data structure together with explanations of the
contents.

Figure 45 shows the contents of a sample role data structure.

This structure contains the following data fields:

01 00 The role structure version number.

00 66 The length of the role structure, including the length field itself.

New default role 1
The 20-character comment describing this role.

AB CD
The checksum for the role.

Note: The checksum value is not used.

00 00 A reserved field, which must be filled with zeros.

DEFAULT
The Role ID for this role. The role in this example replaces the DEFAULT
role.

01 00 00 66 2a 4e 65 77 20 64 65 66 61 75 6c 74*New default
20 72 6f 6c 65 20 31 2a ab cd 00 00 44 45 46 41 role 1*....DEFA
55 4c 54 20 23 45 01 0f 17 1e 7c 00 00 02 00 00 ULT #E....|.....
00 00 01 17 00 23 00 00 f0 ff ff ff ff ff ff ff#..........
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff 02 00 02 17 00
03 00 00 8f 99 fe

Figure 45. Role data structure example

Chapter 25. Access control data structures 1079

|
|

23 45 The required authentication strength field.

01 0F The lower time limit. X'01' is the hour, and X'0F' is the minute (decimal 15),
so the lower time limit is 1:15 AM, UTC.

17 1E The upper time limit. X'17' is the hour (decimal 23), and X'1E' is the minute
(30), so the upper time limit is 23:30 UTC.

7C This byte maps the valid days of the week for the role. The first (high
order) bit represents Sunday, the second represents Monday, and so on.
Hex 7C is binary 01111100, and enables the weekdays Monday through
Friday.

00 This byte is a reserved field. It must be zero.

Access-control-point list
The remainder of the role structure contains the access control point list
described in “Access control point list - data structure example” on page
1078.

1080 Common Cryptographic Architecture Application Programmer's Guide

Chapter 26. Using verbs and applications in PCI-HSM 2016
compliance mode

Beginning with the Crypto Express6 adapter, when configured as a CCA
coprocessor, such a coprocessor is capable of running in the PCI-HSM 2016
compliance mode. In order for the requirements of PCI-HSM 2016 to apply to a
workload, the workload must be using compliant-tagged key tokens.

The PCI-HSM 2016 compliance mode places certain restrictions on the use of
compliant-tagged key tokens. Thus, not all verbs can make use of such keys.
Table 312 on page 1083 provides a list of PCI-HSM 2016 compliant verbs.
Non-compliant verbs are listed in Table 311 on page 1082.

Furthermore, you may want to migrate applications to work in PCI-HSM 2016
compliance mode. This means, that you can adapt existing applications prior to
CCA release 6.0 that exploit verbs that are now PCI-HSM 2016 compliant, to apply
to PCI-HSM 2016 compliance mode. For more information, see “Migrating
applications to PCI-HSM 2016 compliance mode” on page 1088.

Generating PCI-HSM 2016 compliant keys
A cryptographic coprocessor running in PCI-HSM 2016 compliance mode can use
compliant-tagged key tokens. Read the contained information about how to
generate PCI-HSM 2016 compliant keys.

A compliant-tagged key token is a key token that must adhere to the requirements
of a compliance mode. The compliant tag is indicated by bit 58 in the control
vector of the key token. For more information about the compliant tag, see the
description of the COMP-TAG keyword in Chapter 21, “Control vectors and changing
control vectors with the Control Vector Translate verb,” on page 989.

In turn, a compliance mode places certain restrictions on the use of
compliant-tagged key tokens, as described in “Restrictions on creation and use of
PCI-HSM 2016 compliant key tokens” on page 1084.

To generate a compliant-tagged key token, you must at first build a skeleton token
with the compliant tag (bit 58) switched on. The Control Vector Generate
(CSNBCVG) and Key Token Build (CSNBKTB) services allow that. This skeleton
token can then be passed to any callable service that generates key tokens and
supports compliant-tagged key tokens, for example, Key Generate (CSNBKGN).

The TR31 Key Import (CSNBT31I) and EMV services are exceptions as they do not
support skeleton tokens as input. When importing a TR-31 key block, if the key
encrypting key is compliant-tagged, the resulting key is also compliant-tagged.

Note: Only internal, fixed-length TDES key tokens can be compliant-tagged.

© Copyright IBM Corp. 2007, 2018 1081

|

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

Impact of the PCI-HSM 2016 compliance mode on the callable verbs
When compliant-tagged key tokens are used, the request is processed according to
the compliance mode in effect. A subset of callable services support
compliant-tagged key tokens. Any attempt to use a compliant-tagged key token in
a cryptographic operation within a service that does not accept compliant-tagged
key tokens results in a failure.

Table 310 shows a list of callable services (verbs) that are not compliant with
PCI-HSM 2016 compliance mode.

Table 310. Callable services not compliant with PCI-HSM 2016

Verb Service name Possible compliance alternatives

CSNBCKC CVV Key Combine Create double-length keys instead of single-length keys. This
eliminates a need for the service.
Note: Though this service does not accept or create
compliant-tagged key tokens, the key tokens that are created by
this service can be converted to compliant-tagged key tokens.

CSNBCKI Clear Key Import v Use the TKE workstation to create a compliant-tagged key
token from key parts.

v Use the Key Generate (CSNBKGN) callable service to create a
compliant-tagged key token with a random key value.

CSNBCKM Multiple Clear Key Import v Use the TKE workstation to create a compliant-tagged key
token from key parts.

v Use the Key Generate (CSNBKGN) callable service to create a
compliant-tagged key token with a random key value.

CSNBCVT Control Vector Translate v Recreate the source key token with the wanted control vector.

v Wrap the source key such that the wanted attributes are bound
to the key. You can use the Key Import/Key Export
(CSNBKIM/CSNBKEX) or TR31 Key Import/Key Export to
TR31 (CSNBT31I/CSNBT31X) verbs.

CSNBCVE Cryptographic Variable Encipher Create double-length keys instead of single-length keys. This
eliminates a need for the service.

CSNBDKX Data Key Export DATA keys are not compliant. Create compliant-tagged CIPHER
or MAC keys that can be exported by using the Key Export
(CSNBKEX) or Key Export to TR31 (CSNBT31X) callable services.

CSNBDKM Data Key Import DATA keys are not compliant. Create compliant-tagged CIPHER
or MAC keys that can be imported by using the Key Import
(CSNBKIM) or TR31 Key Import (CSNBT31I) callable services.

CSNBSKY Secure Messaging for Keys None.

CSNDSXD Symmetric Key Export with Data You can use the Key Export to TR31 (CSNBT31X) to export a
compliant-tagged symmetric key token with data.

In addition to the callable services listed in Table 310, there are callable services
that do not support compliant-tagged key tokens as shown in Table 311.

Table 311. Callable services that do not support compliant-tagged key tokens

Verb Service name

CSNBDDPG DK Deterministic PIN Generate

CSNBDMP DK Migrate PIN

CSNBDPC DK PIN Change

1082 Common Cryptographic Architecture Application Programmer's Guide

|
|

|
|
|
|
|

|
|

||

|||

|||
|
|
|
|

|||
|

|
|

|||
|

|
|

|||

|
|
|
|

|||
|

|||
|
|

|||
|
|

|||

|||
|
|

|
|

||

||

||

||

||

Table 311. Callable services that do not support compliant-tagged key tokens (continued)

Verb Service name

CSNBDPCG DK PRW CMAC Generate

CSNBDPMT DK PAN Modify in Transaction

CSNBDPNU DK PRW Card Number Update

CSNBDPT DK PAN Translate

CSNBDPV DK PIN Verify

CSNBDRP DK Regenerate PRW

CSNBDRPG DK Random PIN Generate

CSNDEDH EC Diffie-Hellman

CSNDSYX Symmetric Key Export

CSNDSYG Symmetric Key Generate

CSNDSYI Symmetric Key Import

CSNDSYI2 Symmetric Key Import2

Table 312 shows the list of services that support compliant-tagged key tokens when
running in PCI-HSM 2016 compliance mode.

Table 312. Callable services that support compliant-tagged key tokens in cryptographic
operations

Verb Service name

CSNBAPG Authentication Parameter Generate

CSNBCPA Clear PIN Generate Alternate

CSNBCPE Clear PIN Encrypt

CSNBCSG CVV Generate

CSNBCSV CVV Verify

CSNBCTT2 Cipher Text Translate2

CSNBDEC Decipher

CSNBDKG Diversified Key Generate

CSNBENC Encipher

CSNBEPG Encrypted PIN Generate

CSNBFPED FPE Decipher

CSNBFPEE FPE Encipher

CSNBFPET FPE Translate

CSNBKEX Key Export

CSNBKGN Key Generate

CSNBKIM Key Import

CSNBKTR Key Translate

CSNBKTR2 Key Translate2

CSNBKYT Key Test

CSNBKYTX Key Test Extended

CSNBKYT2 Key Test2

CSNBMGN MAC Generate

Chapter 26. Using verbs and applications in PCI-HSM 2016 1083

|

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|

||
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 312. Callable services that support compliant-tagged key tokens in cryptographic
operations (continued)

Verb Service name

CSNBMVR MAC Verify

CSNBPCU PIN Change/Unblock

CSNBPEX Prohibit Export

CSNBPEXX Prohibit Export Extended

CSNBPFO Recover PIN from Offset

CSNBPGN Clear PIN Generate

CSNBPTR Encrypted PIN Translate

CSNBPTRE Encrypted PIN Translate Enhanced

CSNBPVR Encrypted PIN Verify

CSNBRKA Restrict Key Attribute

CSNBSPN Secure Messaging for PINs

CSNBT31I TR31 Key Import

CSNBT31X Key Export to TR31

CSNBTRV Transaction Validation

CSNBUKD Unique Key Derive

Restrictions on creation and use of PCI-HSM 2016 compliant key
tokens

Read about the restrictions that apply to PCI-HSM 2016 compliant key tokens.
v CCA 6.0 introduces support for compliant-tagged TDES key tokens. Other key

tokens are not impacted at this time.
v Only the enhanced wrapping method can be used.
v Single-length key tokens cannot be compliant-tagged.
v Key-encrypting keys (KEKs), including master keys, must be at least as strong as

the keys they protect. Therefore, a KEK with replicated key halves cannot wrap
a key with unique key halves.

v Default DATA key tokens (including zero CV DATA key tokens) cannot be
compliant-tagged. They are multi-use keys capable of performing both
encipherment and MAC generation. One alternative is to upgrade to CIPHER or
MAC keys, or both CIPHER and MAC keys. Currently, triple-length DATA keys
with unique key parts have no migration path to becoming compliant-tagged
without downgrading the key to a double-length key.

v NOCV-KEKs cannot be compliant-tagged. The NOCV flag is not bound to the
key of the KEK, so it is possible to change this flag for a key outside the HSM.
KEKs with the NOCV flag set (done externally) and the compliance tag set in
the control vector are not usable.

v Compliant-tagged key tokens are restricted in terms of the verification patterns
that can be calculated. Only the ENC-ZERO and CMACZERO verification
patterns are allowed. See the Key Test (CSNBKYT), Key Test Extended
(CSNBKYTX), and Key Test2 (CSNBKYT2) callable services for more detail. In
addition, for the Key Test and Key Test Extended services, the KEY-ENCD
keyword is required.

1084 Common Cryptographic Architecture Application Programmer's Guide

|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|

|

|

|
|

|

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

v Generally, compliant-tagged key tokens cannot be used with
non-compliant-tagged key tokens. The only exception is the Cipher Text
Translate2 (CSNBCTT2) callable service.

Restrictions on PIN block translation operations for compliant-tagged
key tokens

In general, the described restrictions are concerned with binding/unbinding of the
PAN to the PIN data, or changes to the PAN.

See Table 313 for a summary of PIN block translation restrictions that apply to
compliant-tagged key tokens.

Table 313. Using compliant-tagged key tokens to translate between PIN block formats

Translate
from:

ECI-2 (4
digit
PIN)

ECI-3
(4-6 digit
PIN)

ISO-0,
ANSI
X9.8,
VISA-1,
VISA-4,
and
ECI-1

ISO-1
and
ECI-4 ISO-2 ISO-3

VISA-2
(4-6 digit
PIN)

VISA-3
(4-12
digit
PIN)

3621
(4-12
digit
PIN)

3624
(4-12
digit
PIN)

4704-
EPP
(4-12
digit
PIN)

ECI-2 Y Y N N N N Y Y Y Y Y

ECI-3 If PIN is
4 digits

Y N N N N Y Y Y Y Y

ISO-0,
ANSI
X9.8,
VISA-1,
VISA-4,
and ECI-1

N N If not
changing
PAN

N Y Y N N N N N

ISO-1 and
ECI-4

N N Y Y Y Y N N N N N

ISO-2 N N N N Y N N N N N N

ISO-3 N N If not
changing
PAN

N Y Y N N N N N

VISA-2 If PIN is
4 digits

Y N N N N Y Y Y Y Y

VISA-3 If PIN is
4 digits

If PIN is
4-6 digits

N N N N If PIN is
4-6 digits

Y Y Y Y

3621 If PIN is
4 digits

If PIN is
4-6 digits

N N N N If PIN is
4-6 digits

Y Y Y Y

3624 If PIN is
4 digits

If PIN is
4-6 digits

N N N N If PIN is
4-6 digits

Y Y Y Y

4704-EPP If PIN is
4 digits

If PIN is
4-6 digits

N N N N If PIN is
4-6 digits

Y Y Y Y

Generating warning events
You use the CSU_CMP_WARN_MODE environment variable to cause CCA to issue
warning events for operations that need modifications to meet PCI-HSM 2016
compliance mode requirements. Warning events are created as entries to SYSLOG
in a certain layout, specifying information about the required actions.

Chapter 26. Using verbs and applications in PCI-HSM 2016 1085

|
|
|

|
|

|

|
|

|
|

||

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|||

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

||||||||||||

||
|
||||||||||

|
|
|
|
|
|

|||
|
|

||||||||

|
|
|||||||||||

||||||||||||

||||
|
|

||||||||

||
|
||||||||||

||
|
|
|
|||||
|
||||

||
|
|
|
|||||
|
||||

||
|
|
|
|||||
|
||||

||
|
|
|
|||||
|
||||

|

|
|

|
|
|
|

Setting the CSU_CMP_WARN_MODE environment variable

If set, the CSU_CMP_WARN_MODE environment variable indicates that you want to have
PCI-HSM 2016 compliance mode warnings generated. The values can be one of the
following:

OFF This is the default value for the variable. No warning mode is set and no
warning events are created.

SYSLOG
The warning mode output is sent in a log content stream to the system log
and creates an entry in the SYSLOG file as described in “Warning log
message layout.”

Note:

v No log entry is written when an operation is completely compliant (compliant
verb and compliant keys).

v Warning mode responses are sent to the configured system log.

Warning log message layout

The overall syntax of a generated warning message looks like shown:
<preamble>CSUCMPW:<serialnum>:<KDF>:<cprbflags>:<verb_code>:<keyword_count>:

<keywords>:<key_count>

The name of the application which causes the triggering of the warning is not
displayed in the message, but is captured by the system log itself. The components
have the following meanings:

preamble
Content that a SYSLOG entry typically puts at the start of each message. If the
SYSLOG is not the output target, then no preamble is posted.

A part of the preamble posted by the SYSLOG is the ASCII name of the
application that was processing when the warning triggered. See the following
example for details.

CSUCMPW
ASCII eye-catcher to mark the start of each entry

serialnum
ASCII representation of adapter serial number that generated the reply
containing the warning response.

KDF
Key Derivation Function (KDF) value used in the host-to-card communication
buffer. It corresponds to the compliance level of the crypto card. This field is
one binary byte. It is printed as two hexadecimal characters in ASCII.

cprbflags
Warning flag value returned from the adapter for the verb. This field is one
binary byte. It is printed as two hexadecimal characters in ASCII.

Flag value
Meaning

0x40 CPRBFO_CMP_BAD_VERB: The requested verb is not compliant with the
current target.

0x20 CPRBFO_CMP_BAD_OP: The requested verb (keyword or data) is not
compliant with the current target

1086 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
|

||
|

|
|
|
|

|

|
|

|

|

|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|

||
|

||
|

0x10 CPRBFO_CMP_BAD_KEY: The request included one or more keys that are
not compliant with the current target

0x08 CPRBFO_CMP_UNK: The request for the warning mode processing could
not be honored due to problems with the input. The main reason is an
unknown value supplied by the host library to the adapter as the
target KDF: This is an internal error.

verb_code
Name of the verb encoded as two ASCII characters. See column Subcommand
code in Table 317 on page 1135 for the encoding reference.

keyword_count
ASCII number for the count of verb keywords contained in the request.

keywords
Keywords that were in request when sent to the adapter. Some API calls are
split up into smaller requests when sent to the adapter to overcome bus
transfer size limitations. Therefore, keywords may be slightly different when
sent to the adapter. Also, a single API request may generate more than one
warning log entry.

If the keyword_count is 0x00, this field is empty, such that only the delimiters
on either side are visible (::).

key_count
Count of keys that were sent to the adapter.

Below is a warning message from the CSNBCTT2 verb, using a double length DES
DATA token which can not be COMP-TAGGED in compliance mode.
Jan 12 09:51:01 test05 s6ctt2.e[24516]: IBM Crypto ./f_secy2/sefcmpwarn.c:627,
Nov 8 2017:15:02:05:
CSUCMPW:DV753302:01:10:TT:5:IKEY-DESOKEY-DESI-CBC O-CBC INITIAL :2

CSUCMPW
is the eye-catcher you should search for. All material previous to this ASCII
string is the so-called preamble. As a part of this preamble, the SYSLOG
captures the name of the application executing when warning triggered. In
our example, this is s6ctt2.e (running on the test05 system.

DV753302
is the serial number of the adapter that generated the warning.

01 is the compliance level in the card (KDF parameter).

10 specifies that the request included one or more keys that are not compliant
with the current target (cprbflags0 parameter).

TT is the verb code for CSNBCTT2 as provided in Table 317 on page 1135
(verb-code parameter). TT stands for CSNBCTT2.

5 is the number of 8 byte keywords (keywordcount parameter).

IKEY-DESOKEY-DESI-CBC O-CBC INITIAL
are the five 8 byte keywords provided by the keywords parameter:

IKEY-DES
OKEY-DES
I-CBC
O-CBC
INITIAL

This part can be empty (::) if no keywords are supplied in the request.

Chapter 26. Using verbs and applications in PCI-HSM 2016 1087

||
|

||
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

|
|

||

||
|

||
|

||

|
|
|
|
|
|
|

|

Note that sometimes requests are split into smaller requests when sent to
the adapter.

2 is the number of keys supplied to CSNBCTT2 (key_count parameter).

Another example shows how to use the CSNBKYT verb to obtain SHA-1 hashes of
master keys in legacy mode. The warning mode is logging that the requested verb
service (keyword or data) is not compliant with current target:
Jan 12 09:49:04 test05 load.e[24427]: IBM Crypto ./f_secy2/sefcmpwarn.c:627,
Nov 8 2017:15:02:05: CSUCMPW:DV753302:01:20:KT:3:GENERATEKEY-KM SYM-MK :1
Jan 12 09:49:04 test05 load.e[24427]: IBM Crypto ./f_secy2/sefcmpwarn.c:627,
Nov 8 2017:15:02:05: CSUCMPW:DV753302:01:20:KT:3:GENERATEKEY-OKM SYM-MK :1
Jan 12 09:49:04 test05 load.e[24427]: IBM Crypto ./f_secy2/sefcmpwarn.c:627,
Nov 8 2017:15:02:05: CSUCMPW:DV753302:01:20:KT:3:GENERATEKEY-KM APKA-MK :1
Jan 12 09:49:04 test05 load.e[24427]: IBM Crypto ./f_secy2/sefcmpwarn.c:627,
Nov 8 2017:15:02:05: CSUCMPW:DV753302:01:20:KT:3:GENERATEKEY-OKM APKA-MK :1

Migrating applications to PCI-HSM 2016 compliance mode
You can migrate existing applications to PCI-HSM 2016. This involves converting
the keys that are used by the application to key tokens that are tagged as
compliant to PCI-HSM 2016.

The migration process completes with existing key tokens that are converted to
being compliant-tagged. Before you complete the migration, it is important that the
necessary steps are taken so that upon completion of the migration, future key
tokens can be created as compliant-tagged.

Identifying key tokens to be converted using compliance warning
events

Except for the Cipher Text Translate2 (CSNBCTT2) verb, a compliant-tagged key
cannot be used in a cryptographic operation with a non-compliant-tagged key.
Therefore, with that one exception, the key migration process needs to ensure that
for each key that is to be compliant-tagged, all keys it can be used with, must also
be compliant-tagged.

One procedure for migrating keys is to put them into one of the following five
categories in order from top to bottom:
1. Keys that are used in non-compliant or unsupported ways. These keys are

included in compliance warning events with any of the following results:
v Non-compliant service
v Compliance not supported
v Non-compliant service operation.
Before these keys can be compliant-tagged, there must be a change to use them
in a supported, compliant way.

2. Keys that are used with a key in category (1). Since keys in this category are
used with keys that should not be compliant-tagged, by extension they should
not be compliant-tagged.

3. Keys that are not compliant. The overall warning event result would indicate
that a non-compliant key was used and this key is marked as a non-compliant
key. The reason for the non-compliance needs to be determined and fixed
before the key can be compliant-tagged. For more information, see “Restrictions
on creation and use of PCI-HSM 2016 compliant key tokens” on page 1084.

1088 Common Cryptographic Architecture Application Programmer's Guide

|
|

||

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

4. Keys that are used with a key in category (3 on page 1088). Since keys in this
category are used with keys that cannot be compliant-tagged, by extension
these keys should not be compliant-tagged.

5. Keys that are compliant and only used in compliant ways. These keys are only
included in warning events with an overall result of compliance.

For help interpreting the compliance warning events, see section “Warning log
message layout” on page 1086.

As the issues in categories 1 on page 1088 to 4 are resolved, you are left only with
keys in category 5. At this point, you can successfully compliant-tag all your keys.
Further information is in “Migration mode” on page 1090.

It might be the case that not all keys can become compliant-tagged, for instance,
when a key is used in a verb that does not support compliance. In this case, you
have a key or keys that remain in category 1 on page 1088 and possibly also in
category 2 on page 1088 that should not be compliant-tagged. The keys in category
5 can still be compliant-tagged. A similar situation arises when a key that is used
in an otherwise compliant way is itself non-compliant. In this case, you have a key
or keys that are remaining in category 3 on page 1088 and possibly also in
category 4 that should not be compliant-tagged. Once again, the keys in category 5
can still be compliant-tagged. These scenarios are not mutually exclusive so you
might end up with keys in categories 1 on page 1088 to 5 at migration time. If the
categories are strictly adhered to, you can compliant-tag the keys in category 5.

All requests that are selected for compliance warning processing should be routed
to a CEX6C coprocessor by the application. The CCA host library does not change
application routing decisions if a CEX5C cryptographic coprocessors has been
selected for processing. To avoid application changes, it is recommended to disable
any CEX5C instances using the chzcrypt -d command before making use of the
warning mode with CEX6C adapters. This will avoid any errors from routing
issues.

Identifying key tokens to be converted outside of compliance
warning events

Since compliance warnings are based on actual usage, be especially aware of
operations (for example, infrequent operations) which might not be started during
the period where warnings are being collected. These operations would not show
up in a warning log and so must be discovered and analyzed independently.

It might be necessary to do an analysis of the key storage to identify the key
tokens to be converted. If the key labels follow a naming convention, the DES Key
Record List (CSNBKRL) callable service can be used to produce a list of labels
according to a filter. You can use the panel.exe utility to list all the DES key tokens
from key storage. The panel.exe utility also uses the CSNBKRL service.

Key tokens that are identified in this way do not have any information about how
they are used. So either the usage of such key tokens must be understood, or all
the key tokens that are used must be converted together.

Ensure the key tokens identified can become compliant-tagged

When the key tokens to be converted have been identified, you need to ensure that
the process of compliant-tagging the key tokens is successful. Compliant-tagged
key tokens cannot be used with non-compliant-tagged key tokens. So you do not

Chapter 26. Using verbs and applications in PCI-HSM 2016 1089

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|

want the conversion of some tokens to fail while others succeed. You do this by
compliance-checking the key tokens first. Key tokens are compliance-checked by
using the Key Translate2 (CSNBKTR2) verb with the COMP-CHK keyword.

Migration mode

Existing keys are transformed into compliant-tagged keys using the migration mode
of the adapter domain. This migration mode is a temporary sub-state of the
PCI-HSM 2016 compliance mode.

The process is like follows:
1. Your cryptographic coprocessor starts in a normal, non-compliant mode.
2. Take one or more domains to the PCI-HSM 2016 compliance mode, using the

TKE workstation for administrative steps.
3. Now you can create new tokens with the compliance-tag. You cannot migrate

legacy tokens by adding the compliance-tag while in the operational
compliance mode, because this is a sensitive operation that could compromise
security.

4. Take one or more domains to migration mode, using the TKE workstation for
administrative steps.

Note: You can only enter the migration mode from the PCI-HSM 2016
compliance mode.

5. Now you can migrate legacy tokens using the CSNBKTR2 verb with the
COMP-TAG keyword.

The migration mode has an inactivity timeout. If no key migration actions (initiated
from the CSNBKTR2J verb using the COMP-TAG keyword) are received within 30
minutes, then the domain automatically exits migration mode and returns to the
PCI-HSM 2016 compliance mode. Note that in migration mode you are allowed to
migrate legacy tokens by adding the compliance-tag . However, no
compliance-tagged key operations other than key migration are allowed in
migration mode, as required for PCI-HSM 2016 compliance.

Converting key tokens to become compliant-tagged

Make sure to identify all key tokens that must be converted, because they cannot
be used in a non-compliant way. Then verify that they can be converted to
compliant-tagged key tokens. If your verification is successful, you can start the
conversion.

At this point, you must decide what backup strategy, if any, to pursue. Depending
on the nature of your workloads, your backup strategy can include, but is not be
limited to:
1. Making a backup copy of the key storage.
2. Retrieving the key tokens to be converted from the key storage and storing

them in a file.

Instead of making a backup copy of the key storage, you can write the
compliant-tagged key tokens to new key storage labels.

Key tokens are converted to compliant-tagged tokens by using the Key Translate2
(CSNBKTR2) verb with the COMP-TAG keyword.

1090 Common Cryptographic Architecture Application Programmer's Guide

|
|
|

|

|
|
|

|

|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|

|
|

|
|

|
|

To begin the conversion, at least one CCA coprocessor must be placed in migration
mode by using the TKE workstation. To confirm the compliance mode of a CCA
coprocessor, view the hardware status panel. Also, take note of the number of CCA
coprocessors in PCI-HSM 2016 compliance mode without being in migration mode.
A coprocessor in migration mode cannot handle requests that contain
compliant-tagged key tokens. Therefore, if workloads that use compliant-tagged
key tokens are already in use (for example, you previously converted some key
tokens to compliant-tagged), you must keep one or more coprocessors in PCI-HSM
2016 compliance mode, but not in migration mode.

At this point in the process, none of the key tokens should fail because they were
previously compliance-checked. However, if for some reason there is a failure such
that some of the key tokens were converted and others were not, the key tokens
should be brought back to a consistent state as soon as possible. This means that
the key tokens should be updated such that they are all compliant-tagged or all
non-compliant-tagged. If a backup copy of the CKDS was made, it can be used to
make all the key tokens non-compliant-tagged until the issue can be resolved. If
the process involves creating compliant-tagged key tokens under new key labels,
the old labels can still be used until the issue is resolved.

Chapter 26. Using verbs and applications in PCI-HSM 2016 1091

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

1092 Common Cryptographic Architecture Application Programmer's Guide

Chapter 27. Sample verb call routines

This appendix contains sample verb call routines for both C and Java.

Important: The user must load the Symmetric Master Key before the verb calls
complete successfully. Otherwise return code 12 and reason code 764 is returned.

To illustrate the practical application of CCA verb calls, this appendix describes the
sample routines included with the RPM. A sample in C, and one in Java is
included.

The sample routines generate a Message Authentication Code (MAC) on a text
string, and then verifies the MAC. To accomplish this, the routine:
v Calls the Key Generate (CSNBKGN or CSNBKGNJ) verb to create a

MAC/MACVER key pair.
v Calls the MAC Generate (CSNBMGN or CSNBMGNJ) verb to generate a MAC

on a text string with the MAC key.
v Calls the MAC Verify (CSNBMVR or CSNBMVRJ) verb to verify the text string

MAC with the MACVER key.

As you review the sample routines shown in Figure 46 and Figure 47 on page 1098,
refer to the chapters in this book for descriptions of the called verbs and their
parameters. These verbs are listed in Table 314.

Table 314. Verbs called by the sample routines

Verb Entry point name for C and Java versions

Key Generate CSNBKGN or CSNBKGNJ

MAC Generate CSNBMGN or CSNBMGNJ

MAC Verify CSNBMVR or CSNBMVRJ

Sample program in C
This sample code, which consists of a C program (mac.c) and a makefile
(makefile.Inx), can be found in the /opt/IBM/CCA/samples directory.

For reference, a copy of the sample routine is shown in Figure 46.

/***/
/* */
/* Module Name: mac.c */
/* */
/* DESCRIPTIVE NAME: Cryptographic Coprocessor Support Program */
/* C language source code example */
/* */
/*---*/
/* */
/* Licensed Materials - Property of IBM */
/* */
/* (C) Copyright IBM Corp. 1997-2001 All Rights Reserved */
/* */

Figure 46. Syntax, sample routine in C

© Copyright IBM Corp. 2007, 2018 1093

/* US Government Users Restricted Rights - Use duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. */
/* */
/*---*/
/* */
/* NOTICE TO USERS OF THE SOURCE CODE EXAMPLES */
/* */
/* The source code examples provided by IBM are only intended to */
/* assist in the development of a working software program. The */
/* source code examples do not function as written: additional */
/* code is required. In addition, the source code examples may */
/* not compile and/or bind successfully as written. */
/* */
/* International Business Machines Corporation provides the source */
/* code examples, both individually and as one or more groups, */
/* "as is" without warranty of any kind, either expressed or */
/* implied, including, but not limited to the implied warranties of */
/* merchantability and fitness for a particular purpose. The entire */
/* risk as to the quality and performance of the source code */
/* examples, both individually and as one or more groups, is with */
/* you. Should any part of the source code examples prove defective, */
/* you (and not IBM or an authorized dealer) assume the entire cost */
/* of all necessary servicing, repair or correction. */
/* */
/* IBM does not warrant that the contents of the source code */
/* examples, whether individually or as one or more groups, will */
/* meet your requirements or that the source code examples are */
/* error-free. */
/* */
/* IBM may make improvements and/or changes in the source code */
/* examples at any time. */
/* */
/* Changes may be made periodically to the information in the */
/* source code examples; these changes may be reported, for the */
/* sample code included herein, in new editions of the examples. */
/* */
/* References in the source code examples to IBM products, programs, */
/* or services do not imply that IBM intends to make these */
/* available in all countries in which IBM operates. Any reference */
/* to the IBM licensed program in the source code examples is not */
/* intended to state or imply that IBM's licensed program must be */
/* used. Any functionally equivalent program may be used. */
/* */

/*---*/
/* */
/* This example program: */
/* */
/* 1) Calls the Key_Generate verb (CSNBKGN) to create a MAC (message */
/* authentication code) key token and a MACVER key token. */
/* */
/* 2) Calls the MAC_Generate verb (CSNBMGN) using the MAC key token */
/* from step 1 to generate a MAC on the supplied text string */
/* (INPUT_TEXT). */
/* */
/* 3) Calls the MAC_Verify verb (CSNBMVR) to verify the MAC for the */
/* same text string, using the MACVER key token created in */
/* step 1. */
/* */
/***/
#include <stdio.h>
#include <string.h>

#ifdef _AIX
#include <csufincl.h>

#elif __WINDOWS__
#include "csunincl.h"

#else

1094 Common Cryptographic Architecture Application Programmer's Guide

#include "csulincl.h" /* else linux */
#endif

/* Defines */
#define KEY_FORM "OPOP"
#define KEY_LENGTH "SINGLE "
#define KEY_TYPE_1 "MAC "
#define KEY_TYPE_2 "MACVER "
#define INPUT_TEXT "abcdefhgijklmn0987654321"
#define MAC_PROCESSING_RULE "X9.9-1 "
#define SEGMENT_FLAG "ONLY "
#define MAC_LENGTH "HEX-9 "
#define MAC_BUFFER_LENGTH 10

void main()
{

static long return_code;
static long reason_code;
static unsigned char key_form[4];
static unsigned char key_length[8];
static unsigned char mac_key_type[8];
static unsigned char macver_key_type[8];
static unsigned char kek_key_id_1[64];
static unsigned char kek_key_id_2[64];
static unsigned char mac_key_id[64];
static unsigned char macver_key_id[64];
static long text_length;
static unsigned char text[26];
static long rule_array_count;
static unsigned char rule_array[3][8]; /* Max 3 rule array elements */
static unsigned char chaining_vector[18];
static unsigned char mac_value[MAC_BUFFER_LENGTH];

/* Print a banner */
printf("Cryptographic Coprocessor Support Program example program.\n");

/* Set up initial values for Key_Generate call */
return_code = 0;
reason_code = 0;
memcpy (key_form, KEY_FORM, 4); /* OPOP key pair */
memcpy (key_length, KEY_LENGTH, 8); /* Single-length keys */
memcpy (mac_key_type, KEY_TYPE_1, 8); /* 1st token, MAC key type */
memcpy (macver_key_type, KEY_TYPE_2, 8); /* 2nd token, MACVER key type */
memset (kek_key_id_1, 0x00, sizeof(kek_key_id_1)); /* 1st KEK not used */
memset (kek_key_id_2, 0x00, sizeof(kek_key_id_2)); /* 2nd KEK not used */
memset (mac_key_id, 0x00, sizeof(mac_key_id)); /* Init 1st key token */
memset (macver_key_id, 0x00, sizeof(macver_key_id)); /* Init 2nd key token */

/* Generate a MAC/MACVER operational key pair */
CSNBKGN(&return_code,

&reason_code,
NULL, /* exit_data_length */
NULL, /* exit_data */
key_form,
key_length,
mac_key_type,
macver_key_type,
kek_key_id_1,
kek_key_id_2,
mac_key_id,
macver_key_id);

/* Check the return/reason codes. Terminate if there is an error. */
if (return_code != 0 || reason_code != 0) {

printf ("Key_Generate failed: "); /* Print failing verb */
printf ("return_code = %ld, ", return_code); /* Print return code */
printf ("reason_code = %ld.\n", reason_code); /* Print reason code */
return;

Chapter 27. Sample verb call routines 1095

}
else

printf ("Key_Generate successful.\n");

/* Set up initial values for MAC_Generate call */
return_code = 0;
reason_code = 0;
text_length = sizeof (INPUT_TEXT) - 1; /* Length of MAC text */
memcpy (text, INPUT_TEXT, text_length); /* Define MAC input text */
rule_array_count = 3; /* 3 rule array elements */
memset (rule_array, ' ', sizeof(rule_array)); /* Clear rule array */
memcpy (rule_array[0], MAC_PROCESSING_RULE, 8); /* 1st rule array element */
memcpy (rule_array[1], SEGMENT_FLAG, 8); /* 2nd rule array element */
memcpy (rule_array[2], MAC_LENGTH, 8); /* 3rd rule array element */
memset (chaining_vector, 0x00, 18); /* Clear chaining vector */
memset (mac_value, 0x00, sizeof(mac_value)); /* Clear MAC value */

/* Generate a MAC based on input text */
CSNBMGN (&return_code,

&reason_code,
NULL, /* exit_data_length */
NULL, /* exit_data */
mac_key_id, /* Output from Key Generate */
&text_length,
text,
&rule_array_count,
&rule_array[0][0],
chaining_vector,
mac_value);

/* Check the return/reason codes. Terminate if there is an error. */
if (return_code != 0 || reason_code != 0) {

printf ("MAC Generate Failed: "); /* Print failing verb */
printf ("return_code = %ld, ", return_code); /* Print return code */
printf ("reason_code = %ld.\n", reason_code); /* Print reason code */

return;
}
else {

printf ("MAC_Generate successful.\n");
printf ("MAC_value = %s\n", mac_value); /* Print MAC value (HEX-9) */

}
/* Set up initial values for MAC_Verify call */
return_code = 0;
reason_code = 0;
rule_array_count = 1; /* 1 rule array element */
memset (rule_array, ' ', sizeof(rule_array));/* Clear rule array */
memcpy (rule_array[0], MAC_LENGTH, 8); /* Rule array element */

/* (use default Ciphering */
/* Method and Segmenting */
/* Control) */

memset (chaining_vector, 0x00, 18); /* Clear the chaining vector */

/* Verify MAC value */
CSNBMVR (&return_code,

&reason_code,
NULL, /* exit_data_length */
NULL, /* exit_data */
macver_key_id, /* Output from Key_Generate */
&text_length, /* Same as for MAC_Generate */
text, /* Same as for MAC_Generate */
&rule_array_count,
&rule_array[0][0],
chaining_vector,
mac_value); /* Output from MAC_Generate */

/* Check the return/reason codes. Terminate if there is an error. */
if (return_code != 0 || reason_code != 0) {

printf ("MAC_Verify failed: "); /* Print failing verb */

1096 Common Cryptographic Architecture Application Programmer's Guide

printf ("return_code = %ld, ", return_code); /* Print return code */
printf ("reason_code = %ld.\n", reason_code); /* Print reason code */
return;

}
else /* No error occurred */

printf ("MAC_Verify successful.\n");
}

Sample program in Java
Before running this program, review the information about the JNI interface.

You can find this information in “Building Java applications using the CCA JNI”
on page 28.

This sample code consists of a Java program named mac.java. For reference, a copy
of the sample routine is shown in Figure 47 on page 1098. Another sample
program named RNG.java is included with the distribution at the same location,
but is not copied here because it is a very simple JNI reference exercise to call the
Random Number Generate verb.

The default distribution location of the sample code is:

SUSE Linux
/opt/IBM/CCA/samples

Red Hat Linux
/opt/IBM/CCA/samples

Invoke the following command from the directory that contains the sample source
code to compile the program:

javac -classpath /opt/IBM/CCA/cnm/HIKM.zip mac.java

Note:

1. The classpath option points to the HIKM.zip file because the
hikmNativeNumber class is in this file.

2. The path shown for the HIKM.zip file is the default distribution location of
that file.

When it is compiled, you can run the sample Java program from the directory that
contains the compiled output, with these commands.

For a Red Hat Linux system:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib64
/opt/ibm/java-i386-60/jre/bin/java -classpath /opt/IBM/CCA/cnm/HIKM.zip:. mac

For a SUSE Linux system:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib64
java -classpath /opt/IBM/CCA/cnm/HIKM.zip:. mac

Note:

1. The path shown for the HIKM.zip file is the default distribution location of
that file.

2. The libcsulcca.so library for Linux also contains the C support for the CCA
Java Native Interface (JNI).

Chapter 27. Sample verb call routines 1097

/***/
/* */
/* Module Name: mac.java */
/* */
/* DESCRIPTIVE NAME: Cryptographic Coprocessor Support Program */
/* JNI example code */
/* */
/*---*/
/* */
/* Licensed Materials - Property of IBM */
/* */
/* Copyright IBM Corp. 2008, 2011 All Rights Reserved */
/* */
/* US Government Users Restricted Rights - Use duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. */
/* */
/*---*/
/* */
/* NOTICE TO USERS OF THE SOURCE CODE EXAMPLES */
/* */
/* The source code examples provided by IBM are only intended to */
/* assist in the development of a working software program. The */
/* source code examples do not function as written: additional */
/* code is required. In addition, the source code examples may */
/* not compile and/or bind successfully as written. */
/* */
/* International Business Machines Corporation provides the source */
/* code examples, both individually and as one or more groups, */
/* "as is" without warranty of any kind, either expressed or */
/* implied, including, but not limited to the implied warranties of */
/* merchantability and fitness for a particular purpose. The entire */
/* risk as to the quality and performance of the source code */
/* examples, both individually and as one or more groups, is with */
/* you. Should any part of the source code examples prove defective, */
/* you (and not IBM or an authorized dealer) assume the entire cost */
/* of all necessary servicing, repair or correction. */
/* */
/* IBM does not warrant that the contents of the source code */
/* examples, whether individually or as one or more groups, will */
/* meet your requirements or that the source code examples are */
/* error-free. */
/* */
/* IBM may make improvements and/or changes in the source code */
/* examples at any time. */
/* */
/* Changes may be made periodically to the information in the */
/* source code examples; these changes may be reported, for the */
/* sample code included herein, in new editions of the examples. */
/* */
/* References in the source code examples to IBM products, programs, */
/* or services do not imply that IBM intends to make these */
/* available in all countries in which IBM operates. Any reference */
/* to the IBM licensed program in the source code examples is not */
/* intended to state or imply that IBM’s licensed program must be */
/* used. Any functionally equivalent program may be used. */
/* */
/*---*/
/* */
/* This example program: */
/* */
/* 1) Calls the Key_Generate verb (CSNBKGN) to create a MAC (message */
/* authentication code) key token and a MACVER key token. */
/* */
/* 2) Calls the MAC_Generate verb (CSNBMGN) using the MAC key token */

Figure 47. Syntax, sample routine in Java

1098 Common Cryptographic Architecture Application Programmer's Guide

|
|
|

/* from step 1 to generate a MAC on the supplied text string */
/* (INPUT_TEXT). */
/* */
/* 3) Calls the MAC_Verify verb (CSNBMVR) to verify the MAC for the */
/* same text string, using the MACVER key token created in */
/* step 1. */
/* */
/***/
import java.io.*;
import com.ibm.crypto.cca.jni.*;

public class mac
{

static final String KEY_FORM = "OPOP";
static final String KEY_LENGTH = "SINGLE ";
static final String KEY_TYPE_1 = "MAC ";
static final String KEY_TYPE_2 = "MACVER ";
static final String INPUT_TEXT = "abcdefhgijklmnopqrstuvwx";
static final String MAC_PROCESSING_RULE = "X9.9-1 ";
static final String SEGMENT_FLAG = "ONLY ";
static final String MAC_LENGTH = "HEX-9 ";

public static void main (String args[])
{

byte [] ByteExitData = new byte [4];
byte [] Byte_key_form = new byte [4];
byte [] Byte_key_length = new byte [8];
byte [] Byte_mac_key_type = new byte [8];
byte [] Byte_macver_key_type = new byte [8];
byte [] Byte_mac_value = new byte [10];
byte [] Byte_chaining_vector = new byte [18];
byte [] Byte_rule_array = new byte [24];
byte [] Byte_text = new byte [26];
byte [] Byte_kek_key_id_1 = new byte [64];
byte [] Byte_kek_key_id_2 = new byte [64];
byte [] Byte_mac_key_id = new byte [64];
byte [] Byte_macver_key_id = new byte [64];

try
{

//setup to pause on non-zero return/reason code
//and require enter key to continue
BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));

hikmNativeLong IntReturncode = new hikmNativeLong(0);
hikmNativeLong IntReasoncode = new hikmNativeLong(0);
hikmNativeLong IntExitDataLength = new hikmNativeLong(0);

/* Print beginning banner */
System.out.println("\nCryptographic Coprocessor Support Program JAVA example program.\n");

/* Set up initial values for Key_Generate call */
Byte_key_form = new String(KEY_FORM).getBytes(); /* OPOP key pair */
Byte_key_length = new String(KEY_LENGTH).getBytes();/* Single-length keys */
Byte_mac_key_type = new String(KEY_TYPE_1).getBytes();/* 1st token, MAC key type */
Byte_macver_key_type = new String(KEY_TYPE_2).getBytes();/* 2nd token, MACVER key type */

/* Generate a MAC/MACVER operational key pair */
new HIKM().CSNBKGNJ (IntReturncode,

IntReasoncode,
IntExitDataLength,
ByteExitData,
Byte_key_form,
Byte_key_length,
Byte_mac_key_type,
Byte_macver_key_type,
Byte_kek_key_id_1,

Chapter 27. Sample verb call routines 1099

Byte_kek_key_id_2,
Byte_mac_key_id,
Byte_macver_key_id);

if (0 != IntReturncode.getValue() || 0 != IntReasoncode.getValue())
{

System.out.println ("\nKey Generate Failed"); /* Print failing verb. */
System.out.println ("Return_code = " + IntReturncode.getValue()); /* Print return code. */
System.out.println ("Reason_code = " + IntReasoncode.getValue()); /* Print reason code. */
System.out.println ("Press ENTER to continue..."); /* Print Pause message */
stdin.readLine();

}
else
{

System.out.println ("Key_Generate successful.");
}

/* Set up initial values for MAC_Generate call */
IntReturncode = new hikmNativeLong(0);
IntReasoncode = new hikmNativeLong(0);
IntExitDataLength = new hikmNativeLong(0);

hikmNativeLong Int_rule_array_count = new hikmNativeLong(3);
hikmNativeLong Int_text_length = new hikmNativeLong(24);

Byte_text = new String (INPUT_TEXT).getBytes(); /* Define MAC input text */
byte [] temp_array = new String (MAC_PROCESSING_RULE).getBytes(); /* 1st rule array element */
System.arraycopy(temp_array, 0, Byte_rule_array, 0, temp_array.length); /* 1st rule array element */

temp_array = new String(SEGMENT_FLAG).getBytes(); /* 2nd rule array element */
System.arraycopy(temp_array, 0, Byte_rule_array, 8, temp_array.length); /* 2nd rule array element */

temp_array = new String(MAC_LENGTH).getBytes(); /* 3rd rule array element */
System.arraycopy(temp_array, 0, Byte_rule_array, 16, temp_array.length);/* 3rd rule array element */

/* Generate a MAC based on input text */
new HIKM().CSNBMGNJ (IntReturncode,

IntReasoncode,
IntExitDataLength,
ByteExitData,
Byte_mac_key_id,
Int_text_length,
Byte_text,
Int_rule_array_count,
Byte_rule_array,
Byte_chaining_vector,
Byte_mac_value);

if (0 != IntReturncode.getValue() || 0 != IntReasoncode.getValue())
{

System.out.println ("\nMAC Generate Failed"); /* Print failing verb. */
System.out.println ("Return_code = " + IntReturncode.getValue()); /* Print return code. */
System.out.println ("Reason_code = " + IntReasoncode.getValue()); /* Print reason code. */
System.out.println ("Press ENTER to continue..."); /* Print Pause message */
stdin.readLine();

}
else
{

System.out.println ("MAC_Generate successful.");
System.out.println ("MAC_value = [" + new String(Byte_mac_value) + "]");

}

/* Set up initial values for MAC_Verify call */
IntReturncode = new hikmNativeLong(0);
IntReasoncode = new hikmNativeLong(0);
IntExitDataLength = new hikmNativeLong(0);

1100 Common Cryptographic Architecture Application Programmer's Guide

Byte_rule_array = new String (MAC_LENGTH).getBytes(); /* Rule array element */
Int_rule_array_count = new hikmNativeLong(1);

new HIKM().CSNBMVRJ (IntReturncode,
IntReasoncode,
IntExitDataLength,
ByteExitData,
Byte_macver_key_id,
Int_text_length,
Byte_text,
Int_rule_array_count,
Byte_rule_array,
Byte_chaining_vector,
Byte_mac_value);

if (0 != IntReturncode.getValue() || 0 != IntReasoncode.getValue())
{

System.out.println ("\nMAC_Verify Failed"); /* Print failing verb. */
System.out.println ("Return_code = " + IntReturncode.getValue()); /* Print return code. */
System.out.println ("Reason_code = " + IntReasoncode.getValue()); /* Print reason code. */
System.out.println ("Press ENTER to continue..."); /* Print Pause message */
stdin.readLine();

}
else
{

System.out.println ("MAC_Verify successful.");
}

}
catch (Exception anException)
{

System.out.println(anException);
}

/* Print ending banner */
System.out.println("\nCryptographic Coprocessor Support Program JAVA example program finished.\n");

}//end main
}//end mac class

Chapter 27. Sample verb call routines 1101

1102 Common Cryptographic Architecture Application Programmer's Guide

Chapter 28. Initial system set-up tips

Use these tips to help you set up your system for the first time.

The name of the CCA package is:
csulcca-<version>.<release>.<maintenanceLevel>-<fixLevel>.s390x.rpm
csulcca_<version>.<release>.<maintenanceLevel>-<fixLevel>_s390x.deb

where:

version
represents the major version, typically the same for an adapter life

release
represents the function release available, updated to add function

maintenanceLevel
represents the level of increment on top of the function release for small
functional changes

fixLevel
represents a level of fix applied, typically incremented during internal package
development.

Examples:
csulcca-6.0.9-11.s390x.rpm
csulcca_6.0.9-11_s390x.deb

In order to use the full set of CCA functions, a CEX*C feature in CCA coprocessor
mode is required. This feature must have a CCA code level appropriate for the
desired function provided by the RPM or DEB package.

Consult the README.txt file in the /opt/IBM/CCA/doc/ directory for this information:
v Release-specific information, if there is any
v Pointers to helpful tools

Note: If the version and release level of the coprocessor feature is lower than the
version and release level of the CCA package (RPM or DEB), then only the
functions supported by the feature are supported by the package.

Installing and loading the cryptographic device driver
The cryptographic device driver is included in the regular kernel package shipped
with your Linux distribution.

In earlier Linux distributions, the cryptographic device driver is shipped as a
single module called z90crypt. In more recent distributions, the cryptographic
device driver is shipped as set of modules with the ap module being the main
module that triggers loading all required sub-modules. There is, however, an alias
name z90crypt that links to the ap main module.

There might be distributions using kernel levels starting with 4.10, that have basic
cryptographic device driver support as part of the kernel (that is, the ap module is
already compiled in the kernel). In this case, the subsequently mentioned lsmod
and modprobe commands do not work as described. In addition, the domain and

© Copyright IBM Corp. 2007, 2018 1103

|

|
|

|
|

|
|
|

|
|
|
|

poll_thread parameters are no longer module parameters, but kernel parameters.
In this case, you can change the values directly via sysfs, or change as kernel
parameters. Refer to the Device Drivers, Features, and Commands for kernel 4.12 or
later on the developerWorks website for further information.

For installations with a loadable cryptographic device driver, use the lsmod
command to find out if either the z90crypt or the ap module is already loaded.

If required, use the modprobe command to load the z90crypt or ap module. When
loading the z90crypt or ap module, you can use the following optional module
parameters:

domain=
specifies a particular cryptographic domain. By default, the device driver
attempts to use the domain with the maximum number of devices. To use all
CCA 6.0 functions, the domain must include at least one CEX6C feature.

After loading the device driver, use the lszcrypt command with the -b option
to confirm that the correct domain is used. If your distribution does not
include this command, see the version of Device Drivers, Features, and
Commands that applies to your distribution about how to use the sysfs interface
to find out the domain. This publication also provides more information about
loading and configuring the cryptographic device driver.

To change the domain, you must unload the z90crypt or ap module (see
“Unloading the cryptographic device driver”) and reload it.

You should also read the information presented in “Domain selection
capabilities” on page 10.

poll_thread=
enables the polling thread for instances of Linux on z/VM and for Linux
instances that run in LPAR mode on an IBM mainframe earlier than z10.

For Linux instances that run in LPAR mode on a z10 or later mainframe, this
setting is ignored and AP interrupts are used instead.

For more information about these module parameters, the polling thread, and AP
interrupts, see the version of Device Drivers, Features, and Commands that applies to
your distribution.

Unloading the cryptographic device driver
You might need to unload the cryptographic device driver, for example, to change
the domain setting.

Unloading the device driver is complicated slightly because the catcher.exe daemon
is always running, to be ready to receive TKE requests. To unload the device
driver, for example, in preparation for a reload, you must stop the catcher.exe
daemon. This can be done with the service management script
/etc/init.d/CSUTKEcat using the stop argument, or by using the ps command to
find the PID for the daemon, and then using the kill -9 <PID> command to kill it.

Unloading of the device driver is only successful, if you stop all applications that
access the main ap module and any of the running sub-modules before the unload.
Unloading fails, if you miss to stop an involved application. In this case, the device
driver requires a restart to be able to function as desired.

1104 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|

|
|

|
|

https://www.ibm.com/developerworks/linux/linux390/development_docu_rollback.html

After reloading the device driver, you can restart the catcher.exe daemon
(restarting TKE access) using the /etc/init.d/CSUTKEcat start command. See “Files
in the RPM or DEB” on page 1109 for more details.

Note: If the cryptographic device driver is part of the kernel, you cannot unload it.
In this case, you can directly edit domain settings via sysfs (see “Checking the
adapter settings”).

Confirming your cryptographic devices
Use the lszcrypt command to display a list of available cryptographic devices and
their online status.
CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT

04 CEX5C CCA-Coproc online 2174
04.0013 CEX5C CCA-Coproc online 2174
04.0014 CEX5C CCA-Coproc offline 0
05 CEX5P EP11-Coproc online 0
05.0013 CEX5P EP11-Coproc online 0
05.0014 CEX5P EP11-Coproc online 0
0a CEX6C CCA-Coproc online 15420
0a.0013 CEX6C CCA-Coproc online 15420
0a.0014 CEX6C CCA-Coproc offline 0

In the example, you see one CEX5C device and one CEX6C device offline. All
other devices are online.

You can use the chzcrypt command to set a cryptographic device online. For
example, to set a cryptographic domain X'0014' on device X'0a' online, issue:
chzcrypt -e 0a.0014

For more details about the lszcrypt and chzcrypt commands, see the man pages.
If your distribution does not include these commands, see the version of Device
Drivers, Features, and Commands that applies to your distribution about how to use
the sysfs interface to find out this information and to set devices online.

Checking the adapter settings
Use the lszcrypt command with the -b option to display information about the
settings for your cryptographic adapters.
lszcrypt -b
ap_domain=0x4
ap_max_domain_id=0x54
ap_interrupts are disabled
config_time=30 (seconds)
poll_thread is disabled
poll_timeout=1500000 (nanoseconds)

As seen in the example, the command output shows:
v the used domain in hexadecimal notation

Note: To change the domain you must unload the z90crypt module and reload
it with the appropriate domain= module parameter. In installations with the
in-kernel ap module and multi-domain support, you achieve this directly by
changing the ap_domain value via sysfs.

v whether ap interrupts are used
v whether the polling thread is used and, if so, at which frequency

Chapter 28. Initial system set-up tips 1105

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

|
|
|

Note: Polling threads cannot be enabled if ap interrupts are available.

If your distribution does not include the lszcrypt command, see the version of
Device Drivers, Features, and Commands that applies to your distribution about how
to use the sysfs interface to retrieve this information.

Performance tuning
If no AP interrupts are available to your Linux instance, you can use the settings
for the polling thread and the high resolution polling timer to tune the
performance of your cryptographic adapters.

See the version of Device Drivers, Features, and Commands that applies to your
distribution for more information about these settings.

Running secure key under a z/VM guest
In order to use the CEX*C feature under z/VM, you need to apply specific APAR
fixes.

These fixes are described in “Hardware requirements” on page xxi.

Also, to get secure key running under a z/VM guest, a directory control statement
(CRYPTO APDED) for a given z/VM guest needs to be used. This requires that the
AP's with this domain are owned by the LPAR. There is no virtualization done by
z/VM.

For secure key, z/VM does not virtualize the AP's. The AP's need to be dedicated,
which is done by the user statement:
CRYPTO DOMAIN 12 APDED 5 7

This statement dedicates AP's 5 and 7 for domain 12 to one Linux guest.

Note: Shared crypto adapters, as defined with the z/VM user directory statement
CRYPTO APVIRT, cannot be used for secure key cryptographic operations. Because
dedicated and shared cryptographic adapters cannot be mixed in a z/VM guest
virtual machine, additional crypto adapters for use with clear key cryptography,
coprocessors or accelerators, must be defined as dedicated adapters.

1106 Common Cryptographic Architecture Application Programmer's Guide

Chapter 29. CCA installation instructions

Use these instructions when you install, configure, or uninstall CCA release 6.0.0
and later.

You can install the new release either on a new system or over an earlier release,
such as CCA 4.* or 5.*

Before you begin

In the installation instructions, the term CCA 6.x is used to describe CCA packages
referring to CCA 6.0.0 and subsequent versions.

Before you begin the CCA installation, review these points:
v If you are upgrading from a prior installation, be sure to review “Default

installation directory” on page 1108.
v Ensure that you are using supported hardware. See “Hardware requirements”

on page xxi.
v Ensure that your Linux distribution has the cryptographic device driver support.

For details, see “Installing and loading the cryptographic device driver” on page
1103.

v If you are going to use the Java Native Interface (JNI), see “Building Java
applications using the CCA JNI” on page 28 for supported Java levels and
installation instructions.

Ubuntu installation considerations
The installation process for Ubuntu is very similar to that for the other
distributions. Read the provided information about special Ubuntu considerations.

Package
IBM CCA Host Libraries and Tools

Name csulcca-version-arch.deb

Target Architecture
tested and supported for 64-bit s390x; 31-bit is not supported.

Further information
There is a web location presenting a file with eventually updated Ubuntu
installation instructions:
Software packages for IBM z Systems servers running Linux

1. Click on the Software version that matches your environment (such as
CCA Releases 6.0 for CEX6C ... for RHEL, SLES, and Ubuntu)

2. Select Ubuntu installation instructions to open and download a text
file with the most recent instructions and also with a list of known
issues.

Note: Debian, and by extension Ubuntu, use a different model for DSO
Linking when compared to RHEL and SLES. Ubuntu adds --as-needed for
gcc when gcc calls the linker. This can cause a link to fail on Ubuntu with
undefined reference issues for symbols that are defined in libcsulcca.so. The
remedy is to add this argument to the gcc call

© Copyright IBM Corp. 2007, 2018 1107

|
|

|
|

|

http://www.ibm.com/security/cryptocards/pciecc2/lonzsoftware.shtml

-Wl,--no-as-needed

When building our sample program, as copied from this documentation to
a file named sample.c, an appropriate compile call would look like the
following:
gcc -g -Wl,--no-as-needed -I/opt/IBM/CCA/include -lcsulcca -lcsulccamk -o sample sample.c

Default installation directory
The CCA RPM or DEB by default choose overall installation directories for their
contents.

/usr/lib64/ (RPM) and /usr/lib/ (DEB)
all libraries to be used by applications

/opt/IBM/CCA/
all other actual files from the release are placed in sub-directories of this
path

In the past a part of the path name was the name of the specific CCA coprocessor
being supported, such as CEX3C. As of CEX4C support, multiple CCA
coprocessors are supported from the same install tree, and it is no longer
appropriate to use the CCA coprocessor name in the path. The new default install
path is:
/opt/IBM/CCA/

Soft-links to the following paths are added for ease of use and migration:
v /opt/ibm/cca

v /opt/IBM/CEX3C/

If you are upgrading, note that the RPMs copy your key storage files from the old
default location to the new default location. The old directory is kept and renamed
to /opt/IBM/CEX3C-old/.

Download and install the RPM or DEB file
RPM is the installation package format for Red Hat Enterprise Linux (RHEL) and
SUSE Linux Enterprise Server (SLES) distributions. DEB is the package format for
the Ubuntu distribution. The CCA RPM or DEB packages contain files, samples,
and groups.

About this task

To download the RPM or DEB package, complete these steps:

Procedure
1. Point your Web browser at this location:

http://www.ibm.com/security/cryptocards/

2. Click the appropriate link for your cryptographic coprocessor / HSM from the
Cryptocards navigation bar on the left hand side.

3. Click Download software package from the left navigation bar on the
appearing web page.

4. On the next web page, in column Platform, find the entry IBM Z servers
running Linux.

1108 Common Cryptographic Architecture Application Programmer's Guide

http://www.ibm.com/security/cryptocards/

5. In the corresponding entry in column Software / Firmware available, click on
the link reading software-package selection page. On the subsequent page, you
find instructions and links to continue the download the following parts:
v the README file for the RPM or DEB
v Release Notes
v the RPM or DEB installation file that installs the host code.

Files in the RPM or DEB
These files are included in the RPM or DEB.

/etc/profile.d/csulcca.sh
Environment variables are created in this file. Customers should read this
file for up-to-date information. The key storage environment variables are
added here. See “Environment variables for the key storage file” on page
450.

/etc/profile.d/csulcca.csh
Environment variables are created in this file. Customers should read this
file for up-to-date information. The key storage environment variables are
added here. See “Environment variables for the key storage file” on page
450.

Note: /etc/profile.d/csulcca.sh and /etc/profile.d/csulcca.csh are exactly the
same in what they do, but have syntax differences. Only one of these two
files is used, depending on the configuration of the particular user running
an application.

/etc/init.d/CSUTKEcat
System initialization script that automatically starts the catcher.exe
daemon when Linux starts. You can also use this script to start or stop
catcher.exe from the command line. To start catcher.exe, issue:
/etc/init.d/CSUTKEcat start

To stop catcher.exe, issue:
/etc/init.d/CSUTKEcat stop

You can also start the catcher.exe using system services, if available:
]# service CSUTKEcat start
]# service CSUTKEcat stop

/etc/rc.d/rc2.d/S14CSUTKEcat
Link to: /etc/init.d/CSUTKEcat

/etc/rc.d/rc3.d/S14CSUTKEcat
Link to: /etc/init.d/CSUTKEcat

/etc/rc.d/rc5.d/S14CSUTKEcat
Link to: /etc/init.d/CSUTKEcat

/opt/IBM/CCA/bin/TKECM.dat

/opt/IBM/CCA/bin/acpoints.dat

/opt/IBM/CCA/bin/catcher.exe
Daemon executable that is controlled by the /etc/init.d/CSUTKEcat script.
This daemon listens on TCP port 50003 for requests from the Trusted Key
Entry workstation (TKE) for secure commands to administer any adapters
configured as available to the system. See the TKE documentation for
usage and capabilities. The daemon depends on libcsulcca.so and on the

Chapter 29. CCA installation instructions 1109

|

|
|

z90crypt or ap device driver. While the daemon is running, it has an open
file handle to the /dev/z90crypt device node maintained by the
cryptographic module. Therefore, catcher.exe as a running process affects
whether you can load or unload z90crypt or ap respectively. Use
/etc/init.d/CSUTKEcat to start catcher.exe or to stop it if you want to
unload z90crypt or ap respectively. Remember that TKE secure
administration requires a running catcher.exe process.

/opt/IBM/CCA/bin/panel.exe
Utility: run with no arguments for help. See also Chapter 31, “Utilities,” on
page 1119

/opt/IBM/CCA/bin/ivp.e
Utility: run with no arguments for install verification. See also Chapter 31,
“Utilities,” on page 1119

/opt/IBM/CCA/cnm/CNM.jar
jar archive of the Java packaged version of the JNI interface, implementing
the Java versions of most CCA calls.

/opt/IBM/CCA/cnm/CNMMK.jar
jar archive of the Java packaged version of the JNI interface, implementing
the Java versions of CCA calls for changing the Master Key in the CEX*C

/opt/IBM/CCA/doc/README.txt
contains release-specific information, if applicable and pointers to helpful
tools

/opt/IBM/CCA/doc/license.txt
entry point to license documentation identifying release and product
specific terms

/opt/IBM/CCA/doc/
contains files that describe classes added by the JNI support for CCA:
v hikmNativeNumber.html
v hikmNativeInteger.html
v hikmNativeLong.html

/opt/IBM/CCA/include/csulincl.h
C header file that is listing the names of the verbs and their parameters.

/usr/lib64/libcsulcca.so (RPM) and /usr/lib/libcsulcca.so (DEB)
This file is a link to the most recent library file, with name
libcsulcca.so.V.R.M where: V = version, R = release, and M =
maintenance level.

/usr/lib64/libcsulccamk.so (RPM) and /usr/lib/libcsulccamk.so (DEB)
This file is a link to the most recent library file, with name
libcsulccamk.so.V.R.M where: V = version, R = release, and M =
maintenance level.

/opt/IBM/CCA/keys/README.keys

Samples in the RPM or DEB
These samples are included in the RPM or DEB.

/opt/IBM/CCA/samples/mac.c
C code sample

/opt/IBM/CCA/samples/makefile.lnx
Used to build mac.c

1110 Common Cryptographic Architecture Application Programmer's Guide

|

/opt/IBM/CCA/samples/mac.java
Java code sample

/opt/IBM/CCA/samples/RNGpk.java
Java code sample

Groups in the RPM or DEB
These groups are created for the purpose of loading master keys.

They are added during RPM or DEB installation as updates to /etc/groups. See
Table 315 on page 1115.
v cca_admin
v cca_clrmk
v cca_lfmkp
v cca_cmkp
v cca_setmk

Install and configure the RPM or DEB
Use the following steps to install and configure the CCA RPM or DEB.

Procedure
1. Copy the RPM or DEB to the host where it will be installed. For example,

/root on your host image.
2. Login to the host as root. Change to the directory where the installation

package is located by issuing these commands:
<login to host>
cd /root/

3. Install either the RPM or DEB by issuing one of the following commands:
rpm -i <rpm_name> /* for RPM */
dpkg -i <deb_name> /* for DEB */

Note:

a. For compatibility reasons a softlink is created from /opt/IBM/CCA to
/opt/IBM/CEX3C. This is not valid when installing the DEB package.

b. If this is an upgrade, you can use this command:
rpm -Uvh <rpm_name> /* for RPM */
dpkg -i <deb_name> /* for DEB, same as for installation */

c. If you are installing the RPM on a SUSE Linux distribution, you might
receive the following warning messages because of an unsupported
groupadd option.
groupadd: You are using an undocumented option (-f)!
groupadd: You are using an undocumented option (-f)!
groupadd: You are using an undocumented option (-f)!
groupadd: You are using an undocumented option (-f)!
groupadd: You are using an undocumented option (-f)!

No action on your part is needed. The installation proceeds with another
call if this happens.

4. Reboot the host by issuing the following command: shutdown -r now This is
necessary because of the defaults added to /etc/profile.d/csulcca.sh and
/etc/profile.d/csulcca.csh for using CCA must be propagated to all user
login sessions.

Chapter 29. CCA installation instructions 1111

If all users that use the CCA logout and then login again, and if all
applications that use CCA are re-started, then a reboot may be avoided. It is
always recommended to reboot to ensure for new users or new system
administrators that the updated profiles are actually in force after the install
procedure is completed.

5. Login to the host as root. Change to the directory where the RPM or DEB
binaries are installed by issuing the following command:
<login as root to host>
cd /opt/IBM/CCA/bin/

6. Verify that at least one card is present and active:

Note: Starting with kernel 4.10, the cryptographic device driver (zcrypt) is
statically built into the kernel. So there is no need to load the ap module any
longer.
a. If required, you can use the lszcrypt command to check if the zcrypt

device driver is available:

$ lszcrypt

If the command displays the message Crypto device driver not
available, the zcrypt device driver is not loaded. To load zcrypt, issue the
following command:

$ modprobe ap

or on older kernels, issue:

$ modprobe z90crypt

With the zcrypt device driver loaded, you can use lszcrypt to see the
installed and configured crypto adapters for your LPAR or z/VM guest:

CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT
--
00 CEX6A Accelerator online 2174 <- Adapter 0
00.0005 CEX6A Accelerator online 1347 <- Domain 5 on adapter 0
00.001f CEX6A Accelerator online 827 <- Domain 31 (X’1F’)
01 CEX6C CCA-Coproc online 15635 <- Adapter 1
01.0005 CEX6C CCA-Coproc online 9187
01.001f CEX6C CCA-Coproc online 6448
05 CEX6P EP11-Coproc online 17 <- Adapter 5
05.0005 CEX6P EP11-Coproc online 10
05.001f CEX6P EP11-Coproc online 7

The latest version of the zcrypt device driver can deal with more than one
domain. The previous screen shot shows two domains (with IDs 5 and 31).
By default the device driver uses the domain with the lowest ID. You can
change this by setting a new default domain value using the command

$ chzcrypt --default-domain=x

or with a kernel boot parameter ap.domain=x (where x must be in
hexadecimal notation).
For CCA applications, an adapter in CCA coprocessor mode is needed. So
the lszcrypt output should show some CEX*C cards, for example, CEX6C.

1112 Common Cryptographic Architecture Application Programmer's Guide

|
|

|
||

|
|
|

|
||

|

|
||

|
|

|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|

|
||

|
|

|
|

b. When you are sure that the device driver is loaded, you can display details
of all the available CCA coprocessors and verify their accessibility by
running one of the RPM or DEB installed utilities:
1) /opt/IBM/CCA/bin/ivp.e

This command performs a health check for all active cards.
2) /opt/IBM/CCA/bin/panel.exe -status

This command shows the serial numbers and master key register states
of all active cards running CCA that are visible to this Linux host. The
total number of active cards and any errors are also reported. You also
see the CCA numbering of the CEXnC adapters and the default card is
shown.

Note:

1) To be able to use /opt/IBM/CCA/panel.exe the user must be either root
or a member of the cca_admin group, that is, the owner of
/usr/lib64/libcsulccamk.so /* for RPM */
/usr/lib/libcsulccamk.so /* for DEB */

2) If there is not at least one active card at this point, double check earlier
steps and, if necessary, involve IBM service because the rest of the
setup is designed around having active cards.

3) Unloading the device driver requires killing the catcher.exe program,
and then restarting it when the driver is reloaded. See the note in
“Installing and loading the cryptographic device driver” on page 1103
for specific instructions.

Note: Unloading the device driver is not possible with the ap module
being statically in the kernel.

7. Master key load - This procedure is for using the Linux on Z native API or
the utility (panel.exe) to load the master keys for the active cards.
There are several methods available to load the master keys, and it is
important to choose the correct method for your production environment. For
more information, see “CCA Master Key administration: choosing the right
method or tool” on page 1119.
If you want to use TKE instead of the panel.exe utility, refer to a TKE
manual, such as the IBM Redbooks® publication Exploiting S/390 Hardware
Cryptography with Trusted Key Entry for proper use. After completing this step
using the TKE procedure, go to Step 8 on page 1116.
a. Setup the groups for the users who will be loading the master keys to the

cards. Each part of the load process is owned by a different Linux group
created by the RPM or DEB install procedure, and verified in the host
library implementing the API allowing master key processing. To complete
a specific step the user must have membership in the proper group. There
are a couple ways to change group membership depending on your Linux
distribution. A third option is to create the users specifically for these roles.
If a user does not have the proper group membership for a particular
master key operation, the error X'0008005a' is returned and an error
message is printed to the system log.

Note: To be able to use /opt/IBM/CCA/panel.exe, the user must be either
root or a member of the cca_admin group, that is, the owner of
/usr/lib64/libcsulccamk.so /* for RPM */
/usr/lib/libcsulccamk.so /* for DEB */

1) Group membership for Red Hat and Ubuntu based Linux distributions:

Chapter 29. CCA installation instructions 1113

|

|
|

a) Use the groups command to see a list of the user's current group
membership:
groups <user name>

---output is
<user name> : <grouplist>
<grouplist> is a single-space separated list

b) <grouplist> must be passed along with the new group to the
usermod command as a comma-separated list, followed by the
<user name>. For example, if you wanted to add cca_lfmkp
membership to user named admin, you would use the following
commands:
groups admin

---output:
admin : admin bin daemon sys wheel
usermod -G admin,bin,daemon,sys,wheel,cca_lfmkp admin
---output:
[none if successful]

Note: Ensure the user logs out and logs back in, otherwise the
group membership in the active session will not be updated.

2) Group membership for SUSE-based Linux distributions:
Use the usermod command to add membership for a specific group for
a specific user. For example, if you wanted to add cca_lfmkp
membership to user admin, you would use the following commands:
usermod -A cca_lfmkp admin

Note: Ensure the user logs out and logs back in, otherwise the group
membership in the active session will not be updated.

3) Create users for each role with correct group memberships (Same
commands for Red Hat, SUSE, and Ubuntu):
a) Create user cca_user, which will own default key storage by

issuing the following commands:
i. useradd -g cca_admin -d /home/cca_user -m cca_user

This command creates the user with primary group cca_admin
and a new home directory.

ii. passwd cca_user

This command sets the new user's password.
b) Create user cca_lfmkp by issuing the following commands:

i. useradd -g cca_admin -d /home/cca_lfmkp
-G cca_admin,cca_lfmkp -m cca_lfmkp

This command creates the user with primary group cca_admin,
secondary group cca_lfmkp, and a new home directory.

ii. passwd cca_lfmkp

This command sets the new user's password.
c) Create user cca_cmkp by issuing the following commands:

i. useradd -g cca_admin -d /home/cca_cmkp
-G cca_admin,cca_cmkp -m cca_cmkp

This command creates the user with primary group cca_admin,
secondary group cca_cmkp, and a new home directory.

ii. passwd cca_cmkp

1114 Common Cryptographic Architecture Application Programmer's Guide

This command sets the new user's password.
d) Create user cca_clrmk by issuing the following commands:

i. useradd -g cca_admin -d /home/cca_clrmk
-G cca_admin,cca_clrmk -m cca_clrmk

This command creates the user with primary group cca_admin,
secondary group cca_clrmk, and a new home directory.

ii. passwd cca_clrmk

This command sets the new user's password.
e) Create user cca_setmk by issuing the following commands:

i. useradd -g cca_admin -d /home/cca_setmk
-G cca_admin,cca_setmk -m cca_setmk

This command creates the user with primary group cca_admin,
secondary group cca_setmk, and a new home directory.

ii. passwd cca_setmk

This command sets the new user's password.
b. Add group membership privileges to users based on their required

function.

Table 315. CCA groups

Group Name Description

cca_admin All users who will run part of the master key load process must be in this group because the
library itself is owned by root.cca_admin, with no permissions for 'world' as a protective measure.
Reasons for this separate group also include allowing one owner of /usr/lib64/libcsulccamk.so
and of /usr/lib/libcsulccamk.so for DEB, and allowing use of panel.exe without allowing any of
the master key processing calls.

cca_lfmkp The user to LOAD the first key part must be in this group.

cca_cmkp The users to LOAD the middle and last key parts must be in this group.

cca_clrmk The new master-key register can be CLEARed using the same Master Key Process call in case a
mistake was made entering a key part (use the key verification patterns to check for this). To
perform the clear, the user must be a member of this group.

cca_setmk The user to call SET after the last key part has been successfully loaded must be a member of this
Linux group.

c. Load FIRST, MIDDLE (optional), and LAST key parts for the AES, SYM,
ASYM, and APKA master keys and then call SET for each master key. This
step can be done using the panel.exe utility provided or by writing your
own application to call the Master Key Process (CSNBMKP) verb directly.
The application must link with the correct library (installed to
/usr/lib64/libcsulccamk.so by RPM and to /usr/lib/libcsulccamk.so by
DEB), and must be executed at each step by a user with the appropriate
group memberships. The utility supports scripted as well as prompt-driven
access.
Repeat this step for each configured adapter. See “Changing the master
key for two or more adapters that have the same master key, with shared
CCA key storage” on page 454.
For details about panel.exe, see “The panel.exe utility” on page 1121.
See “Master Key Process (CSNBMKP)” on page 157 about parity
requirements for master key parts.

Chapter 29. CCA installation instructions 1115

Note: Loading master key parts modifies state information inside the card.
For example you cannot load a 'FIRST' master key part twice in a row
without clearing the new master-key register in between attempts. The
same goes for setting the 'LAST' register. Any number of 'MIDDLE' parts
can be loaded - with each call changing the contents of the new master-key
register. Similarly a 'SET' operation changes the state of the 'new' register
back to 'empty', while updating the 'current' register.

8. Key storage initialization - To perform this step, see “Using panel.exe for key
storage initialization” on page 1126.

9. Key storage re-encipher when changing the master key - To perform this
step, see “Using panel.exe for key storage re-encipher when changing the
master key” on page 1128.

10. If you are going to be using Central Processor Assist for Cryptographic
Functions (CPACF), it must be configured. See “CPACF support” on page 14.

Uninstall the RPM or DEB
Use the following steps to uninstall the CCA RPM or DEB.

Procedure
1. Uninstall any RPMs or DEBs that depend on the CCA RPM or DEB packages.

If you try to uninstall the CCA RPM or DEB and dependent RPMs or DEBs are
still installed, the uninstall RPM or DEB command will fail and list the names
of dependent packages. Therefore, you can skip to Step 2 and come back to this
step if Step 2 fails for that reason.

2. Uninstall the CCA RPM or DEB.
a. Login as root. You must be root to uninstall the RPM or DEB.
b. You must use the full name. You can find the name by issuing one of the

following commands:
rpm -qa | grep csulcca /* for RPM */
dpkg -l | grep csulcca /* for DEB */

c. Uninstall the RPM or DEB with the following command:
rpm -e <rpm_name> /* for RPM */
dpkg -P <deb_name> or dpkg --purge <deb_name> /* for DEB */

Note:

a. Groups are no longer deleted during the uninstall of CCA RPM or DEB. If
you created any users with one of the groups created by the package install
as their primary (note that the package install does NOT create any users,
just groups), you can delete those users/groups yourself after uninstall, or
remove such users before the uninstall of the RPM or DEB. This will
remove any potential security holes.

b. Card master keys (and other state information) are untouched by the
host-side uninstall of the RPM or DEB.

c. Key storage files are not deleted by the uninstall. All default and
non-default key storage files are left as is. If you reinstall or install an
upgraded package and load any new cards with the same master keys, you
still can use your old key storage (old cards still have the old keys, see step
7b on page 1115 of “Install and configure the RPM or DEB” on page 1111).

1116 Common Cryptographic Architecture Application Programmer's Guide

|

Chapter 30. Coexistence of CEX6C and previous CEX*C
features

While only CEX6S and CEX5S coprocessors are supported on processors starting
with IBM z14, the CCA 6.0 RPM is also useful on IBM z13 and other legacy
systems. The CCA 6.0 rpm specifically adds support for the new CCA 5.3 firmware
on z13. This information unit discusses co-existence considerations for the CCA 5.2
rpm.
v Use CCA 6.0 to update existing 5.* installations or to install it to a fresh client.

Running CCA 6.0 in parallel with a prior 5.* rpm is not supported.
v The latest CCA RPM supersedes and replaces earlier RPMs if installed in the

default manner. It is not recommended to manually alter the installation in order
to run newer versions of CCA RPMs in parallel with older versions. This
configuration is not supported.

Concurrent installations
These are background considerations for installation of the CEX6S RPM alongside
with earlier CEX*C RPMs.
1. The libcsulcca.so and libcsulsapi.so libraries for CCA 6.0 and CCA 5.* have

many symbols with the same names. An application cannot deterministically
link with both libraries. The first library in the link statement is used for all
symbols that can be resolved there, after that the second library will be
examined. At this point, either the linker will not allow the link to continue by
throwing an error on the duplicate symbols, or will produce a hybrid-linked
application. Either case gives the user the wrong answer.
A new or updated library cannot itself resolve this kind of conflict because:
v There is no way to have a default set of symbols or card support in an

updated host library. The link operation is a fundamental step in building
the customer application and outside the control of the library or library
installation process.

v One way to resolve name collisions is to change all of the function names in
the new library. However, this would have greatly impacted the customer's
ability to port applications forward, and this option was rejected.

2. The key storage environment variables in the default user profile
(/etc/profile.d/csulcca.sh and /etc/profile.d/csulcca.csh) are changed at
installation time to point to the /opt/IBM/CCA/keys/ path. Softlinks are added
to older default installation paths to assist migration, but double-check that all
of your key storage is accessible.

3. See “Interaction between the default card and use of protected key CPACF” on
page 19 for a concurrency and CPACF.

CEX6C information
Since the TKE catcher daemon listens on one particular numbered port, it is
impossible to allow a legacy catcher daemon to co-exist with a newer catcher
daemon. This must be the new TKE catcher to support the newest adapters.

There are the following impacts:
v The newest TKE catcher must support all in-service CPRB types:

© Copyright IBM Corp. 2007, 2018 1117

|

|

|
|
|
|
|

|
|

|

|

|

– T5 (CCA 4.*)
– T6 (CCA 5.* and CCA 6.*)

v libcsulcca.so supports access to both types of adapters.

CEX3C - CEX5C information

The TKE catcher daemon listens on a single port for management communication.
This port number has not changed for the CEX3C or later release. Therefore, the
new daemon supports TKE management communication to the CEX3C - CEX5C or
later adapters. Special steps are taken in the install/uninstall and daemon
management for the CEX3C or later release to ensure that the new daemon is
running when it is available.

TKE versions for CEX*Cs
v A TKE V6.0 or higher workstation is required to see supported CEX3Cs or

CEX4Cs: If you are running in toleration mode, and Linux reports CEX4Cs as
CEX3Cs, then TKE 6.0 is able to manage them as CEX3Cs.

v TKE V7.2: CEX4Cs are reported by TKE 7.2 as CEX3Cs. CEX4Cs are only
supported by TKE 7.2 or later if the Linux driver reports them as CEX4s.

v A TKE V8.0 or higher workstation is required to see CEX5Cs. CEX4Cs, and
CEX3Cs.

v A TKE V9.0 or higher workstation is required to see CEX6Cs and to exploit
PCI-HSM 2016 compliance mode.

For more information about the TKE workstation, see z/OS Cryptographic Services
ICSF Trusted Key Entry Workstation User’s Guide.

1118 Common Cryptographic Architecture Application Programmer's Guide

|

|

|

|
|

|
|

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm

Chapter 31. Utilities

You can use a utility to verify an installation. An additional utility is available to
administer cryptographic coprocessors in setups without a TKE workstation.

These two utilities are called ivp.e and panel.exe.

ivp.e This is an easy-to-use utility used to verify an installation.

It calls the Cryptographic Facility Query verb for all available adapters to
report the firmware and configuration details.

This utility is installed by default to the following path in the Linux
system:

/opt/IBM/CCA/bin/ivp.e

You can invoke this utility without any arguments. It presents information
for all available CEX*C features on the system.

panel.exe
This utility provides a Linux native mechanism for administering and
initializing certain characteristics of active cryptographic coprocessors. It is
intended as a basic administration tool for Linux-only IBM Z
configurations, where a Trusted Key Entry (TKE) solution is not available.
Note that panel.exe only covers some basic functions, but not the complete
scope of a TKE workstation.

For mixed z/OS and Linux configurations, it is recommended that
administration be accomplished using the z/OS TSO panels as described in
the z/OS Cryptographic Services ICSF Administrator's Guide. The utility is
installed by the Linux on Z cryptographic coprocessor (RPM or DEB install
package) to this path in the Linux system:

/opt/IBM/CCA/bin/panel.exe

Important: As of CCA 6.0, the panel.exe interface has changed to offer a
new default interface. The former interface is still available if the
environment variable CSU_LEGACY_PANEL is set as follows:
export CSU_LEGACY_PANEL=TRUE

Go back to the new panel.exe interface:
unset CSU_LEGACY_PANEL

Be aware that new CEX6C functionality of panel.exe is only available from
the default interface.

There is more detailed information in “The panel.exe utility” on page 1121.

CCA Master Key administration: choosing the right method or tool
Read the provided information why it is important to choose the correct tool to
administer your cryptographic coprocessors.

There are several factors that influence the procedure of CCA master key
administration:
v security requirements

© Copyright IBM Corp. 2007, 2018 1119

|
|

|
|

|
|
|

|

|

|

|
|

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb300/toc.htm

v regulatory requirements
v characteristics of your environment

Available methods are listed in Table 316.

Table 316. Tools and methods for CCA master key administration

Method Description Security Environment

TKE v A TKE can be used to
change the master keys for
all the CEX*C adapters in a
group, across multiple
domains and IBM Z.

v TKE administration is a fully
tested and supported
solution for CCA for Linux
on Z installations.

v The TKE workstation is
typically deployed in a
secure location.

v A TKE can leverage smart
card credentials for a fully
standards compliant remote
administration solution.

v No extra pieces are needed
to support TKE
administration, the required
daemon is installed by
default from the CCA rpm as
an automated service.

v TKE administration does not
conflict with any key storage
approach you might use, but
application use of key
storage should be taken into
account as you update keys.

z/OS exchange
method

An operator temporarily
assigns the domains to a z/OS
partition, where ICSF user IDs
and configuration panels are
used to configure the master
keys.

Since the z/OS tool is a host
utility the users' key parts are
potentially exposed:

v in host memory on the
system where they are
entered

v on the network channel for
communication to the z host

v in host memory for the z/OS
partition

There is no conflict with any
key storage approach you
might use, but application use
of key storage should be taken
into account as you update
keys and re-assign domains.

user application A user application built to use
the libcsulccamk.so library for
this purpose, which can be
programmed to:

v Allocate a CEX*C by
invoking the CSUACRA verb
(see “Cryptographic
Resource Allocate
(CSUACRA)” on page 144).

v Change the master key.

v Deallocate each adapter in
the group before exiting, by
invoking the CSUACRD verb
(see “Cryptographic
Resource Deallocate
(CSUACRD)” on page 147).

Security features would depend
on the implementation, but
may have host memory or
communication channel
exposures.

Environment considerations
would depend on the
implementation.

1120 Common Cryptographic Architecture Application Programmer's Guide

Table 316. Tools and methods for CCA master key administration (continued)

Method Description Security Environment

panel.exe
(included in
RPM or DEB)

A general purpose simple
utility that can be used to set
the master keys. Keys are set
one part at a time to one card
at a time, which has some
implications.
Note: If a domain on a
cryptographic coprocessor is
set to PCI-HSM 2016
compliance mode, you can
perform master key changes
only on a TKE. You cannot use
panel.exe for this purpose.

Since panel.exe is a host utility
that runs natively on the Linux
instance, a local terminal and
communication session are
required. The users' key parts
are potentially exposed:

v in host memory on the
system where they are
entered

v on the network channel for
communication to the z host

v in host memory for the
Linux partition

While panel.exe is installed by
default from the CCA RPM,
because of the simple nature of
panel.exe, conflicts can occur
in a multi-card environment.
Especially, key storage conflicts
occurred in prior releases when
loading a master key to
multiple adapters. This has
been fixed as of CCA 6.0 (see
“Changing the master key for
two or more adapters that have
the same master key, with
shared CCA key storage” on
page 454).

The panel.exe utility
The panel.exe utility is installed by the Linux on Z cryptographic coprocessor
install package or RPM.

It is installed to this path in the Linux system:
/opt/IBM/CCA/bin/panel.exe

The panel.exe utility numbers cards from card0 to card63, while verbs such as
Cryptographic Resource Allocate number cards from CRP01 to CRP64, and
therefore card0 corresponds to CRP01, card1 corresponds to CRP02, and so forth.

panel.exe default syntax as of CCA 6.0
Precise usage information can be obtained by running the panel.exe utility with no
arguments on the Linux shell command line.
>>> You must specify an operation <<<
New panel command-line arguments:
GENERAL
[Services]
-?, --help Usage

--usage Usage
-v, --version Print CCA host library version
-x, --status List ALL crypto resources and basic status
-k, --query-tke Query whether TKE can use the card

--list-cpacf List CPACF (local CPU crypto) resources
[Options]
-a=CARD#, --adapter=CARD# Specify target device (default is ’0’) for single

device services
-o, --disable-stdout Limit output to STDOUT to critical errors

--acps=0xAAAA,0xBBBB,0xCCCC...
List of hex access-control points

COMPLIANCE
[Options]

--vsig Optionally validate signature on reply
This will verify the compliance info
signature using CCA’s epoch key

--nonce="NON" 32-byte hexadecimal nonce entered as 64 characters ASCII
--output-file="outputfile"

Specify output file for health information
[Services]

Chapter 31. Utilities 1121

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

--qcomp [--vsig] Query compliance info for the current domain
--qoahl [--output-file] [--vsig] (requires --nonce)

Query OA health information from adapter

CERTIFICATE
[Options]

--cert=<value> <value>="NAME" Quoted name of certificate to process
[Services]

--epoc-cert-quick Briefly display CCA epoch certificate
--epoc-cert-validate Verify CCA epoch certificate
--epoc-cert-dump Hex dump CCA epoch certificate
--epoc-cert-show Display fully-parsed CCA epoch certificate
--oa-cert-quick --cert=<value> Briefly display the specified OA/MB certificate
--oa-cert-dump --cert=<value> Hex dump of the specified OA/MB certificate
--oa-cert-show --cert=<value> Display fully-parsed OA/MB certificate

ROLE
[Options]

--role="ROLEID"[,"ROLEID","ROLEID"...]
(whether one <1R> or multiple roles <MR> are accepted depends
on the operation being performed)

--all Perform action for all roles, valid where noted below
[Services]
-mrl, --list-roles

--show-role (requires --role=<1R>)
--query-acps (requires --role=<1R>, --acps) Query specified ACP bit(s)

-uts, --show-tracking-state Show ACP tracking state for role
-utr, --dump-tracking-state Dump ACP tracking state for role

The following also require either [--role=<MR>] or [--all]:
--enable-tracking Enable ACP-tracking for role
--disable-tracking Disable ACP-tracking for role
--clear-tracking Clear ACP-tracking for role
--tracking-size ACP tracking data size for role
--show-tracking Show ACP tracking data for role
--dump-tracking Raw dump ACP tracking data for role

SYSLOG/CCALOG
[Services]
-y, --card-log-info Get sizes of all card logs and log level

--card-log-level=[4|8|12] Set card logging level
-yc, --show-cca-log Dump card’s CCA log to stdout

--show-syslog=[0|1|2|3|4] Dump card’s syslog to stdout
(0 is most recent boot cycle)

MASTER KEY
[Options]

--mktype=[ASYM|SYM|AES|APKA]
--mkregister=[NEW|CURRENT|OLD]
--mkpart=[FIRST|MIDDLE|LAST]

[Services]
--mk-load-interactive Interactively load a master key part
--mk-set-interactive Interactively set a master key
--mk-clear-interactive Interactively clear a master key
--mk-query-interactive Interactively query a master key verification pattern
--mk-load="KEYPART" Load a master key part (requires --mktype, --mkpart)

where "KEYPART" is a hexadecimal key value entered as text
--mk-set Set a master key (requires --mktype)
--mk-clear Clear a master key (requires --mktype)
--mk-query Query master key verification pattern

(requires --mktype, --mkregister)

KEY STORAGE
[Options]

--ks-type=[AES|DES|PKA]
[Services]

--ks-init Initialize key storage file (requires --ks-type)

1122 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

--ks-reenc Re-encipher key storage (requires --ks-type)
--ks-list List key storage (requires --ks-type)
--ks-list-retained List all retained keys for this domain

Note: For security reasons, only a root user with correct group membership (real
user ID equal to '0') is allowed to use panel.exe to load master key parts or to
clear previously loaded master key parts. This is enforced at the shared library
level in the implementation of the Master Key Process verb, not in the utility itself.
Additionally, only the user who created a set of key storage files or the root user is
able to take actions with respect to those key storage files, based on Linux file
system permissions.

panel.exe legacy syntax

The panel.exe legacy syntax is available if you set the environment variable
CSU_LEGACY_PANEL to TRUE. Precise usage information can be obtained by running
the panel.exe utility with no arguments on the Linux shell command line.

The legacy panel.exe command-line arguments:
Panel usage ([-k,-a <num>,-o,-g][-?,-h,-x,-m,-l,-s,-c,-q,-t,-i,-r,-p,-n,-u-v]
>> [CC] Arg >> arg must precede non-[CC] args

[CC] -k: Can TKE administer a card?
[CC] -a <num>: use non-default card

<num> is the card number [0 - 63]
[CC] -o: Disable output to stdout:
[CC] -g <level>: Set the log level:

<level> can be NONE, TRANSACTIONS, NONZERO,
ALL, DEBUG, and FUNCTIONS

>> non-[CC] Args >>: (all are mutually exclusive)

---BASIC ADMIN---
-? , -h: Usage
-v: Print CCA Host Library version
-x: List crypto resources (and basic status)
-m: List CPACF (local CPU crypto) resources
-mrl: List roles from card
-mrp "ID": Print role for "ID"
-mrq "ID" <0xAAAA>: Query ACP bit

--0xAAAA is hexadecimal ACP bit number
--quote IDs with spaces: "DEFAULT "

-ue "ID list": Enable ACP tracking for role "ID list"
-ud "ID list": Disable ACP tracking for role "ID list"
-uc "ID list": CLEAR ACP tracking for role "ID list"
-us "ID list": ACP tracking data size: role "ID list"
-ugs "ID list": ACP tracking data show: role "ID list"
-ugr "ID list": ACP tracking data (raw): role "ID list"
-uts "ID list": ACP tracking state show: role "ID list"
-utr "ID list": ACP tracking state (raw): role "ID list"

if no "ID list": all roles will be processed

-y: Get SYSLOG or CCALOG info
-y [no options] :: sizes of all card logs and card logging level
-yl [4|8|12]:: sets 4, 8 or 12 as card logging level

4,8,12 are CCA return code trigger levels
-yc:: dump card CCA log to stdout
-ys [0|1|2|3|4]:: dump card SYS log to stdout

0 = current/default, 4 = oldest
-a <num> -y [options]:: perform on non-default card

---MASTER KEY (MK)---

Chapter 31. Utilities 1123

|
|
|

|
|
|
|
|
|
|

|
|
|

|

To LOAD a Master Key (MK) PART:
-l (for interactive)
OR====>
-l -t [A|S|E|P] -p [F|M|L] KEYPART
where: -t [A|S|E|P] is which MK: A=ASYM, S=SYM, E=AES P=APKA
where: -p [F|M|L] is the part: F=FIRST, M=MIDDLE, L=LAST
where: KEYPART is string in hex 2* size of key

(recall: 2 text chars = 1 binary Byte)

To SET a Master Key:
-s (for interactive)
OR====>
-s -t [A|S|E|P]
where: -t [A|S|E|P] is which MK: A=ASYM, S=SYM, E=AES P=APKA

To CLEAR a Master Key ’New’ Register:
-c (for interactive)
OR====>
-c -t [A|S|E|P]
where: -t [A|S|E|P] is which MK: A=ASYM, S=SYM, E=AES P=APKA

To QUERY a Master Key Verification Pattern:
-q (for interactive)
OR====>
-q -t [A|S|E|P] -r [N|C|O]
where: -t [A|S|E|P] is which MK: A=ASYM, S=SYM, E=AES P=APKA
where: -r [N|C|O] is which register: N=NEW, C=CURRENT, O=OLD

---KEY STORAGE---

To INIT a KEY STORAGE file:
-t <type> -i

To REENCipher KEY STORAGE:
-t <type> -r

To LIST a KEY STORAGE:
-t <type> -p
where:
<type> can be AES, DES, PKA
environment variables for key storage files
--the key DISK STORAGE (DS) variables are:

CSUDESDS, CSUAESDS, CSUPKADS
**the path must exist and specify a filename. The file
will be created on key storage initialization.
--the key LIST DIRECTORY (LD) variables are:

CSUDESLD, CSUAESLD, CSUPKALD
**the full path must exist.

---RETAINED KEYS---

To LIST RETAINED KEYS (this domain ONLY):
-n

panel.exe functions
Read about the different uses for the panel.exe utility.

The panel.exe utility can be used to:
v show the compliance state of the current domain.

Example:

panel.exe --qcomp

v show and verify the outbound authentication (OA) certificate chain that
represents the chain of trust for the adapter firmware.

1124 Common Cryptographic Architecture Application Programmer's Guide

|

|

|
||

|
|

Example:

panel.exe --epoc-cert-validate

v determine if a TKE is currently able to administer a specific active coprocessor.
Example:

panel.exe --query-tke

v list the labels and key types for all the keys in a designated key storage file.
Example:

panel.exe --ks-list --ks-type=DES
panel.exe --ks-list --ks-type=AES
panel.exe --ks-list --ks-type=PKA

v list the labels for all of the retained keys (RSA private keys stored in the adapter)
in the current domain of the CEX*C.
Example:

panel.exe --ks-list-retained

v list the coprocessors currently active in the Linux system and their master key
status.
Example:

panel.exe -x or # panel.exe --status

v load master key parts to the coprocessor.
Example:

panel.exe --mk-load-interactive

v set a master key that was loaded to the coprocessor. Note that panel.exe is not
designed to change the master keys for all the cards in a group at the same time,
because this is a more sophisticated operation.
Example:

panel.exe --mk-set-interactive

v clear master key parts which were previously loaded to the coprocessor but not
yet set or confirmed (used for when a mistake in entering master key parts has
been detected).
Example:

panel.exe --mk-clear-interactive

v list serial numbers and master key register states of all active cards running
CCA that are visible to this Linux host. The total number of active cards and any
errors will also be reported.
Example:

panel.exe -x or # panel.exe --status

v query the master key verification pattern for any master-key register in the
current domain.

Chapter 31. Utilities 1125

|

|
||

|

|
||

|

|
|
|
||

|

|
||

|

|
||

|

|
||

|

|

|
||

|

|
||

|

|
||

Example:

panel.exe --mk-query --mktype=AES --mkregister=CURRENT

v initialize a local host key storage file. For an example, see “Using panel.exe for
key storage initialization.”

v re-encipher a local host key storage file (use this when the master key has been
changed to ensure currency with key storage). For an example, see “Using
panel.exe for key storage re-encipher when changing the master key” on page
1128.

v list available CPACF functions, and whether they are supported in the current
system image.
Example:

panel.exe --list-cpacf

v check ACP settings and tracking of ACP usage.For an example, see “Using
panel.exe to show the active role and ACPs” on page 1129.

v get SYSLOG or CCALOG information.
Example:

panel.exe -y or # panel.exe --card-log-info
panel.exe -yc or # panel.exe --show-cca-log

The panel.exe utility does not support access control point manipulation or more
sophisticated administration. Refer to “Trusted Key Entry support” on page 57 for
that functionality.

Note: You cannot perform all of the above functions using the legacy panel.exe
syntax. Especially the new CEX6C-related functions are only available with the
default syntax.

Using panel.exe for key storage initialization
Each application using CCA typically creates key objects that are stored in the host,
protected by the master key stored inside the card. Perform the steps described in
this topic for key storage initialization.
1. The default locations for the files are setup by the CCA package in environment

variables added in the new profile files /etc/profile.d/csulcca.sh and
/etc/profile.d/csulcca.csh during installation. Key storage is unsupported
without a master key loaded, so Master key load (Step 7 on page 1113) must be
completed before this step. The utility panel.exe can be used to initialize both
the default key storage and any separate key storage you might want to set up.
The full topic is too lengthy for this explanation (see the key storage topics
elsewhere in this manual, including the verb “Key Storage Initialization
(CSNBKSI)” on page 149). In brief, an application can specify a particular key
storage location. That non-default key storage can be initialized now (or later)
by using panel.exe or with a program using the Key Storage Initialization verb.

2. The key storage environment variables in the default user profile
(/etc/profile.d/csulcca.sh) are changed at installation time to point to the
/opt/IBM/CCA/keys/ path. There is one set of environment variables for a
profile. Users can override this by setting a local profile in their home
.profile file that sets the environment variables differently.

3. Key storage ownership

1126 Common Cryptographic Architecture Application Programmer's Guide

|

|
||

|

|
||

|
|

|

|
|
||

|
|
|

|

|
|

The default key storage files are actually partially created (but not fully
initialized) during the master key load process. This means the ownership and
permissions of those files might have to be changed for them to be fully
initialized by the user associated with the application that uses the key storage
files.
Because of the mutually exclusive nature of the master key administrator
groups, there can be some harmless access errors reported to the system log
during master key load. The example users created previously in Master key
load Step 7.3)a) avoids this. You do not need to fix key storage ownership
because they were all created with the primary group set to cca_admin (the -g
argument to useradd). By doing this, the first master key load creates the key
storage files with group set to cca_admin and subsequent users all have
membership in that group. You still might want to fix the owner of default key
storage at the end to be the root user, but the group membership solves the
access issue.
Typically, the root user needs to fix the ownership and permissions. We
recommend that the owner of key storage should be the root user, and that the
group be cca_admin (cca_admin group is created during the CCA package
install process). We recommend that the permissions be set to 660, which is rw
for owner (root), rw for group (cca_admin), and <none> for everyone else, for
security. Then add the application user to the group cca_admin with the
appropriate procedure detailed in Master key load Step 7a on page 1113.
To be able to use /opt/IBM/CCA/panel.exe, the user must be either root OR a
member of the cca_admin group (the owner.group of /usr/lib64/
libcsulccamk.so). The reasons for the separate cca_admin group are to allow
one owner of /usr/lib64/libcsulccamk.so, and to allow use of panel.exe
without allowing any of the master key processing calls.

4. Key storage initialization with panel.exe. This is the default.
a. Ensure that the permissions to the default location (/opt/IBM/CCA/keys/)

allow your user to perform key storage initialization.
b. Initialize key storage (DES is where DES key tokens are kept, AES is where

AES key tokens are kept, and PKA is for all the RSA public/private internal
key tokens).
panel.exe default syntax

/opt/IBM/CCA/bin/panel.exe --ks-type=AES --ks-init
/opt/IBM/CCA/bin/panel.exe --ks-type=DES --ks-init
/opt/IBM/CCA/bin/panel.exe --ks-type=PKA --ks-init

panel.exe legacy syntax

/opt/IBM/CCA/bin/panel.exe -t AES -i
/opt/IBM/CCA/bin/panel.exe -t DES -i
/opt/IBM/CCA/bin/panel.exe -t PKA -i

5. Key storage initialization with panel.exe (non-default)
a. Ensure that you are using the account that uses the key storage. If you are

not, you must fix its ownership and permissions later.
b. Initialize all types of key storage (DES is where DES key tokens will be

kept, AES is where AES key tokens will be kept, PKA is for all the RSA
public/private internal key tokens). Use a different name for AES, DES, and
PKA, because the second initialization would overwrite the first if different
names are not used. Export new environment variables in the session where
you will initialize the key storage (and where you sill use it), then initialize
key storage again:

Chapter 31. Utilities 1127

|

|

|
|
|
||

|

panel.exe default syntax

export CSUAESDS=<AES file name>
export CSUDESDS=<DES file name>
export CSUPKADS=<PKA file name>
/opt/IBM/CCA/bin/panel.exe --ks-type=AES --ks-init
/opt/IBM/CCA/bin/panel.exe --ks-type=DES --ks-init
/opt/IBM/CCA/bin/panel.exe --ks-type=PKA --ks-init

panel.exe legacy syntax

export CSUAESDS=<AES file name>
export CSUDESDS=<DES file name>
export CSUPKADS=<PKA file name>
/opt/IBM/CCA/bin/panel.exe -t AES -i
/opt/IBM/CCA/bin/panel.exe -t DES -i
/opt/IBM/CCA/bin/panel.exe -t PKA -i

For example, if you entered the following commands in default syntax:

export CSUAESDS=/tmp/a
export CSUDESDS=/tmp/d
export CSUPKADS=/tmp/p
/opt/IBM/CCA/bin/panel.exe --ks-type=AES --ks-init
/opt/IBM/CCA/bin/panel.exe --ks-type=DES --ks-init
/opt/IBM/CCA/bin/panel.exe --ks-type=PKA --ks-init

these files would be created:
/tmp/a
/tmp/a.NDX
/tmp/d
/tmp/d.NDX
/tmp/p
/tmp/p.NDX

Using panel.exe for key storage re-encipher when changing
the master key

Because all the key tokens are protected by the master key for the domain, a
preexisting key storage must be re-enciphered when the master key is changed.

If the example group scheme is used, this is simple because the key storage files
are owned by the group cca_admin and the user making the re-encipher call is also
in group cca_admin. If this is not the case then, after changing the master key, the
owner of key storage must log in and perform the re-enciphering. This can be
done with the help of a program (using several verbs) or with
/opt/IBM/CCA/panel.exe. Of course, as noted, the user of panel.exe must also be a
member of cca_admin because of ownership of /usr/lib64/libcsulccamk.so.

Perform these steps for key storage re-encipher when changing the master key.
1. To re-encipher default key storage with panel.exe use:

panel.exe default syntax

/opt/IBM/CCA/bin/panel.exe --ks-type=AES --ks-reenc
/opt/IBM/CCA/bin/panel.exe --ks-type=DES --ks-reenc
/opt/IBM/CCA/bin/panel.exe --ks-type=PKA --ks-reenc

panel.exe legacy syntax

1128 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
|
|
|
|
||

|

|

|
|
|
|
|
|
||

|

|
|
|
||

|

/opt/IBM/CCA/bin/panel.exe -t AES -r
/opt/IBM/CCA/bin/panel.exe -t DES -r
/opt/IBM/CCA/bin/panel.exe -t PKA -r

2. To reencipher non-default key storage with panel.exe:
v Export new versions of the environment variables specifying your key

storage file locations.
v Run the previously shown commands as you would for the default key

storage, but ensure to do so in the session with the new environment
variables.

Using panel.exe to show the active role and ACPs
You can use the panel.exe utility to list the name of the role for the current
domain, to show all the ACP settings for that role, and to query the setting of a
particular ACP for that role.

Each domain of the coprocessor has a role assigned which defines the capabilities
of every application running in that domain. Installations that make use of a
Trusted Key Entry (TKE) workstation can configure the role for each domain to
enable or disable capabilities. A capability is called an access control point, or ACP
for short.

The role visible to and used by a domain is called the default role for that domain.
The 8-byte name of the role depends on the number of the domain and the
generation of the cryptographic coprocessor. Examples of names are DEFALT02 for
domain 2 on a CEX3C or CEX4C adapter (derived from the DEFALTXX style of
naming), or DFLT0035 for domain 35 on a CEX5C or higher adapter (derived from
the DFLTXXXX style of naming, introduced with the CEX5C support on z13 systems).

Invoke panel.exe for particular purposes as follows:

To list the role for the domain:

panel.exe default syntax

panel.exe --list-roles

panel.exe legacy syntax

panel.exe -mrl

The output is the same in both interface versions:

Showing returned list of ROLEs:

[DFLT0019]

API CALL details:
CSUAACM [LSTROLES] card [DV73R354] number of items [1]

Data explained:

Chapter 31. Utilities 1129

|
|
|
|
|
|

|

|
||

|

|

The only visible role to this domain has the 8 byte ASCII name DFLT0019, where 19
stands for domain 19. For more information on roles, see z/OS Cryptographic
Services ICSF Trusted Key Entry Workstation User’s Guide.

Note: With panel.exe, you can only see the DEFALTXX/DFLTXXXX roles for each
domain. You cannot see further administrative roles. Also, on IBM Z, you cannot
create or use multiple roles for use by different applications on one domain. If you
require different roles for applications, these applications must use different
domains, because all applications in a domain share the same permissions granted
by the DEFALTXX/DFLTXXXX role.

To show the ACPs for that role:

panel.exe default syntax

panel.exe --show-role --role "DFLT0019"
panel.exe --show-role --role=DFLT0019

panel.exe legacy syntax

panel.exe -mrp "DEFALT02"

The output is the same in both interface versions:

Showing returned ROLE DATA:

API CALL details:
CSUAACM [GET-ROLE] card [DV73R354] ROLE [DFLT0019] size [208]
version: [0001]
comment: [System default role]
authstr: [0000]
time range: [00:00] - [00:00]
DOW: [fe]
ACP Segments for role: 5
ACP Segment [0] has [31] Bytes for bits [0x0008 - 0x00ff]
[03 f0] << ACP bits [0x0008 - 0x0017]
[ff 70] << ACP bits [0x0018 - 0x0027]
<...data continues...>

Output explanation:

The shown output is a parsed version of the role and access control point data
structures described in Chapter 25, “Access control data structures,” on page 1073,
to make it human-accessible. The size of the entire returned data structure is 208
bytes, for the role with ID DFLT0019.

The authstr, time range, and DOW fields are meaningless for a default role like
this.

There are five ACP segments to be shown. The start of the data for the first or 0th

segment is shown, it has 31 bytes of data that specify ACPs from offset 0x0008 to
0x00ff. Then each of those 31 bytes is shown in hexadecimal at left, with
information at right to indicate the ACP bits that correspond to that hexadecimal
byte. This information is useful to understand the role structure or to check your
own program that might try to pull and process the same information.

Example:
[03 f0] << ACP bits [0x0008 – 0x0017]

1130 Common Cryptographic Architecture Application Programmer's Guide

|
|

|

|
|
||

|

|

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm

Figure 48 shows how to interpret the output from the command panel.exe
--show-role --role=DFLT0019. For example, you can see that ACP X'000E' is
enabled for role DFLT0019.

To query a particular ACP value for that role

(ENABLED means 1, DISABLED means 0)

panel.exe default syntax

panel.exe --query-acps --role=DFLT0019 --acps=0x0204
panel.exe --query-acps --role "DFLT0019" --acps 0x0204

panel.exe legacy syntax

panel.exe -mrq "DEFALT02" 0x0204

The output is the same in both interface versions:

Role ID [DFLT0019]: ACP [0x0204] is [ENABLED]

Using panel.exe to control ACP tracking
The panel.exe utility allows you to query and control the tracking of ACP usage.

Note that usage tracking only indicates if a verb made a query to an ACP, it does
not indicate if that query succeeded or failed. The notion of success or failure
varies greatly depending on the perspective, and for some ACPs, a value of 1
(setting is ON, that is, enabled) implies a restriction, while for other ACPs, a value
of 0 (setting is OFF, that is, disabled) also implies a restriction. Generally, users
should compare the tracking information to their role configuration to determine
what setting the verbs encountered when the ACPs were accessed during
application run-time (if tracking was enabled).

The panel.exe utility allows a basic level of control and query functions for ACP
tracking. You can also perform ACP tracking through the CSUAACT verb, if the
ACP at offset 0x01CC is enabled through a TKE (see “Access Control Tracking
(CSUAACT)” on page 93). This 0x01CC ACP is usually disabled by default. A
typical user will access ACP tracking information through the Trusted Key Entry
workstation (TKE). The panel.exe functionality is added as a convenience. If
requested, the tracking data is returned in a data structure that matches the role
data structure and ACP structure described in Chapter 25, “Access control data
structures,” on page 1073.

Enabled

0x03F0

ACPs

ON ONON ON ON ON

0 1 1 1 1 1 10 0 0 0 0 0 0 0 0

0008 000A 000B 000C0009 000D 000E 000F 0010 0011 0012 0013 0014 0015 0016 0017

Figure 48. ACP setting for a role

Chapter 31. Utilities 1131

|
|

|

|
|
||

|

|

Using panel.exe for verifying CCA epoch certificates
Using the --epoc-cert-validate parameter, the panel.exe utility allows you to
verify a CCA epoch certificate.

This command pulls the certificates from the adapter down to the root certificate
created at the IBM factory, that validate the firmware levels, and then validates
each certificate using the public key from the certificate below that one in the trust
chain. The results are output to the command line. Here is an example of a
successful run:

panel.exe --epoc-cert-validate

Epoch Cert Subject Name:
[07C8F43AD7854F599EB21EE9DC3651CAAC44DF745886CF3D83A6487F4616E455] 32
Signer Name:
[55EB692CE3368F3DD1CCCA9115B6B50B51EDCF0BCB6B21F69734E44438DF991A] 32
Named Cert Subject Name:
[55EB692CE3368F3DD1CCCA9115B6B50B51EDCF0BCB6B21F69734E44438DF991A] 32
Signer Name:
[94A2D4FEC9A07AD42DF550BC64E43DE8273C1416A13C8DA0973D1B1ACB3F1C26] 32
Named Cert Subject Name:
[94A2D4FEC9A07AD42DF550BC64E43DE8273C1416A13C8DA0973D1B1ACB3F1C26] 32
Signer Name:
[A4CCE18EF3A923CD0D7480A51498DC567AB5B3323E38A3877F44F12248BBF8AD] 32
Named Cert Subject Name:
[A4CCE18EF3A923CD0D7480A51498DC567AB5B3323E38A3877F44F12248BBF8AD] 32
Signer Name:
[57004C966B69D1DE63F3B0F2E85C8115AC7557385C6B23605FA963E0D1EFAA81] 32
Root cert has unused Cert section in do_DPK_work. (Expected).
Named Cert Subject Name:
[57004C966B69D1DE63F3B0F2E85C8115AC7557385C6B23605FA963E0D1EFAA81] 32
Signer Name:
[5F4717480B75B8BCBC224C62DFBD7A3B8987E54193D40A1A664FA221E5387123] 32

Root cert has unused Cert section in getCert_pubTok. (Expected).
./TKE_utils/panel.cpp:8518 pCertMeta->root_ca: [0x02]
./TKE_utils/panel.cpp:8521 pCertMeta->issuing_segment: [0x00]
./TKE_utils/panel.cpp:8522 pCertMeta->subject_segment: [0x00]
Calling verifySig with Prod key.
./TKE_utils/panel.cpp:8571 trustbits: [0x00] issuing_segment: [0x00] subject_segment:

[0x00] root_ca: [2].
---->> SUCCESS!! Chain of 5 certs VERIFIED rc [00000000] <<----

Using panel.exe to query the adapter compliance state
Using the --qcomp --vsig parameter, the panel.exe utility allows you to query the
compliance state of a specified cryptographic coprocessor.

This command returns the status of a specified domain and parses all of the data
fields to display the information on the console. Figure 49 on page 1133 and
Figure 50 on page 1134 show a successful run - with added explanations - for a
domain that is not in compliance mode, with the additional --vsig option which
requests that the output be signed by the card, and that the signature be verified
by panel.exe.

1132 Common Cryptographic Architecture Application Programmer's Guide

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|
|

|
|
|
|
|
|
|

panel.exe -–qcomp --vsig

------------- ------------- ------------- for domain [42]...
------------- Compliance Data for this card --[0x96 bytes]--
CARD PN [01KU719] <--- CARD PART NUMBER
CARD EC [0N37513] <--- CARD EC level (hardware sub-version)
CARD SN [YH10DV731308] <--- CARD Serial Number
rsvd1/2 [0x00 0x00] <--- EMPTY fields
CCA vs [6.0.8z] <--- Segment 3 firmware level (CCA version)
UDX vs1 [NONE] <--- UDX version first field
UDX vs2 [NONE] <--- UDX version second field
CCA CARD TIME NOW [20180131185938] <--- Current timestamp according to card internal clock
CCA BUILD TIME [20171108150441] <--- Timestamp for build of Segment 3 firmware
CCA COMPLIANCE] <--- Detailed flags fields, see below

cardact[0x00000000] cmp iss[0x00000000
CARD ACTIONS on:
<NONE>

slogmax[0x00000200] slgevsz[0x00D2] kdf/rsvd [0x0000]
dom act[0x00000000]

DOM ACTIONS:
<NONE>

dom cmp[0x00000000]
DOM COMPLIANCE FLAGS:
<NONE>

slogcnt [0x00000000]

CARD Seg2 ownerID [0x0002] <--- Owner ID code for Segment 2 firmware
CARD Seg3 ownerID [0x0002] <--- Owner ID code for Segment 3 firmware
CARD AdapterID [0x00000008] <--- Adapter ID code for internal work
CARD MiniBoot-0 Ver [0x00] <--- Miniboot 0 version (unused)
CARD MiniBoot-0 Rel [0x00] <--- Miniboot 0 release (unused)
CARD MiniBoot-1 Ver [0x48] <--- Miniboot 1 version (unused)
CARD MiniBoot-1 Rel [0x00] <--- Miniboot 1 release (unused)

---> Following output is added because of --vsig option --->
Getting Epoch Cert to verify Sig

Epoch Cert Subject Name:
[07C8F43AD7854F599EB21EE9DC3651CAAC44DF745886CF3D83A6487F4616E455] 32

Signer Name:
[55EB692CE3368F3DD1CCCA9115B6B50B51EDCF0BCB6B21F69734E44438DF991A] 32

------------- Compliance Data for this card Signature Verified.--

Figure 49. Querying an adapter's compliance mode (part 1)

Chapter 31. Utilities 1133

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

COMPLIANCE Fields detail:
Note: all un-used bits are reserved

cardact[0x00000000] <--- (bitfield) Card state or actions in force now
0x80000000, "CARDZEROSTRT" -- the card is in the middle of a whole card zeroize
0x40000000, "CARDCLOCKSET" –- the card has had the internal clock set

cmp iss[0x00000000 <--- (bitfield) Bits representing reasons this domain cannot go into compliance mode,
if any

0x80000000, -- Card Firmware is a UDX, cannot enter compliance mode
0x40000000, -- CCA responding is from a simulator or debug image, cannot enter compliance mode
0x20000000, -- Outbound Authentication certificate chain is not valid, cannot enter compliance

mode (contact IBM service if this occurs)
slogmax[0x00000200] <--- Maximum count of secure audit log entries
slgevsz[0x00D2] <--- Size of each secure audit log entry
kdf/rsvd [0x0000] <--- Current KDF for compliance level
dom act[0x00000000] <--- (bitfield) Domain compliance / restart actions in force now

0x80000000, "DOM_ZEROSTRT" -- the domain is in the middle of a domain-scope zeroize
0x40000000, "DOM_IMPRSTRT" – the domain internal state is transitioning to imprint mode
0x20000000, "DOM_IMPR_ACT" – the domain is now in imprint mode, a configuration state before

compliance mode
0x10000000, "DOM_COMP_ACT" – the domain is now in compliance mode
0x08000000, "DOM_COMPRMST" – the domain internal state is transitioning out of compliance mode
0x04000000, "DOM_COMP_MIG" – the domain is now in migration mode, a sub-state of compliance mode
0x00008000, "DOM_SLOGENAB" – the domain secure audit log is enabled (required for imprint and

compliance modes)
0x00004000, "DOM_SLOGNOWR" – the domain secure audit log is enabled for “no-wrap” mode:

secure read/clear is required
dom cmp[0x00000000] <--- (bitfield) Domain compliance configuration (if in compliance mode)

0x80000000, "CMP_PCIH2016"
slogcnt [0x00000000] <--- Current count of secure audit log entries

Figure 50. Querying an adapter's compliance mode (part 2)

1134 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Chapter 32. Security API command and sub-command codes

View an alphabetical list of security API command and sub-command codes
returned by the output rule-array for option STATDIAG of the Cryptographic
Facility Query verb.

Elements 9, 11, 13, 15, and 17 contain these API command and sub-command codes
to indicate the last five commands run. See Table 22 on page 106.

Note: The security API command is T2 padded on the right with 2 space
characters, and the subcommand code is a 2-byte uppercase alphabetic value
padded on the right with 2 space characters.

Table 317. Alphabetical list of security API command and subcommand codes returned by
STATDIAG.

Security
API
command
code

Subcommand
code Description

T2 AD Symmetric Algorithm Decipher (CSNBSAD)

T2 AE Symmetric Algorithm Encipher (CSNBSAE)

T2 AI Access Control Initialization (CSUAACI)

T2 AK Diversified Key Generate2 (CSNBDKG2)

T2 AM Access Control Maintenance (CSUAACM)

T2 AP Authentication Parameter Generate (CSNBAPG)

T2 CA Cryptographic Resource Allocate (CSUACRA)

T2 CD Cryptographic Resource Deallocate (CSUACRD)

T2 CI Data Key Import (CSNBCKI)

T2 CM Multiple Clear Key Import (CSNBCKM)

T2 CT Key Token Change (CSNBKTC)

T2 CV MAC Generate2 (CSNBMGN2)

T2 CX Control Vector Translate (CSNBCVT)

T2 CY Key Token Change2 (CSNBKTC2)

T2 DA DK Deterministic PIN Generate (CSNBDDPG)

T2 DB DK PAN Translate (CSNBDPT)

T2 DC Decipher (CSNBDEC)

T2 DE Data Key Export (CSNBDKX)

T2 DH Elliptic Curve Diffie-Hellman (CSNDEDHJ)

T2 DI Data Key Import (CSNBDKM)

T2 DK Retained Key Delete (CSNDRKD)

T2 DM DK PRW CMAC Generate (CSNBDPCG)

T2 DN DK PIN Change (CSNBDPC)

T2 DQ DK Migrate PIN (CSNBDMP)

T2 DR DK Random PIN Generate (CSNBDRPG)

© Copyright IBM Corp. 2007, 2018 1135

Table 317. Alphabetical list of security API command and subcommand codes returned by
STATDIAG (continued).

Security
API
command
code

Subcommand
code Description

T2 DS Symmetric Key Export with Data (CSNDSXD)

T2 DT DK PAN Modify in Transaction (CSNBDPMT)

T2 DU DK PRW Card Number Update (CSNBDPNU)

T2 DV DK PIN Verify (CSNBDPV)

T2 DW DK Regenerate PRW (CSNBDRP)

T2 EC Encipher (CSNBENC)

T2 EP Encrypted PIN Generate (CSNBEPG)

T2 EX Prohibit Export Extended (CSNBPEXX)

T2 EY Restrict Key Attribute (CSNBRKA)

T2 FQ Cryptographic Facility Query (CSUACFQ)

T2 GC MAC Verify2 (CSNBMVR2)

T2 GD Diversified Key Generate (CSNBDKG)

T2 GH HMAC Generate (CSNBHMG) - SHA-1, SHA-224, SHA-256

T2 GK Key Generate2 (CSNBKGN2)

T2 GL HMAC Generate (CSNBHMG) - SHA-384, SHA-512

T2 GM MDC Generate (CSNBMDG)

T2 GS Symmetric Key Generate (CSNDSYG)

T2 IP Key Part Import2 (CSNBKPI2)

T2 KC PKA Public Key Register (CSNDPKR)

T2 KE Key Export (CSNBKEX)

T2 KG Key Generate (CSNBKGN)

T2 KI Key Import (CSNBKIM)

T2 KN Key Translate2 (CSNBKTR2)

T2 KP Key Part Import (CSNBKPI)

T2 KR Key Translate (CSNBKTR)

T2 KT Key Test (CSNBKYT)

T2 KX Key Test Extended (CSNBKYTX)

T2 KY Key Test2 (CSNBKYT2)

T2 LK Retained Key List (CSNDRKL)

T2 LQ Log Query (CSUALGQ)

T2 MG MAC Generate (CSNBMGN)

T2 MP Master Key Process (CSNBMKP)

T2 MV MAC Verify (CSNBMVR)

T2 OH One-Way Hash (CSNBOWH)

T2 PA Clear PIN Generate Alternate (CSNBCPA)

T2 PC Clear PIN Generate (CSNBPGN)

T2 PD PKA Decrypt (CSNDPKD)

1136 Common Cryptographic Architecture Application Programmer's Guide

Table 317. Alphabetical list of security API command and subcommand codes returned by
STATDIAG (continued).

Security
API
command
code

Subcommand
code Description

T2 PE Clear PIN Encrypt (CSNBCPE)

T2 PG PKA Key Generate (CSNDPKG)

T2 PI PKA Key Import (CSNDPKI)

T2 PK PKA Encrypt (CSNDPKE)

T2 PO Recover PIN from Offset (CSNBPFO)

T2 PT Encrypted PIN Translate (CSNBPTR)

T2 PU PIN Change/Unblock (CSNBPCU)

T2 PV Encrypted PIN Verify (CSNBPVR)

T2 PX Data Key Export (CSNBPEX)

T2 RE Key Export to TR31 (CSNBT31X)

T2 RG Random Number Generate (CSNBRNGL)

T2 RI TR31 Key Import (CSNBT31I)

T2 RK Remote Key Export (CSNDRKXJ)

T2 RL Random Number Generate Long (CSNBRNGL)

T2 RT Random Number Tests (CSUARNT)

T2 SC SET Block Compose (CSNDSBC)

T2 SD SET Block Decompose (CSNDSBD)

T2 SG Digital Signature Generate (CSNDDSG)

T2 SI Symmetric Key Import (CSNDSYI)

T2 SJ Symmetric Key Import2 (CSNDSYI2)

T2 SP Secure Messaging for PINs (CSNBSPN)

T2 SV Digital Signature Verify (CSNDDSV)

T2 SX Symmetric Key Export (CSNDSYX)

T2 SY Secure Messaging for Keys (CSNBSKY)

T2 TB Trusted Block Create (CSNDTBC)

T2 TC PKA Key Token Change (CSNDKTC)

T2 TK PKA Key Translate (CSNDPKT)

T2 TT Cipher Text Translate2 (CSNBCTT2)

T2 TV Transaction Validation (CSNBTRV)

T2 UD Unique Key Derive (CSNBUKD)

T2 VC CVV Key Combine (CSNBCKC)

T2 VE Cryptographic Variable Encipher (CSNBCVE)

T2 VG CVV Generate (CSNBCSG)

T2 VH HMAC Verify (CSNBHMV) - SHA-1, SHA-224, SHA-256

T2 VL HMAC Verify (CSNBHMV - SHA-384, SHA-512

T2 VV CVV Verify (CSNBCSV)

Chapter 32. Security API command codes 1137

1138 Common Cryptographic Architecture Application Programmer's Guide

Chapter 33. openCryptoki support

openCryptoki is an open source implementation of the Cryptoki API as defined by
the industry-wide PKCS #11 Cryptographic Token Interface Standard.

openCryptoki supports several cryptographic algorithms according to the PKCS
#11 standards. The openCryptoki library loads plug-ins that provide hardware or
software-specific support for cryptographic functions.

In PKCS #11 terminology, and hence in openCryptoki terminology, these plug-ins
are called tokens. Do not confuse token in the context of PKCS #11 with token in the
CCA context.

openCryptoki and PKCS #11
In the context of openCryptoki and PKCS #11, a token is a representation
of a hardware or software component that implements cryptographic
functions. For example, a PKCS #11 token can represent a cryptographic
adapter, a smart card, or a cryptographic library.

The term CCA token is used to denote the openCryptoki plug-in for CCA.
The CCA token represents a library that extends the openCryptoki token
library and links to the CCA library (libcsulcca).

CCA In the context of CCA, a token is a representation of a key and the
attributes belonging to the key.

For more information about the openCryptoki services or about the interfaces
between the openCryptoki main module and its tokens, obtain an openCryptoki
package from openCryptoki github and see the documents in the doc subdirectory
within this website.

The openCryptoki token directories

Each token has a separate token directory, which is used by openCryptoki to store
token-specific information, like key objects, the user PIN, or the SO PIN. For most
Linux distributions, the CCA token directory is /var/lib/opencryptoki/ccatok.

Note: The data in the token directory applies to all applications that use the token.

Prerequisites
v The libcsulcca library must be installed, see Chapter 29, “CCA installation

instructions,” on page 1107.
v The cryptographic device driver must be loaded, see “Installing and loading the

cryptographic device driver” on page 1103.
v A Crypto Express coprocessor (see CEX*C in “Terminology” on page xxi) must

be accessible to Linux. For Linux on z/VM, this coprocessor must be dedicated
to the guest.

v The master keys must be loaded and set in the coprocessor, see Chapter 31,
“Utilities,” on page 1119.

Note: To properly configure the system, and to be authorized for the tasks
described in this section, the pkcs11 group must be defined in /etc/group of the
system. Every user of openCryptoki (including the users configuring openCryptoki

© Copyright IBM Corp. 2007, 2018 1139

https://github.com/opencryptoki/opencryptoki

and its tokens) must be a member of this pkcs11 group. Use standard Linux
management operations to create the pkcs11 group if needed, and to add users to
this group as required.

You may also refer to the man page of openCryptoki man openCryptoki which has a
SECURITY NOTE section that is important from the security perspective.

Configuring openCryptoki for CCA support
After installing openCryptoki, you must configure tokens, start a daemon, and
then initialize the tokens.

openCryptoki can handle several tokens with support for different hardware
devices or software solutions. The CCA token interacts with the host part of the
CCA library.

Perform the following tasks to configure the Linux on Z CCA enablement:
v “Confirming the openCryptoki configuration file”
v “Starting the openCryptoki slot daemon” on page 1141
v “Initializing the token” on page 1142

Confirming the openCryptoki configuration file
For openCryptoki versions higher than 3.0, the global openCryptoki configuration
file must define a slot entry for the CCA token.

As a minimum requirement, a slot entry must specify the library that implements
the token. Most Linux distributions provide a default configuration file with a
valid slot entry for the CCA token.

Table 318 lists the libraries that might be in place after you successfully installed
openCryptoki. The actual list for your installation depends on your distribution
and on the installed RPM packages.

Table 318. openCryptoki libraries.

Library Explanation

/usr/lib64/opencryptoki/libopencryptoki.so openCryptoki base library

/usr/lib64/opencryptoki/stdll/libpkcs11_ica.so openCryptoki libica token library

/usr/lib64/opencryptoki/stdll/libpkcs11_sw.so openCryptoki software token library

/usr/lib64/opencryptoki/stdll/libpkcs11_tpm.so openCryptoki TPM token library (not
supported by Linux on Z)

/usr/lib64/opencryptoki/stdll/libpkcs11_cca.so openCryptoki CCA token library

/usr/lib64/opencryptoki/stdll/libpkcs11_ep11.so openCryptoki EP11 token library

/usr/lib64/opencryptoki/stdll/libpkcs11_icsf.so openCryptoki ICSF token library

Note: The CCA token library is available only in 64-bit mode.

The /etc/opencryptoki/opencryptoki.conf file must exist and it must contain an
entry for the CCA token to make the token available. By default, this entry is
available after installing the CCA token. See the slot 2 entry in the following
sample configuration:

1140 Common Cryptographic Architecture Application Programmer's Guide

-------------- content of opencryptoki.conf ---------
version opencryptoki-3.4
The following defaults are defined:
hwversion = 0.0
firmwareversion = 0.0
description = Linux
manufacturer = IBM
#
The slot definitions below may be overriden and/or customized.
For example:
slot 0
{
stdll = libpkcs11_cca.so
description = "OCK CCA Token"
manufacturer = "MyCompany Inc."
hwversion = 2.32
firmwareversion = 1.0
}
See man(5) opencryptoki.conf for further information.
#
slot 0
{
stdll = libpkcs11_ica.so
}

slot 1
{
stdll = libpkcs11_cca.so
}

slot 2
{
stdll = libpkcs11_sw.so
}

slot 3
{
stdll = libpkcs11_ep11.so
confname = ep11tok.conf
}
---------------------------- end ----------------------------------

Note: The default path for slot token dynamic link libraries (STDLLs) is
/usr/lib64/opencryptoki/stdll/.

Normally, a token is available only if the token library is installed and the software
and hardware support that is required by the token is also installed. For example,
the CCA token is available only if all parts of the CCA library software are
installed and a CCA coprocessor is detected. After having started the slot daemon
as described in “Starting the openCryptoki slot daemon,” you can use the
following command to display the list of available tokens:

$ pkcsconf -t

Starting the openCryptoki slot daemon
The openCryptoki slot daemon reads the configuration information and sets up the
tokens.

Before you begin

The openCryptoki configuration file must list all available tokens that are ready to
register to the openCryptoki slot daemon, see “Confirming the openCryptoki
configuration file” on page 1140.

Chapter 33. openCryptoki 1141

|
|

Procedure

Start the slot daemon by using one of the following commands:

$ systemctl start pkcsslotd.service
$ systemctl start pkcsslotd

Note: For SLES11 and RHEL6, use the following commands to start and stop the
slot daemon:

$ service pkcsslotd start
$ service pkcsslotd stop

See the Linux man page for the complete syntax of the service command.
Use the following command to make the daemon start automatically after a reboot:

$ chkconfig pkcsslotd on

Initializing the token
After the openCryptoki library and the global configuration file are set up and the
pkcsslotd daemon is started, the CCA token must be initialized.

PKCS #11 defines two users for each token: a security officer (SO) whose
responsibility is the administration of the token, and a standard user (User) who
wants to use the token to perform cryptographic operations. openCryptoki requires
that for both the SO and the User a login PIN is defined as part of the token
initialization.

The following command provides some useful slot information:

pkcsconf -s
Slot #1 Info

Description: OCK ICA Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 0.0
Firmware Version: 0.0

Slot #2 Info
Description: OCK CCA Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 0.0
Firmware Version: 0.0

Slot #3 Info
Description: Software Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 0.0
Firmware Version: 0.0

Find your preferred token in the details list and select the correct slot number. This
number is used in the next initialization steps to identify your token:

1142 Common Cryptographic Architecture Application Programmer's Guide

|
|

|
|
||

|

$ pkcsconf -I -c <slot> // Initialize the Token and setup a Token Label

$ pkcsconf -P -c <slot> // change the SO PIN (recommended)

$ pkcsconf -u -c <slot> // Initialize the User PIN (SO PIN required)

$ pkcsconf -p -c <slot> // change the User PIN (optional)

pkcsconf -I
During token initialization, you are asked for a token label. Provide a
meaningful name that helps you later to identify the token.

pkcsconf -P
openCryptoki security practices require that you change the default SO
PIN (87654321) to a different value. Use the pkcsconf -P option to change
the SO PIN.

pkcsconf -u
When you enter the user PIN initialization, you are asked for the newly set
SO PIN. The length of the user PIN must be 4 - 8 characters.

pkcsconf -p
openCryptoki security practices require that you change the user PIN at
least once with pkcsconf -p option. The length of the user PIN must be 4 -
8 characters. After you completed the PIN setup, the token is prepared and
ready for use.

Note: Specify a user PIN that is different from 12345678 because this
pattern is checked internally and marked as default PIN. A login attempt
with this user PIN is recognized as not initialized.

How to recognize the CCA token
Use the pkcsconf -t command to display a list of all available tokens. You can
check the slot and token information, and the PIN status at any time.

The following example shows information about the CCA token in the Token #2
Info section. This section provides information about the token that is plugged into
slot number 2.

$ pkcsconf -t
...
Token #2 Info:

Label: CCA Token
Manufacturer: IBM Corp.
Model: IBM CCA Token
Serial Number: 123
Flags: 0x44D (RNG|LOGIN_REQUIRED|USER_PIN_INITIALIZED|CLOCK_ON_TOKEN|TOKEN_INITIALIZED)
Sessions: 0/-2
R/W Sessions: -1/-2
PIN Length: 4-8
Public Memory: 0xFFFFFFFF/0xFFFFFFFF
Private Memory: 0xFFFFFFFF/0xFFFFFFFF
Hardware Version: 1.0
Firmware Version: 1.0
Time: 16:10:40

...

The output includes the following information:

Label The token label that was assigned when the token was initialized. You can
change token labels with the pkcsconf -I command.

Model A unique designation for the token, “IBM CCA Token” for the CCA token.

Chapter 33. openCryptoki 1143

Flags A mask with information about the token initialization status, the PIN
status, and features such as random number generator (RNG). For
example, the mask for TOKEN_INITIALIZED is 0x00000400 and it is true if
the token was initialized. “Login required” means that there is at least one
mechanism that requires a session login to use that cryptographic function.

For more information about the flags, see the description of the
TOKEN_INFO structure and the token information flags in the PKCS #11
Cryptographic Token Interface Standard.

PIN length
The PIN length range that was specified for the token.

Using the CCA token
You can use some CCA library functions through the openCryptoki standard
interface (PKCS #11 standard C API).

The PKCS #11 Cryptographic Token Interface Standard describes the exact API.

Applications that are designed to work with openCryptoki can use the Linux on Z
CCA enablement.

Supported mechanisms for the CCA token
Use the pkcsconf command to list the mechanisms (algorithms), that are supported
by the CCA token.

Issue the pkcsconf command with the -m parameter to display mechanisms. Use
the -c parameter to specify the slot number for the token of interest. The following
example assumes that this slot number is 2:

pkcsconf -m -c2
...
Mechanism #11

Mechanism: 0x1080 (CKM_AES_KEY_GEN)
Key Size: 16-32
Flags: 0x8001 (CKF_HW|CKF_GENERATE)

Mechanism #12
Mechanism: 0x1081 (CKM_AES_ECB)
Key Size: 16-32
Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)

Mechanism #13
Mechanism: 0x1082 (CKM_AES_CBC)
Key Size: 16-32
Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)

...

The command output lists all mechanisms that are supported by the token in the
specified slot. The mechanism ID and name correspond to the PKCS #11
specification.

Each entry includes the minimum and maximum supported key size and other
properties, like hardware support and mechanism information flags. These flags
provide information about the PKCS #11 functions that can use the mechanism. For
some mechanisms, the flags show further attributes that describe the supported
variants of the mechanism.

The supported Crypto Express coprocessors together with openCryptoki version
3.9 and CCA token support these PKCS #11 mechanisms:

1144 Common Cryptographic Architecture Application Programmer's Guide

|

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Table 319. PKCS #11 mechanisms supported by the CCA token

Mechanism
Key
sizes Properties

Support
with OC
version

CKM_AES_CBC 16-32 ENCRYPT, DECRYPT, WRAP,
UNWRAP

2.4

CKM_AES_CBC_PAD 16-32 ENCRYPT, DECRYPT, WRAP,
UNWRAP

2.4

CKM_AES_ECB 16-32 ENCRYPT, DECRYPT, WRAP,
UNWRAP

2.4

CKM_AES_KEY_GEN 16-32 GENERATE 2.4

CKM_DES3_CBC 24-24 ENCRYPT, DECRYPT, WRAP,
UNWRAP

2.4

CKM_DES3_CBC_PAD 24-24 ENCRYPT, DECRYPT, WRAP,
UNWRAP

2.4

CKM_DES3_KEY_GEN 24-24 GENERATE 2.4

CKM_DES_CBC 8-8 ENCRYPT, DECRYPT, WRAP,
UNWRAP

2.4

CKM_DES_CBC_PAD 8-8 ENCRYPT, DECRYPT, WRAP,
UNWRAP

2.4

CKM_DES_KEY_GEN 8-8 GENERATE 2.4

CKM_ECDSA 160-521 SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

2.4.1

CKM_ECDSA_KEY_PAIR_GEN 160-521 GENERATE_KEY_PAIR,
EC_F_P, EC_NAMEDCURVE

2.4.1

CKM_ECDSA_SHA1 160-521 SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

3.0

CKM_ECDSA_SHA224 160-521 SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

3.9

CKM_ECDSA_SHA256 160-521 SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

3.7

CKM_ECDSA_SHA384 160-521 SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

3.7

CKM_ECDSA_SHA512 160-521 SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

3.7

CKM_GENERIC_SECRET_KEY_GEN 80-2048 GENERATE 3.4

CKM_MD5 0-0 DIGEST 2.4

CKM_MD5_HMAC 0-0 SIGN, VERIFY 2.4

CKM_MD5_HMAC_GENERAL 0-0 SIGN, VERIFY 2.4

CKM_MD5_RSA_PKCS 512-
4096

SIGN, VERIFY 2.4

CKM_RSA_PKCS 512-
4096

ENCRYPT, DECRYPT, SIGN,
VERIFY

2.4

CKM_RSA_PKCS_KEY_PAIR_GEN 512-
4096

GENERATE_KEY_PAIR 2.4

CKM_SHA1_RSA_PKCS 512-
4096

SIGN, VERIFY 2.4

CKM_SHA224 0-0 DIGEST 3.9

Chapter 33. openCryptoki 1145

|||
|
|

|||
|
|

|||
|
|

|||
|
|

||||

Table 319. PKCS #11 mechanisms supported by the CCA token (continued)

Mechanism
Key
sizes Properties

Support
with OC
version

CKM_SHA224_HMAC 80-2048 SIGN, VERIFY 3.9

CKM_SHA224_HMAC_GENERAL 80-2048 SIGN, VERIFY 3.9

CKM_SHA256 0-0 DIGEST 2.4

CKM_SHA256_HMAC 80-2048 SIGN, VERIFY 2.4

CKM_SHA256_HMAC_GENERAL 80-2048 SIGN, VERIFY 2.4

CKM_SHA256_RSA_PKCS 512-
4096

SIGN, VERIFY 2.4.2

CKM_SHA384 0-0 DIGEST 3.2

CKM_SHA384_HMAC 80-2048 SIGN, VERIFY 3.2

CKM_SHA384_HMAC_GENERAL 80-2048 SIGN, VERIFY 3.2

CKM_SHA512 0-0 DIGEST 3.2

CKM_SHA512_HMAC 80-2048 SIGN, VERIFY 3.2

CKM_SHA512_HMAC_GENERAL 80-2048 SIGN, VERIFY 3.2

CKM_SHA_1 0-0 DIGEST 2.4

CKM_SHA_1_HMAC 80-2048 SIGN, VERIFY 2.4

CKM_SHA_1_HMAC_GENERAL 80-2048 SIGN, VERIFY 2.4

For explanations of the key object properties, see the PKCS #11 Cryptographic Token
Interface Standard.

Restrictions with using the CCA library functions
The CCA library is subject to some limitations.
v Key imports through the C_CreateObject PKCS #11 function are supported for

RSA private keys and for RSA public keys in CRT format only. Starting with
openCryptoki version 3.4, the CCA token supports C_CreateObject function for
AES, DES, DES3, and generic secret keys in addition to RSA keys.

v The default CKA_SENSITIVE setting for generating a key is CK_FALSE although
the openCryptoki CCA token handles only secure keys, which correspond to
sensitive keys in PKCS #11.
Setting the value of CKA_SENSITIVE to CK_FALSE does not inhibit inspecting
the value of CKA_VALUE. This setting does not compromise security because
inspecting the value of CKA_VALUE does not reveal any sensitive information.
The CCA secure key token (token as used in the CCA context) is stored in the
CKA_IBM_OPAQUE attribute rather than in the CKA_VALUE attribute.
Moreover, the key value is never stored in cleartext.

v The function C_DigestKey is not supported by the openCryptoki CCA token.

Migrating openCryptoki version 2 tokens to version 3
PKCS #11 token objects are persistent in the token. openCryptoki stores token
objects in the token directory, /var/lib/opencryptoki/ccatok/TOK_OBJ, for the CCA
token.

1146 Common Cryptographic Architecture Application Programmer's Guide

||||

||||

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Private openCryptoki token objects that have been saved in openCryptoki version
2 format must be migrated before they can be used with openCryptoki version 3.

Before you begin

Public openCryptoki token objects are not encrypted and no migration is required.

Note: Throughout this section, token object is used to mean a PKCS #11 object, like
a key, and the term CCA token is used to denote the openCryptoki plug-in for
CCA.

About this task

In openCryptoki version 2, private token objects are encrypted and decrypted with
a secure key in the cryptographic adapter. In version 3, this encryption and
decryption is done with a clear key using cryptographic software functions.
Therefore, openCryptoki version 3 cannot decrypt a version 2 private token object.

Migration decrypts the private key objects by using the CSNBDEC CCA verb and
the openCryptoki key stored in MK_USER. The objects are then re-encrypted using
the cryptographic software functions according to openCryptoki version 3. The key
bits that are stored in MK_USER are subsequently used as a clear key.

You can find more detailed information about token migration in the
documentation of the appropriate openCryptoki RPM.

Procedure
1. Back up the CCA token directory. For most Linux distributions, this directory is

/var/lib/opencryptoki/ccatok. The content of the CCA token directory
includes the following items:

MK_USER
The TDES key used for internal on-disk encryption, encrypted under
the user's PIN by software routines.

MK_SO
The TDES key used for internal on-disk encryption, encrypted under
the SO's PIN by software routines. This is the same key as in
MK_USER, but with a different encrytion.

NKTOK.DAT
Token information.

TOK_OBJ
The directory in which token objects are stored.

TOK_OBJ/OBJ.IDX
A list of current token objects.

2. Upgrade to openCryptoki version 3 or install version 3.
v Upgrade to openCryptoki version 3.

For most Linux distributions, upgrading from version 2 to version 3
preserves the contents of the CCA token directory.

v Install openCryptoki version 3.
For most Linux distributions, installing version 3 removes the contents of the
CCA token directory. Restore your backup of this directory to migrate the
version 2 tokens.

3. Ensure that no openCryptoki processes are running.

Chapter 33. openCryptoki 1147

a. Stop all applications that use openCryptoki.
b. Find out whether the pkcsslotd daemon is running by issuing the following

command:

$ ps awx |grep pkcsslotd

If the daemon is running, the command output shows a process for
pkcsslotd.

c. If applicable, stop the daemon by issuing a command of this form:

$ killall pkcsslotd

4. Run pkcscca.

Example:

$ pkcscca -m v2objectsv3 -v

The -v option prints information about which objects did and did not get
migrated. This command migrates CCA token objects in the default CCA token
directory, /var/lib/opencryptoki/ccatok.
If your distribution uses a different token directory, use the -d option to specify
this directory.

Example:

$ pkcscca -m v2objectsv3 -v -d /home/ccaadmin/ccatok

Results

The CCA private token objects are encrypted according to openCryptoki version 3
and ready to be accessed.

What to do next

If openCryptoki version 3 cannot find the newly migrated CCA private token
objects, reboot or remove the shared memory file,
/dev/shm/var.lib.opencryptoki.ccatok.

Attention: Ensure that no openCryptoki processes are running when removing
the shared memory.

Migrating to a new CCA master key
If you need to migrate a CCA key to a new wrapping CCA master key (MK), use
the pkcscca tool as described in this topic.

Before you begin

Prerequisite for using the migration key migration function described in this topic
is that you have installed openCryptoki version 3.4 or higher.

1148 Common Cryptographic Architecture Application Programmer's Guide

About this task

There may be situations when CCA master keys must be changed. All CCA secret
and private keys are enciphered (wrapped) with a master key (MK). After a CCA
master key is changed, the keys wrapped with an old master key need to be
re-enciphered with the new master key. Only keys which are marked as
CKA_EXTRACTABLE=TRUE can be migrated. However, by default all keys are
marked as CKA_EXTRACTABLE. So only those keys where the user explicitly
chooses to mark them as non extractable, for example, by setting
CKA_EXTRACTABLE=FALSE cannot be migrated.

Use the pkcscca tool to migrate wrapped CCA keys.

After a new master key is loaded and set, perform the following steps:

Procedure
1. Stop all processes that are currently using openCryptoki with the CCA token.

a. Stop all applications that use openCryptoki.
b. Find out whether the pkcsslotd daemon is running by issuing the following

command:

$ ps awx |grep pkcsslotd

If the daemon is running, the command output shows a process for
pkcsslotd.

c. If applicable, stop the daemon by issuing a command of this form:

$ killall pkcsslotd

2. Make sure pkcsslotd is running. Start or restart pkcsslotd if it was stopped in
step 1.

3. Back up the token object repository of the CCA token. For example, you can
use the following commands:

cd /var/lib/opencryptoki/cca/
tar -cvzf ~/cca/TOK_OBJ_backup.tgz TOK_OBJ

4. Migrate the keys of the CCA token object repository with the pkcscca
migration tool.

pkcscca -m keys -s <slotid> -k <aes|apka|asym|sym>

The following parameters are mandatory:

-s slot number for the CCA token

-k master key type to be migrated: aes, apka, asym, or sym
The following parameter is optional:

-m keys
re-encipers private keys only with a new CCA master key.

All the specified token objects representing extractable keys that are found for
the CCA token are re-encrypted and ready for use. Keys with an attribute
CKA_EXTRACTABLE=FALSE are not eligible for migration. The keys that
failed to migrate are displayed to the user.

Chapter 33. openCryptoki 1149

Example:

$ pkcscca -m keys -s 2 -k sym

migrates all private keys wrapped with symmetric master keys found in the
CCA plug-in for openCryptoki in PKCS slot 2.

5. Re-start the previously stopped openCryptoki processes.

Results

All specified keys, for example, all private and secret keys (for asymmetric and
symmetric cryptography) are now re-encrypted with the new CCA master key and
are ready for use in CCA verbs.

Tracing in openCryptoki
In openCryptoki version 3.3, tracing was introduced. There is no longer a need to
compile openCryptoki with debug enabled via configure --enable-debug to debug
problems.

Trace messages are enabled via the environment variable,
OPENCRYPTOKI_TRACE_LEVEL=<level>. All trace output is logged into a trace.<pid>
file in the /var/log/opencryptoki directory. A trace file is created per process.

Set the OPENCRYPTOKI_TRACE_LEVEL environment variable to one of the available
levels:

0 None. No messages are locked.

1 ERROR: log error messages

2 WARNING: log warning messages

3 INFO: log informational messages

4 DEVELOPEMENT: log development debug messages; these messages may
help debug while developing pkcs#11 applications.

5 DEBUG: debug messages that are useful to openCryptoki developers. This
level must be enabled via the configure --enable-debug option in the
configure script.

Trace level 4 includes all the messages from trace levels 1, 2 and 3.

1150 Common Cryptographic Architecture Application Programmer's Guide

|

|
|
|

|
|
|

|
|

||

||

||

||

||
|

||
|
|

|

Chapter 34. List of abbreviations

A list of abbreviations used in this document.

ADB Actual Data Block

AES Advanced Encryption Standard

AESKW
AES Key Wrap (ANS X9.102)

AIX® Advanced Interactive Executive operating system

ANS American National Standards

ANSI American National Standards Institute

API Application Programming Interface

APAR

Authorized Problem Analysis Report

ASCII American National Standard Code for Information Interchange

ASN Abstract Syntax Notation

ATC Application Transaction Counter

ATM Automated Teller Machine

BC Block Contents

BDK Base Derivation Key

BER ASN.1 Basic Encoding Rules

CA Certification Authority

CBC Cipher block chaining

CCA Common Cryptographic Architecture

CEX3C
Crypto Express3 Coprocessor

CEX4C
Crypto Express4 Coprocessor

CEX5C
Crypto Express5 Coprocessor

CEX6C
Crypto Express6 Coprocessor

CKDS Cryptographic Key Data Set.

CKSN Current-Key Serial Number

CMAC
Block Cipher-based Message Authentication Code Algorithm (analogous to
HMAC), NIST SP 800-38B

CMK Current Master Key

CMS Cryptographic Message Syntax

CNI Coprocessor Node Initialization

© Copyright IBM Corp. 2007, 2018 1151

|
|

CNM Cryptographic Node Management (utility)

CPACF
Central Processor Assist for Cryptographic Functions

CRT Chinese Remainder Theorem.

CSC Card Security Code

CV Control Vector

CVC Card verification code used by MasterCard.

CVK Card Verification Key

CVV Card verification value used by VISA.

DEA Data encryption algorithm

DES Data Encryption Standard

DK Deutsche Kreditwirtschaft (German Banking Industry Committee).
Formerly known as ZKA.

DMA Direct Memory Access

DOW Day of the Week

DRBG
Deterministic Random Bit Generator

DRBGVS
Deterministic Random Bit Generator Validation System (NIST SP 800-90A)

DSA Digital Signature Algorithm.

DSS Digital Signature Standard.

DUKPT
Derived Unique Key Per Transaction

EBCDIC
Extended Binary Coded Decimal Interchange Code

EC Elliptic Curve

ECB Electronic codebook.

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA
Elliptic Curve Digital Signature Algorithm

ECI Eurocheque International

EDE Encipher-Decipher-Encipher

EEPROM
Electrically Erasable, Programmable Read-Only Memory

EID Environment Identification.

EPP Encrypting PIN PAD

FCV function control vector

FIPS Federal Information Processing Standards

FPE Format Preserving Encryption

1152 Common Cryptographic Architecture Application Programmer's Guide

GBP German Bank Pool.

HMAC
Keyed Hash MAC

HSM Hardware Security Module

IBM International Business Machines

ICSF Integrated Cryptographic Service Facility.

ICV Initial Chaining Value

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

I/O Input/Output

IPEK Initial PIN Encryption Key

IPL initial program load

ISO International Organization for Standardization.

ISO/DIS
International Organization for Standardization/Draft International
Standard

ISO/FDIS
International Organization for Standardization/Final Draft International
Standard

JNI Java Native Interface

KC Key Confirmation

KDF Key Derivation Function

KEK Key-Encrypting Key

KVP key verification pattern

LRC longitudinal redundancy check

LSB least significant bit

MAC Message Authentication Code

MD5 Message Digest-5 Hash Algorithm

MDC Modification Detection Code

MDK Master-Derivation Key

MFK Master File Key

MK Master Key

MKVP
Master-Key Verification Pattern

MSB Most significant bit

NIST US National Institute of Science and Technology.

NMK New Master Key

OAEP Optimal asymmetric encryption padding.

OCSP Open Certificate Status Protocol

Chapter 34. List of abbreviations 1153

OEM Original Equipment Manufacturer

OID Object Identifier

OMK Old Master Key

OPK Object Protection Key

PAN Personal Account Number

PBF PIN Block Format

PCI Peripheral Component Interconnect

PCIe PCI Express

PCI-X PCI Extended

PCICA
PCI Cryptographic Accelerator.

PCICC
PCI Cryptographic Coprocessor.

PCIXCC
PCI X Cryptographic Coprocessor.

PIN Personal Identification Number

PKA public key algorithm

PKCS Public Key Cryptographic Standards (RSA Data Security, Inc.)

PKDS Public key data set (PKA cryptographic key data set)

PKI public key infrastructure

POST Power-On Self Test

PRNG Pseudo Random Number Generator

PROM
Programmable Read-Only Memory

PRW PIN reference word/value

PVV PIN Validation Value

RA Registration Authority

RACF Resource Access Control Facility

RAM Random Access Memory

RFC Request for Comments

RHEL Red Hat Enterprise Linux

RNG Random Number Generator

ROM Read-Only Memory

RPM RPM Package Manager (originally: Red Hat Package Manager)

RSA Rivest, Shamir, and Adleman

SEC 2 Standards for Efficient Cryptography 2

SECG Standards for Efficient Cryptography Group

SET Secure Electronic Transaction.

SHA Secure Hash Algorithm

1154 Common Cryptographic Architecture Application Programmer's Guide

||

SLES SUSE Linux Enterprise Server

SNA Systems Network Architecture

SSL Secure Sockets Layer.

TDEA Triple Data Encryption Algorithm (see also TDES).

TDES Triple DES (Data Encryption Standard) or TDEA.

TKE Trusted key entry.

TLV Tag, Length, Value

TMK Terminal Master Key

TVV Token-validation value

UAT UDX Authority Table.

UDF User-defined function.

UDK User-derived key.

UDP User Developed Program.

UDX User Defined Extension.

UKPT Unique Key Per Transaction

UTC Coordinated Universal Time

VIS Visa Integrated Circuit Card Specification

XOR Exlusive-OR

Chapter 34. List of abbreviations 1155

1156 Common Cryptographic Architecture Application Programmer's Guide

Part 4. Appendixes

© Copyright IBM Corp. 2007, 2018 1157

1158 Common Cryptographic Architecture Application Programmer's Guide

Appendix. Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Documentation accessibility

The Linux on Z and LinuxONE publications are in Adobe Portable Document
Format (PDF) and should be compliant with accessibility standards. If you
experience difficulties when you use the PDF file and want to request a Web-based
format for this publication, use the Readers' Comments form in the back of this
publication, send an email to eservdoc@de.ibm.com, or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility at
www.ibm.com/able

© Copyright IBM Corp. 2007, 2018 1159

http://www.ibm.com/able

1160 Common Cryptographic Architecture Application Programmer's Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

© Copyright IBM Corp. 2007, 2018 1161

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

Programming interface information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of the Common Cryptographic Architecture.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at:
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems
Incorporated in the United States, and/or other countries.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries
in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

1162 Common Cryptographic Architecture Application Programmer's Guide

Glossary

This glossary includes some terms and definitions
from the IBM Dictionary of Computing, New York:
McGraw Hill, 1994. This glossary also includes
some terms and definitions from:
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the U.S. American National
Standards Institute (ANSI). Definitions are
identified by the symbol (A) after the
definition.

v The IBM Glossary of Computing Terms.
Definitions are identified by the symbol (D)
after the definition.

v The IBM TotalStorage Enterprise Storage Server®

documentation. Definitions of published parts
of this vocabulary are identified by the symbol
(E) after the definition.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

access control
Ensuring that the resources of a computer
system can be accessed only by
authorized users in authorized ways.

access method
A technique for moving data between
main storage and input/output devices.

adapter
A printed circuit card that modifies the
system unit to allow it to operate in a
particular way.

Advanced Encryption Standard (AES)
A data encryption technique that
improved upon and officially replaced the
Data Encryption Standard (DES). AES is

sometimes referred to as Rijndael, which
is the algorithm on which the standard is
based.

Advanced Interactive Executive (AIX) operating
system

IBM's implementation of the UNIX4

operating system.

American National Standard Code for
Information Interchange (ASCII)

The standard code using a coded
character set consisting of 7-bit characters
(8 bits including parity check) that is used
for information exchange among data
processing systems, data communication
systems, and associated equipment. The
ASCII set consists of control characters
and graphic characters.

American Institute of Standardization (ANSI)
An organization, consisting of producers,
consumers, and general interest groups
that establishes the procedures by which
accredited organizations create and
maintain voluntary industry standards in
the United States. (A)

ANSI key-encrypting key (AKEK)
A 64- or 128-bit key used exclusively in
ANSI X9.17 key management applications
to protect data keys exchanged between
systems.

ANSI X9.17
An ANSI standard that specifies
algorithms and messages for DES key
distribution.

ANSI X9.19
An ANSI standard that specifies an
optional double-MAC procedure which
requires a double-length MAC key.

application program interface (API)
A functional interface supplied by the
operating system or by a separately
deliverable licensed program that allows
an application program written in a
high-level language to use specific data or

4. UNIX is a trademark of UNIX Systems Laboratories,
Incorporated.

© Copyright IBM Corp. 2007, 2018 1163

functions of the operating system or the
licensed program. (D)

Application System/400 system (AS/400)
AS/400 was one of a family of general
purpose mid-range systems with a single
operating system, Operating System/400®,
that provides application portability
across all models. AS/400 is now referred
to as IBM System i®.

assembler language
A source language that includes symbolic
machine language statements in which
there is a one-to-one correspondence
between the instruction formats and the
data formats of the computer.

asymmetric cryptography
Synonym for public key cryptography. (D)

authentication
A process used to verify the integrity of
transmitted data, especially a message (I).
In computer security, a process used to
verify the user of an information system
or protected resources.

authentication pattern
An 8-byte pattern that is calculated from
the master key when initializing the
cryptographic key data set. The value of
the authentication pattern is placed in the
header record of the cryptographic key
data set.

authorize
To permit or give authority to a user to
communicate with or make use of an
object, resource, or function.

authorization
The right granted to a user to
communicate with or make use of a
computer system (I). The process of
granting a user either complete or
restricted access to an object, resource, or
function.

bus In a processor, a physical facility along
which data is transferred.

C

Card-Verification Code (CVC)
See Card-Verification Value.

Card-Verification Value (CVV)
A cryptographic method, defined by
VISA, for detecting forged
magnetic-striped cards. This method

cryptographically checks the contents of a
magnetic stripe. This process is
functionally the same as MasterCard’s
Card-Verification Code (CVC) process.

Central Processor Assist for Cryptographic
Functions (CPACF)

Hardware that provides support for
symmetric ciphers and secure hash
algorithms (SHA) on every central
processor. Hence the potential
encryption/decryption throughput scales
with the number of central processors in
the system.

channel
A path along which signals can be sent,
for example, a data channel or an output
channel. (A)

checksum
The sum of a group of data associated
with the group and used for checking
purposes. (T)

Chinese Remainder Theorem (CRT)
A mathematical theorem that defines a
format for the RSA private key that
improves performance.

Cipher Block Chaining (CBC)
A mode of encryption that uses the data
encryption algorithm and requires an
initial chaining vector. For encipher, it
exclusively ORs the initial block of data
with the initial control vector and then
enciphers it. This process results in the
encryption both of the input block and of
the initial control vector that it uses on
the next input block as the process
repeats. A comparable chaining process
works for decipher.

ciphertext
Text that results from the encipherment of
plaintext. Synonym for enciphered data.
(D).

clear data
Data that is not enciphered.

clear key
Any type of encryption key not protected
by encryption under another key.

cleartext
Text that has not been altered by a
cryptographic process. Synonym for
plaintext. See also ciphertext.

1164 Common Cryptographic Architecture Application Programmer's Guide

|
|
|
|
|
|
|
|
|

Common Cryptographic Architecture (CCA)
The CCA API is the programming
interface described in this document.

Common Cryptographic Architecture:
Cryptographic Application Programming
Interface

Defines a set of cryptographic functions,
external interfaces, and a set of key
management rules that provide a
consistent, end-to-end cryptographic
architecture across different IBM
platforms.

concatenation
An operation that joins two characters or
strings in the order specified, forming one
string whose length is equal to the sum of
the lengths of its parts.

console
A part of a computer used for
communication between the operator or
maintenance engineer and the computer.
(A)

control vector (CV)
In CCA, a 16-byte string that is
exclusive-OR-ed with a master key or a
key-encrypting key to create another key
that is used to encipher and decipher data
or data keys. A control vector determines
the type of key and the restrictions on the
use of that key.

cryptographic adapter
See cryptographic coprocessor.

cryptographic coprocessor
A microprocessor that adds cryptographic
processing functions to specific
processors. A cryptographic coprocessor
on an IBM Z mainframe is a
tamper-resistant chip built into the
processor board.

cryptographic key data set (CKDS)
A data set that contains the encrypting
keys used by an installation. (D)

CUSP (Cryptographic Unit Support Program)
The IBM cryptographic offering, program
product 5740-XY6, using the
channel-attached 3848. CUSP is no longer
in service.

data key or data-encrypting key
A key used to encipher, decipher, or
authenticate data. Contrast with
key-encrypting key.

Data Encryption Algorithm (DEA)
A 64-bit block cipher that uses a 64-bit
key, of which 56 bits are used to control
the cryptographic process and 8 bits are
used for parity checking to ensure that
the key is transmitted properly.

Data Encryption Standard (DES)
The National Institute of Standards and
Technology Data Encryption Standard,
adopted by the U.S. government as
Federal Information Processing Standard
(FIPS) Publication 46. which allows only
hardware implementations of the
data-encryption algorithm.

data translation key
A 64-bit key that protects data transmitted
through intermediate systems when the
originator and receiver do not share the
same key.

decipher
To convert enciphered data in order to
restore the original data. (T)

In computer security, to convert ciphertext
into plaintext by means of a cipher
system.

To convert enciphered data into clear
data. Synonym for decrypt. Contrast with
encipher. (D)

decrypt
To decipher or decode. Synonym for
decipher. Contrast with encrypt.

device driver
A program that contains the code needed
to attach and use a device.

directory server
A server that manages key records in key
storage by using an Indexed Sequential
Access Method.

digital signature
In public key cryptography, information
created by using a private key and
verified by using a public key. A digital
signature provides data integrity and
source nonrepudiation.

Digital Signature Algorithm (DSA)
A public key algorithm for digital
signature generation and verification used
with the Digital Signature Standard.

Digital Signature Standard (DSS)
A standard describing the use of

Glossary 1165

algorithms for digital signature purposes.
One of the algorithms specified is DSA
(Digital Signature Algorithm).

domain
That part of a network in which the data
processing resources are under common
control. (T)

double-length key
A key that is 128 bits long. A key can be
either double- or single-length. A
single-length key is 64 bits long.

Electronic Code Book (ECB)
A mode of operation used with block
cipher cryptographic algorithms in which
plaintext or ciphertext is placed in the
input to the algorithm and the result is
contained in the output of the algorithm.

Elliptic Curve Cryptography (ECC)
A public-key process discovered
independently in 1985 by Victor Miller
(IBM) and Neal Koblitz (University of
Washington). ECC is based on discrete
logarithms. The algebraic structure of
elliptic curves over finite fields makes it
much more difficult to challenge at
equivalent RSA key lengths.

encipher
To scramble data or to convert data to a
secret code that masks the meaning of the
data to unauthorized recipients. Synonym
for encrypt. Contrast with decipher. See
also encode.

encrypt
Synonym for encipher. (I) To convert
cleartext into ciphertext. Contrast with
decrypt.

erasable programmable read-only memory
(EPROM)

A type of memory chip that can retain its
contents without electricity. Unlike the
programmable read-only memory
(PROM), which can be programmed only
once, the EPROM can be erased by
ultraviolet light and then reprogrammed.
(E)

Eurocheque International S.C. (ECI)
A financial institution consortium that has
defined three PIN-block formats.

exit routine
In the CCA products, a user-provided

routine that acts as an extension to the
processing provided with calls to the
security API.

exit To execute an instruction within a portion
of a computer program in order to
terminate the execution of that portion.
Such portions of computer programs
include loops, subroutines, modules, and
so on. (T)

A user-written routine that receives
control from the system during a certain
point in processing - for example, after an
operator issues the START command.

exportable form
A condition a key is in when enciphered
under an exporter key-encrypting key. In
this form, a key can be sent outside the
system to another system. A key in
exportable form cannot be used in a
cryptographic function.

EXPORTER key
In the CCA implementation, a type of
DES key-encrypting key that can encipher
a key at a sending node. Contrast with
IMPORTER key.

exporter key-encrypting key
A 128-bit key used to protect keys sent to
another system. A type of transport key.

feature
A part of an IBM product that can be
ordered separately.

Federal Information Processing Standard (FIPS)
A standard published by the US National
Institute of Science and Technology.

financial PIN
A Personal Identification Number used to
identify an individual in some financial
transactions. To maintain the security of
the PIN, processes and data structures
have been adopted for creating,
communicating, and verifying PINs used
in financial transactions. See also Personal
Identification Number.

Flash-Erasable Programmable Read-Only
Memory (flash EPROM)

A memory that has to be erased before
new data can be saved into the memory.

Function control vector (FCV)
The CCA software that can be loaded into
the coprocessor limits the functionality of
the coprocessor based on the values in a

1166 Common Cryptographic Architecture Application Programmer's Guide

distributed function control vector (FCV).
A CCA FCV is a digitally signed data
structure (certificate) signed by IBM. The
certificate is used to accommodate
potential government export and import
regulations under USA Government
control. An IBM cryptographic
coprocessor becomes a practical
cryptographic engine when it validates
and accepts digitally signed software. IBM
exports its cryptographic coprocessor
hardware as non-cryptographic products,
and controls and reports the export of the
cryptography-enabling software as
required.

Galois/Counter Mode (GCM)
A mode of operation for symmetric key
cryptographic block ciphers that uses
universal hashing over a binary Galois
field to provide authenticated encryption.
The operation is an authenticated
encryption algorithm designed to provide
both data authenticity (integrity) and
confidentiality. GCM is defined for block
ciphers with a block size of 128 bits. It
can be implemented in hardware to
achieve high speeds with low cost and
low latency. Software implementations
can achieve excellent performance by
using table-driven field operations. It uses
mechanisms that are supported by a
well-understood theoretical foundation,
and its security follows from a single
reasonable assumption about the security
of the block cipher.

German Bank Pool (GBP)
A German financial institution consortium
that defines specific methods of PIN
calculation.

hashing
An operation that uses a one-way
(irreversible) function on data, usually to
reduce the length of the data and to
provide a verifiable authentication value
(checksum) for the hashed data.

header record
A record containing common, constant, or
identifying information for a group of
records that follows. (D)

host In this publication, same as host computer
or host processor. The machine in which
the coprocessor resides. In a computer
network, the computer that usually

performs network-control functions and
provides end-users with services such as
computation and database access. (I)

importable form
A condition a key is in when it is
enciphered under an importer
key-encrypting key. A key is received
from another system in this form. A key
in importable form cannot be used in a
cryptographic function.

IMPORTER key
In the CCA implementation, a type of
DES key-encrypting key that can decipher
a key at a receiving mode. Contrast with
EXPORTER key.

importer key-encrypting key
A 128-bit key used to protect keys
received from another system. A type of
transport key.

Integrated Cryptographic Service Facility (ICSF)
An IBM licensed program that supports
the cryptographic hardware feature for
the high-end IBM Z machines running in
a z/OS environment.

International Organization for Standardization
(ISO) An organization of national standards

bodies established to promote the
development of standards to facilitate the
international exchange of goods and
services, and develop cooperation in
intellectual, scientific, technological, and
economic activity.

initial chaining vector (ICV)
A 64-bit random or pseudo-random value
used in the cipher block chaining mode of
encryption with the data encryption
algorithm.

input PIN-encrypting key
A 128-bit key used to protect a PIN block
sent to another system or to translate a
PIN block from one format to another.

installation exit
See exit.

jumper
A wire that joins two unconnected circuits
on a printed circuit board.

key In computer security, a sequence of
symbols used with a cryptographic
algorithm to encrypt or decrypt data.

Glossary 1167

key agreement
A key establishment procedure where the
resultant secret keying material is a
function of information contributed by
two participants, so that no party can
predetermine the value of the secret
keying material independently from the
contributions from the other parties.

key-encrypting key (KEK)
A key used for the encryption and
decryption of other keys. Contrast with
data-encrypting key. Also called a transport
key.

key half
In CCA, one of the two DES keys that
make up a double-length key.

key identifier
In CCA, a 64-byte variable which is either
a key label or a key token.

key label
In CCA, an identifier of a key-record in
key storage.

key storage
In CCA, a data file that contains
cryptographic keys which are accessed by
key label.

key token
In CCA, a data structure that can contain
a cryptographic key, a control vector, and
other information related to the key.

key output data set
A key generator utility program data set
containing information about each key
that the key generator utility program
generates except an importer key for file
encryption.

key part
A 32-digit hexadecimal value that you
enter to be combined with other values to
create a master key or clear key.

key part register
A register in the key storage unit that
stores a key part while you enter the key
part.

link The logical connection between nodes
including the end-to-end control
procedures. The combination of physical
media, protocols, and programming that
connects devices on a network. In
computer programming, the part of a
program, in some cases a single

instruction or an address, that passes
control and parameters between separate
portions of the computer program. (A) (I)
To interconnect items of data or portions
of one or more computer programs. (I) In
SNA, the combination of the link
connection and link stations joining
network nodes.

LPAR mode
The central processor mode that enables
the operator to allocate the hardware
resources among several logical partitions.

MAC generation key
A 64-bit or 128-bit key used by a message
originator to generate a message
authentication code sent with the message
to the message receiver.

MAC verification key
A 64-bit or 128-bit key used by a message
receiver to verify a message
authentication code received with a
message.

make file
A composite file that contains either
device configuration data or individual
user profiles.

master key (MK)
In computer security, the top-level key in
a hierarchy of key-encrypting keys.

master key register
A register in the cryptographic
coprocessors that stores the master key
that is active on the system.

master key variant
A key derived from the master key by use
of a control vector. It is used to force
separation by type of keys on the system.

MD5 Message Digest 5. A hash algorithm.

Message Authentication Code (MAC)
A number or value derived by processing
data with an authentication algorithm,
The cryptographic result of block cipher
operations on text or data using a Cipher
Block Chaining (CBC) mode of operation,
A digital signature code.

Modification Detection Code (MDC)
In cryptography, a number or value that
interrelates all bits of a data stream so
that, when enciphered, modification of
any bit in the data stream results in a new
MDC.

1168 Common Cryptographic Architecture Application Programmer's Guide

multiple encipherment
The method of encrypting a key under a
double-length key-encrypting key.

National Institute of Science and Technology
(NIST)

The current name for the US National
Bureau of Standards.

new master key (NMK) register
A register in the key storage unit that
stores a master key before you make it
active on the system.

NOCV processing
Process by which the key generator utility
program or an application program
encrypts a key under a transport key
itself rather than a transport key variant.

nonce
A time-varying value that has at most a
negligible chance of repeating, such as a
random value that is generated anew for
each use, a timestamp, a sequence
number, or some combination of these.

nonrepudiation
A method of ensuring that a message was
sent by the appropriate individual.

old master key (OMK) register
A register in the key storage unit that
stores a master key that you replaced
with a new master key.

operational form
The condition of a key when it is
encrypted under the master key so that it
is active on the system.

output PIN-encrypting key
A 128-bit key used to protect a PIN block
received from another system or to
translate a PIN block from one format to
another.

PCI X Cryptographic Coprocessor
An asynchronous cryptographic
coprocessor available on the IBM eServer
zSeries 990 and IBM eServer zSeries 800.

Personal Account Number (PAN)
A Personal Account Number identifies an
individual and relates that individual to
an account at a financial institution. It
consists of an issuer identification
number, customer account number, and
one check digit.

Personal Identification Number (PIN)
The 4-digit to 12-digit number entered at
an automatic teller machine to identify
and validate the requester of an automatic
teller machine service. Personal
identification numbers are always
enciphered at the device where they are
entered, and are manipulated in a secure
fashion.

Personal Security card
An ISO-standard “smart card” with a
microprocessor that enables it to perform
a variety of functions such as identifying
and verifying users, and determining
which functions each user can perform.

PIN block
A 64-bit block of data in a certain PIN
block format. A PIN block contains both a
PIN and other data.

PIN generation key
A 128-bit key used to generate PINs or
PIN offsets algorithmically.

PIN key
A 128-bit key used in cryptographic
functions to generate, transform, and
verify the personal identification
numbers.

PIN offset
For 3624, the difference between a
customer-selected PIN and an
institution-assigned PIN. For German
Bank Pool, the difference between an
institution PIN (generated with an
institution PIN key) and a pool PIN
(generated with a pool PIN key).

PIN verification key
A 128-bit key used to verify PINs
algorithmically.

plaintext
Data that has nor been altered by a
cryptographic process. Synonym for
cleartext. See also ciphertext.

Power-On Self Test (POST)
A series of diagnostic tests run
automatically by a device when the
power is turned on.

private key
In computer security, a key that is known
only to the owner and used together with
a public-key algorithm to decipher data.
The data is enciphered using the related

Glossary 1169

public key. Contrast with public key. See
also public-key algorithm.

profile
Data that describes the significant
characteristics of a user, a group of users,
or one-or-more computer resources.

profile ID
In the CCA implementation, the value
used to access a profile within the CCA
access-control system.

protocol
A set of semantic and syntactic rules that
determines the behavior of functional
units in achieving communication. (I) In
SNA, the meanings of and the sequencing
rules for requests and responses used to
manage the network, transfer data, and
synchronize the states of network
components. A specification for the
format and relative timing of information
exchanged between communicating
parties.

Programmed Cryptographic Facility (PCF)
An IBM licensed program that provides
facilities for enciphering and deciphering
data and for creating, maintaining, and
managing cryptographic keys. (D)

The IBM cryptographic offering, program
product 5740-XY5, using software only for
encryption and decryption. This product
is no longer in service.

public key
In computer security, a key that is widely
known, and used with a public-key
algorithm to encrypt data. The encrypted
data can be decrypted only with the
related private key. Contrast with private
key. See also public-key algorithm.

Public Key Algorithm (PKA)
In computer security, an asymmetric
cryptographic process that uses a public
key to encrypt data and a related private
key to decrypt data. Contrast with Data
Encryption Algorithm and Data Encryption
Standard algorithm. See also
Rivest-Shamir-Adleman algorithm.

public key cryptography
In computer security, cryptography in
which a public key is used for encryption
and a private key is used for decryption.
Synonymous with asymmetric
cryptography.

Public-Key Cryptography Standards (PKCS)
Specifications produced by RSA
Laboratories in cooperation with secure
system developers worldwide, for the
purpose of accelerating the deployment of
public-key cryptography. First published
in 1991.

Random access memory (RAM)
A storage device into which data are
entered and from which data are retrieved
in a non-sequential manner.

record chaining
When there are multiple cipher requests
and the output chaining vector (OCV)
from the previous encipher request is
used as the input chaining vector (ICV)
for the next encipher request.

Read-only memory (ROM)
Memory in which stored data cannot be
modified by the user except under special
conditions.

Resource Access Control Facility (RACF)
An IBM licensed program that enables
access control by identifying and
verifying the users to the system,
authorizing access to protected resources,
logging detected unauthorized attempts
to enter the system, and logging detected
accesses to protected resources.

retained key
A private key that is generated and
retained within the secure boundary of
the cryptographic coprocessor.

Rivest-Shamir-Adleman (RSA) algorithm
A process for public key cryptography
that was developed by R. Rivest, A.
Shamir, and L. Adleman.

RS-232
A specification that defines the interface
between data terminal equipment and
data circuit-terminating equipment, using
serial binary data interchange.

RS-232C
A standard that defines the specific
physical, electronic, and functional
characteristics of an interface line that
uses a 25-pin connector to connect a
workstation to a communication device.

Secure Electronic Transaction
A standard created by Visa International

1170 Common Cryptographic Architecture Application Programmer's Guide

and MasterCard for safeguarding
payment card purchases made over open
networks.

Secure Hash Algorithm (SHA), FIPS 180
A set of related cryptographic hash
functions designed by the National
Security Agency (NSA) and published by
the National Institute of Standards and
Technology (NIST). The first member of
the family, published in 1993, is officially
called SHA. However, today, it is often
unofficially called SHA-0 to avoid
confusion with its successors. Two years
later, SHA-1, the first successor to SHA,
was published. Four more variants have
since been published with increased
output ranges and a slightly different
design: SHA-224, SHA-256, SHA-384, and
SHA-512 (all are sometimes referred to as
SHA-2).

secure key
A key that is encrypted under a master
key. When using a secure key, it is passed
to a cryptographic coprocessor where the
coprocessor decrypts the key and
performs the function. The secure key
never appears in the clear outside of the
cryptographic coprocessor.

Secure Sockets Layer
A security protocol that provides
communications privacy over the Internet
by allowing client/server applications to
communicate in a way that is designed to
prevent eavesdropping, tampering, or
message forgery.

security server
In the CCA implementation, the functions
provided through calls made to the
security API.

SHA-1 (Secure Hash Algorithm 1, FIPS 180)
A hash algorithm required for use with
the Digital Signature Standard.

SHA-2 (Secure Hash Algorithm 2, FIPS 180)
Four additional variants to the SHA
family, with increased output ranges and
a slightly different design: SHA-224,
SHA-256, SHA-384, and SHA-512 (all are
sometimes referred to as SHA-2).

SHA-224
One of the SHA-2 algorithms.

SHA-256
One of the SHA-2 algorithms.

SHA-384
One of the SHA-2 algorithms.

SHA-512
One of the SHA-2 algorithms.

single-length key
A key that is 64 bits long. A key can be
single- or double-length. A double-length
key is 128 bits long.

smart card
A plastic card that has a microchip
capable of storing data or process
information.

supervisor state
A state during which a processing unit
can execute input/output and other
privileged instructions. (D)

Systems Network Architecture (SNA)
An architecture that describes logical
structure, formats, protocols, and
operational sequences for transmitting
information units through, and controlling
the configuration and operation of,
networks. Note: The layered structure of
SNA allows the ultimate origins and
destinations of information, that is, the
end users, to be independent of and
unaffected by the specific SNA network
services and facilities used for information
exchange.

TLV A widely used construct, Tag, Length,
Value, to render data self-identifying. For
example, such constructs are used with
EMV smart cards.

token In a Local Area Network, the symbol of
authority passed successively from one
data station to another to indicate the
station is temporarily in control of the
transmission medium. (I) A string of
characters treated as a single entity.

Transaction Security System (TSS)
An IBM product offering including both
hardware and supporting software that
provides access control and basic
cryptographic key-management functions
in a network environment. In the
workstation environment, this includes
the 4755 Cryptographic Adapter, the
Personal Security Card, the 4754 Security
Interface Unit, the Signature Verification
feature, the Workstation Security Services
Program, and the AIX Security Services
Program/6000. In the host environment,

Glossary 1171

this includes the 4753 Network Security
Processor and the 4753 Network Security
Processor MVS™ Support Program.

transport key
A 128-bit key used to protect keys
distributed from one system to another. A
transport key can either be an exporter
key-encrypting key, an importer
key-encrypting key, or an ANSI
key-encrypting key.

transport key variant
A key derived from a transport key by
use of a control vector. It is used to force
separation by type for keys sent between
systems.

Unique key per transaction (UKPT)
A cryptographic process that can be used
to decipher PIN blocks in a transaction.

user-exit routine
A user-written routine that receives
control at predefined user-exit points.

verb A function that has an entry-point-name
and a fixed-length parameter list. The
procedure call for a verb uses the
standard syntax of a programming
language.

verification pattern
An 8-byte pattern calculated from the key
parts you enter when you enter a master
key or clear key. You can use the
verification pattern to verify that you
have entered the key parts correctly and
specified a certain type of key.

virtual machine (VM)
A functional simulation of a computer
and its associated devices. Each virtual
machine is controlled by a suitable
operating system. VM controls concurrent
execution of multiple virtual machines on
one host computer.

VISA A financial institution consortium that has
defined four PIN block formats and a
method for PIN verification.

VISA PIN Verification Value (VISA PVV)
An input to the VISA PIN verification
process that, in practice, works similarly
to a PIN offset.

3621 A model of an IBM Automatic Teller
Machine that has a defined PIN block
format.

3624 A model of an IBM Automatic Teller
Machine that has a defined PIN block
format and methods of PIN calculation.

4753 The Network Security processor. The IBM
4753 is a processor that uses the Data
Encryption Algorithm and the RSA
algorithm to provide cryptographic
support for systems requiring secure
transaction processing (and other
cryptographic services) at the host
computer. The NSP includes a 4755
cryptographic adapter in a workstation
which is channel attached to a main
frame computer.

1172 Common Cryptographic Architecture Application Programmer's Guide

Index

Numerics
2048-bit Chinese Remainder

Theorem 865
3621 PIN block format 498, 1008
3624 PIN block format 498, 1007
4096-bit Chinese Remainder

Theorem 867
4700 Encrypting PINPAD 1007
4700-PAD 1029
4704-EPP PIN block format 498

A
access control 19
access control data structures 1073

access control point list 1075
ACP list 1075
basic structure of a role 1073
DEFAULT role 1077
examples 1078
role data structure example 1079
role structures 1073

Access Control Maintenance
(CSUAACM) 89

format 89
JNI version 93
parameters 90

access control point
ACP 1047
verbs 1047

access control point list
data structure example 1078
data structures 1075

access control points 1047
CPACF 16
enable, disable 1129
show with panel.exe 1129

Access Control Tracking (CSUAACT) 93
format 94
parameters 94

Access Control Tracking (CSUAACTJ)
JNI version 100

accessibility 1159
ACP

access control point 1047
remote key loading 53

ACP list 1075
data structure example 1078

ACP tracking
panel.exe 1131

ACPs
enable, disable 1129
show with panel.exe 1129

ACTIVE 735
active role

show with panel.exe 1129
adapter

pending change 102
adapter compliance state

querying with panel.exe 1132

adapter domain
migration mode 1090

adapter ID
coprocessor 102

adapter serial number 102
ADAPTER1 102
ADD-PART 237, 238, 241
ADJUST 175, 246, 254
administration of CCA master key

methods or tools 1119
AES 168, 212, 242, 250, 260, 302, 305,

345, 354, 359, 365
Key Token Build2 265

AES CIPHER keys
definition 41

AES CIPHER variable-length
symmetric 904

AES encrypted OPK section
4096-bit Chinese Remainder Theorem

format 869
RSA private key 869

AES encryption algorithm 392, 399
AES EXPORTER and IMPORTER

variable-length symmetric 927
AES internal fixed-length key-token

flag byte 848
AES key 16

managing 165
translation 16
variable-length 304

AES Key Record Create
(CSNBAKRC) 455

format 456
JNI version 457
parameters 456
related information 457
required commands 457
restrictions 457

AES Key Record Delete
(CSNBAKRD) 457

format 458
JNI version 459
parameters 458
related information 459
required commands 459
restrictions 458

AES Key Record List (CSNBAKRL) 459
format 460
JNI version 461
parameters 460
related information 461
required commands 461

AES Key Record Read
(CSNBAKRR) 462

format 462
JNI version 463
parameters 462
related information 463
required commands 463
restrictions 463

AES Key Record Write
(CSNBAKRW) 464

format 464
JNI version 466
parameters 464
related information 465
required commands 465
restrictions 465

AES key storage 150, 449
AES key storage files 51
AES key wrapping 37
AES key-encrypting key 221
AES MAC 430
AES MAC variable-length

symmetric 912
AES master key 41, 221
AES PINPROT, PINCALC, and PINPRW

variable-length symmetric 938
AES PKA Master Key (APKA-MK) 71
AES transport key 41
AES verb 61
AES-MK 41, 83, 158, 246, 254
AES, DES, and HMAC cryptography and

verbs 33
AES, DES, and HMAC functions 33
AESDATA 41, 212
AESKW 345, 365
AESKW wrapping 40
AESKWCV 250, 365
AESTOKEN 41, 212
algorithm

3624 PIN generation 1010
3624 PIN verification 1013
DES 33
ECDSA 71
GBP PIN generation 1011
GBP PIN verification 1015
GBP-PIN 556
IBM-PIN 556
IBM-PINO 556
Interbank PIN generation 1019
PIN offset generation 1012
PIN, detailed 1010
PIN, general 56
PKA 71
PVV generation 1018
PVV verification 1019
RSA 71
VISA PIN 1017
VISA-PVV 519, 556
VISAPVV4 556

algorithm parameter
TR31 Key Token Parse verb 805

algorithms
supported for the CCA token 1144

AMEX-CSC 41, 170, 260, 308
ANSI 9.9-1 algorithm 417
ANSI X3.106 1027
ANSI X3.106 (CBC) 1028
ANSI X9.102 40
ANSI X9.19 426

© Copyright IBM Corp. 2007, 2018 1173

|

ANSI X9.19 optional double MAC
procedure 417

ANSI X9.19 Optional Procedure 1
MAC 1034

ANSI X9.23 1027
ANSI X9.23 cipher block chaining 1029
ANSI X9.23 padding 381
ANSI X9.23 processing rule 380, 382,

387
Decipher 381
Encipher 385

ANSI X9.24 323
ANSI X9.30 675
ANSI X9.31 675, 676, 682
ANSI X9.31 hash format 1044
ANSI X9.8 545
ANSI X9.8 PIN block format 1005
ANSI X9.8 PIN restriction 495
ANSI X9.9 41, 170, 260, 308
ANSI X9.9 MAC 1033
ANSI X9.9-1 426
ANY 41, 170, 260, 308
any domain configuration 10
ANY-MAC 41, 170, 260, 308
APAR fixes

z/VM xxi, 1106
APKA CMK 102
APKA master key 1021
APKA NMK 102
APKA OMK 102
APKA-MK 71, 72, 83, 158, 246, 256, 710
application programs

CCA service request 8
array_key_left_identifier parameter

Control Vector Translate verb 175
array_key_right_identifier parameter

Control Vector Translate verb 175
ASCII conversion 817
ASYM-MK 41, 71, 72, 83, 158, 160, 246,

254, 710
asymmetric CMK status 102
asymmetric keys master key 41
asymmetric master key 83
asymmetric NMK status 102
asymmetric OMK status 102
authenticating messages 417
authentication 3, 55
Authentication Parameter Generate

(CSNBAPG) 508
format 509
JNI version 511
parameters 509
required commands 511
usage notes 511

authentication_master_key parameter
PIN Change/Unblock verb 586

Automated Teller Machine (ATM) 53
AUTOSELECT option 11

ignoring verbs 11
master key coherence 11

B
base CCA services 102
basic structure of a role 1073
battery indicator 102

battery-backed RAM
size 102

BCD 509, 639, 650, 653, 659, 663, 669
becoming compliant-tagged

key tokens 1090
binding

PAN to the PIN 1085
binding key halves 37
binding PAN to the PIN 1085
block chaining 380
block_size parameter

Symmetric Algorithm Decipher
verb 392

Symmetric Algorithm Encipher
verb 399

Brainpool
elliptic curve type 195

Byte * 26

C
C API 1139, 1144
C applications

using CCA libraries 25
c_variable_encrypting_key_identifier

parameter
Cryptographic Variable Encipher

verb 178
calculation method

MAC padding method 1033
Message Authentication Code

(MAC) 1033
Modification Detection Code

(MDC) 1024
X9.19 method 1033

callable service 19
Cardholder Name 502
CBC processing rule 380, 382, 387, 392,

399
Decipher 381
Encipher 385
Symmetric Algorithm Decipher 390
Symmetric Algorithm Encipher 397

CBC wrapping of DES keys
enhanced CBC 37

CCA
API 3
application programming 1
Common Cryptographic

Architecture 1
functional overview 4
functions 33
programming 3
service request 8
software support 4

CCA access control 4
CCA API 9
CCA API build date 102
CCA API version 102
CCA application

compile 24
Java 28
link 24

CCA coprocessor mode xvii
CCA DEB

contained files 1109
groups 1111

CCA DEB (continued)
installation 1108
samples 1110
uninstall 1116

CCA DES-key verification 1023
CCA error log 102
CCA installation 1107
CCA JNI 26

calling 26
CCA libraries

C applications 25
CCA library 19

functions 1144
location 8
restrictions 1146

CCA management 3
CCA master key 4

administration 1119
methods or tools 1119

CCA master key migratioin 1148
CCA node key management verbs 58
CCA nodes and resource control verb 89
CCA nodes and resource control

verbs 59
CCA programming 19
CCA RPM

contained files 1109
groups 1111
install and configure 1111
installation 1108
samples 1110
uninstall 1116

CCA sample program 1093
C 1093
Java 1097

CCA security API 4
CCA services

base 102
CCA system setup 1103
CCA token

configuring 1140
status information 1143
supported mechanisms 1144
using 1144

CCA verb 3, 61, 87
CCA verb description 4
Central Processor Assist for

Cryptographic Functions (CPACF) xxi,
14, 1106

certificate section
PKA public-key 885

CEX*C xx, xxi, 3, 4, 11, 16, 18, 57, 71, 72,
145, 304, 454, 1106, 1117

data protection 33
CEX*C feature coexistence 1117
CEX3 xvii, 101
CEX3C xxi, 16, 102, 495
CEX4C xvii, xxi, 101
CEX5C xvii, xxi, 101
CEX5S information 1117
CEX6C xvii, xxi, 101
chain_data parameter

Symmetric Algorithm Decipher
verb 392

Symmetric Algorithm Encipher
verb 399

1174 Common Cryptographic Architecture Application Programmer's Guide

chain_data_length parameter
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
chaining_vector parameter

Decipher verb 382
EC Diffie-Hellman verb 200
Encipher verb 387
HMAC Generate verb 420
HMAC Verify verb 423
MAC Generate verb 427
MAC Verify verb 434
MDC Generate verb 442
One-Way Hash verb 445

chaining_vector_length parameter
EC Diffie-Hellman verb 200
HMAC Generate verb 420
HMAC Verify verb 423
One-Way Hash verb 445

changing control vectors 1000
changing the master key

panel.exe 1128
CHECK 464, 483
Chinese Remainder Theorem 327, 694,

699, 700, 716, 854, 855
chzcrypt, command 1105
CIPHER 170, 184, 190, 209, 212, 235,

260, 308
cipher block chaining 37
cipher block chaining (CBC) 379
Cipher Block Chaining (CBC) 178
CIPHER key type 41
Cipher Text Translate2

usage notes 433
Cipher Text Translate2 (CSNBCTT2) 404

format 406
JNI version 414
parameters 406
required commands 410
restrictions 410
usage notes 411

cipher_text parameter
Cryptographic Variable Encipher

verb 178
Decipher verb 382
Encipher verb 387

ciphering methods 1026
ciphertext 178

deciphering 379
ciphertext parameter

Symmetric Algorithm Decipher
verb 392

Symmetric Algorithm Encipher
verb 399

ciphertext_length parameter
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
CIPHERXI 41, 209
CIPHERXL 41, 209
CIPHERXO 41, 209
CLEAR 509, 639, 650, 653, 659, 663, 669
clear key 16, 18, 41, 254, 379

protecting 379
Clear Key Import (CSNBCKI) 166

Clear Key Import (CSNBCKI) (continued)
format 166
JNI version 167
parameters 166
required commands 167

Clear PIN Encrypt (CSNBCPE) 512
format 512
JNI version 514
parameters 512
required commands 514
restrictions 514

Clear PIN Generate (CSNBPGN) 515
format 515
JNI version 518
parameters 515
related information 518
required commands 517
usage notes 518

Clear PIN Generate Alternate
(CSNBCPA) 518

extraction rules 1009
format 518
JNI version 522
parameters 519
required commands 522

clear_key parameter
Clear Key Import verb 166
Multiple Clear Key Import verb 168

clear_key_bit_length parameter
Key Generate2 verb 222

clear_key_length parameter
Multiple Clear Key Import verb 168

clear_key_value parameter
Key Token Build2 verb 265

clear_master_key parameter
Key Storage Initialization verb 150

clear_PIN parameter
Clear PIN Encrypt verb 512

clear_text parameter
Decipher verb 382
Encipher verb 387
Secure Messaging for Keys verb 596
Secure Messaging for PINs verb 599

CLEARPIN 599
cleartext parameter

Symmetric Algorithm Decipher
verb 392

Symmetric Algorithm Encipher
verb 399

cleartext_length parameter
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
CLR-A128 246
CLR-A192 246
CLR-A256 246
CLR8-ENC 170, 184, 190, 260, 308
CLRAES 41, 260
CMAC 430
CMK 452

current master key 454
CMK status 102
CMK status, AES 102
CMK status, ECC 102
Code Conversion

parameters 817

Code Conversion (CSNBXEA) 817
format 817
required commands 819
restrictions 819
usage notes 819

Code Conversion (CSNBXEAJ)
JNI version 821

coexistence
of CEX*C features 1117

combinations of verbs 57
command codes

security API 1135
Common Cryptographic Architecture

API 3
application programming 1
CCA 1
service request 8

Common Cryptographic Architecture
(CCA)

description xx
Common Cryptographic Architecture

library
location 8

common parameters 22
COMPLET 238
COMPLETE 237, 238, 241
compliance state of adapter

querying with panel.exe 1132
compliance warnings 32, 1086
compliant-tagged key tokens

PIN block translation 1085
concurrent installations 1117
configuration file

opencryptoki.conf 1140
contact IBM xxviii
contents of the DEFAULT role 1077
CONTINUE 406
continue processing rule 382, 387, 392,

399
control information

for Cipher Text Translate2 406
for Clear PIN Encrypt 512
for Clear PIN Generate 515
for Control Vector Generate 170
for Control Vector Translate 175
for CVV Generate 523
for CVV Verify 532
for Decipher 382
for Digital Signature Generate 676
for Digital Signature Verify 682
for Diversified Key Generate 184
for Diversified Key Generate2 190
for Encipher 387
for Encrypted PIN Generate 536
for Key Part Import 238
for Key Test 246
for Key Test Extended 256
for Key Token Change2 305
for MAC Generate 427
for MAC Verify 434
for MAC Verify2 438
for MDC Generate 442
for Multiple Clear Key Import 168
for One-Way Hash 445
for PIN Change/Unblock 586
for PKA Decrypt 327
for PKA Encrypt 331

Index 1175

control information (continued)
for PKA Key Import 696
for PKA Key Record Delete 477
for PKA Key Record Write 483
for PKA Key Token Build 700
for Secure Messaging for Keys 596
for Secure Messaging for PINs 599
for Symmetric Algorithm

Decipher 392
for Symmetric Algorithm

Encipher 399
for Symmetric Key Export 345
for Symmetric Key Generate 354
for symmetric key import 365
for Symmetric Key Import 359
for Transaction Validation 604
for Trusted Block Create 735

control vector 34, 37, 132, 170, 174, 183,
184, 190, 212, 234, 259, 307, 335, 382, 609

definition 40
description 989
value 989

Control Vector Generate (CSNBCVG) 41,
170

format 170
JNI version 174
key type 170
parameters 170
usage notes 174

control vector keyword combinations 41
control vector length 132
control vector table 989
Control Vector Translate

(CSNBCVT) 174, 1000
format 175
JNI version 177
parameters 175
required commands 177
usage notes 177

control vectors, changing 1000
control_vector parameter

Control Vector Generate verb 170
Key Token Build verb 260
Key Token Parse verb 308

Control-vector-base bit maps 991
coprocessor

battery indicator 102
CCA error log 102
intrusion latch 102
last five commands 102
number of 102
power-supply voltage 102
radiation 102
tampering 102
temperature 102

coprocessor adapter ID 102
coprocessor certification 4
coprocessor EC level 102
coprocessor mode xvii
coprocessor part number 102
coprocessor POST2 version 102
coprocessor resource selection 144, 147
coprocessor selection 11
coprocessor serial number 102
CPACF xxi, 14, 16, 18, 145, 382, 386, 426,

434, 1106
access control points 16

CPACF (continued)
AUTOSELECT option 19
clear key 16
default card 19
disabling for clear key 15
disabling for protected key 15
environment variable 15
illustration 16
preparation at startup 19
protected key 16, 19
using protected key 18

CPACF functions 18
CPACF service action 16
CPINENC 170, 260, 308
CPINGEN 170, 260, 308
CPINGENA 170, 260, 308
Crypto Express4 feature xvii
Crypto Express5 feature xvii
Crypto Express6 feature xvii
cryptographic device driver

installing 1103
cryptographic engine 4
Cryptographic Facility Query

(CSUACFQ) xxi, 11, 100, 102, 117
format 101
JNI version 142
parameters 102
required commands 142
restrictions 142

Cryptographic Facility Version
(CSUACFV) 143

format 143
JNI version 144
parameters 143
restrictions 143

cryptographic key
AES, DES, and HMAC functions 33

Cryptographic Resource Allocate
(CSUACRA) 11, 15, 144

format 145
JNI version 146
parameters 145
usage notes 146

Cryptographic Resource Deallocate
(CSUACRD) 11, 15, 147

format 147
JNI version 149
parameters 147
usage notes 149

cryptographic services access layer 8
Cryptographic Unit Support Program

(CUSP)
Decipher 381
Encipher 385

Cryptographic Variable Encipher
(CSNBCVE) 178

format 178
JNI version 179
parameters 178
required commands 179
restrictions 179

cryptography publications xxvi
Cryptoki 1139
CSC-3 604
CSC-345 604
CSC-4 604
CSC-5 604

CSC-V1 604
CSC-V2 604
CSNBAKRC (AES Key Record

Create) 455
CSNBAKRCJ 457
CSNBAKRD (AES Key Record

Delete) 457
CSNBAKRDJ 459
CSNBAKRL (AES Key Record List) 459
CSNBAKRLJ 461
CSNBAKRR (AES Key Record

Read) 462
CSNBAKRRJ 463
CSNBAKRW (AES Key Record

Write) 464
CSNBAKRWJ 466
CSNBAPG (Authentication Parameter

Generate) 508
CSNBAPGJ 511
CSNBCKC (CVV Key Combine) 526
CSNBCKCJ 531
CSNBCKI (Clear Key Import) 166
CSNBCKIJ 167
CSNBCKM (Multiple Clear Key

Import) 167
CSNBCKMJ 169
CSNBCPA (Clear PIN Generate

Alternate) 518
CSNBCPAJ 522
CSNBCPE (Clear PIN Encrypt) 512
CSNBCPEJ 514
CSNBCSG (CVV Generate) 523
CSNBCSGJ 526
CSNBCSV (CVV Verify) 531
CSNBCSVJ 534
CSNBCTT2 414
CSNBCTT2 (Cipher Text Translate2) 404
CSNBCVE (Cryptographic Variable

Encipher) 178
CSNBCVEJ 179
CSNBCVG (Control Vector

Generate) 170
CSNBCVGJ 174
CSNBCVT (Control Vector

Translate) 174
CSNBCVTJ 177
CSNBDDPG (DK Deterministic PIN

Generate) 610
CSNBDDPGJ 616
CSNBDEC (Decipher) 381
CSNBDECJ 385
CSNBDKG (Diversified Key

Generate) 183
CSNBDKG2 (Diversified Key

Generate2) 189
CSNBDKG2J 194
CSNBDKGJ 189
CSNBDKM (Data Key Import) 182
CSNBDKMJ 183
CSNBDKX (Data Key Export) 180
CSNBDKXJ 181
CSNBDMP (DK Migrate PIN) 617
CSNBDMPJ 622
CSNBDPC (DK PIN Change) 637
CSNBDPCG (DK PRW CMAC

Generate) 659
CSNBDPCGJ 662

1176 Common Cryptographic Architecture Application Programmer's Guide

CSNBDPCJ 648
CSNBDPMT (DK PAN Modify in

Transaction) 623
CSNBDPMTJ 629
CSNBDPNU (DK PRW Card Number

Update) 653
CSNBDPNUJ 658
CSNBDPT (DK PAN Translate) 630
CSNBDPTJ 636
CSNBDPV (DK PIN Verify) 649
CSNBDPVJ 652
CSNBDRP (DK Regenerate PRW) 668
CSNBDRPG (DK Random PIN

Generate) 662
CSNBDRPGJ 668
CSNBDRPJ 674
CSNBENC (Encipher) 385
CSNBENCJ 389
CSNBEPG (Encrypted PIN

Generate) 535
CSNBEPGJ 539
CSNBFPED (FPE Decipher) 560
CSNBFPEDJ 567
CSNBFPEE (FPE Encipher) 568
CSNBFPEEJ 574
CSNBFPET (FPE Translate) 575
CSNBFPETJ 582
CSNBHMG (HMAC Generate) 419
CSNBHMGJ 422
CSNBHMV (HMAC Verify) 423
CSNBHMVJ 426
CSNBKEX (Key Export) 209
CSNBKEXJ 211
CSNBKGN (Key Generate) 212
CSNBKGN2 (Key Generate2) 221
CSNBKGN2J 234
CSNBKGNJ 220
CSNBKIM (Key Import) 234
CSNBKIMJ 237
CSNBKPI (Key Part Import) 237
CSNBKPI2 (Key Part Import2) 241
CSNBKPI2J 245
CSNBKPIJ 240
CSNBKRC (DES Key Record Create) 466
CSNBKRCJ 467
CSNBKRD (DES Key Record Delete) 467
CSNBKRDJ 469
CSNBKRL (DES Key Record List) 469
CSNBKRLJ 471
CSNBKRR (DES Key Record Read) 471
CSNBKRRJ 473
CSNBKRW (DES Key Record Write) 473
CSNBKRWJ 474
CSNBKSI (Key Storage

Initialization) 149
CSNBKSIJ 151
CSNBKTB (Key Token Build) 259
CSNBKTB2 (Key Token Build2) 265
CSNBKTB2J 301
CSNBKTBJ 264
CSNBKTC (Key Token Change) 301
CSNBKTC2 (Key Token Change2) 304
CSNBKTC2J 307
CSNBKTCJ 304
CSNBKTP (Key Token Parse) 307
CSNBKTP2 (Key Token Parse2) 311
CSNBKTP2J 320

CSNBKTPJ 311
CSNBKTR (Key Translate) 321
CSNBKTR2 (Key Translate2) 323
CSNBKTR2J 326
CSNBKTRJ 322
CSNBKYT (Key Test) 245
CSNBKYT2 (Key Test2) 249
CSNBKYT2J 254
CSNBKYTJ 249
CSNBKYTX (Key Test Extended) 254
CSNBKYTXJ 259
CSNBMDG (MDC Generate) 441
CSNBMDGJ 444
CSNBMGN (MAC Generate) 426
CSNBMGN2

usage notes 433
CSNBMGN2 (MAC Generate2) 430
CSNBMGN2J 433
CSNBMGNJ 429
CSNBMKP 25
CSNBMKP (Master Key Process) 157
CSNBMKPJ 161
CSNBMVR (MAC Verify) 433
CSNBMVR2 (MAC Verify2) 438
CSNBMVR2J 441
CSNBMVRJ 437
CSNBOWH (One-Way Hash) 445
CSNBOWHJ 447
CSNBPCU

PIN extraction rules 1009
CSNBPCU (PIN Change/Unblock) 583,

591
CSNBPCUJ 591
CSNBPEX (Prohibit Export) 334
CSNBPEXJ 335
CSNBPEXX (Prohibit Export

Extended) 335
CSNBPEXXJ 336
CSNBPFO 595
CSNBPGN (Clear PIN Generate) 515
CSNBPGNJ 518
CSNBPTR (Encrypted PIN

Translate) 539
CSNBPTRE

usage notes 554
CSNBPTRE (Encrypted PIN Translate

Enhanced) 545
CSNBPTREJ 554
CSNBPTRJ 545
CSNBPVR (Encrypted PIN Verify) 555
CSNBPVRJ 560
CSNBRKA (Restrict Key Attribute) 336
CSNBRKAJ 340
CSNBRNG (Random Number

Generate) 341
CSNBRNGJ 342
CSNBRNGL (Random Number Generate

Long) 342
CSNBRNGLJ 344
CSNBSAD (Symmetric Algorithm

Decipher) 390
CSNBSADJ 396
CSNBSAE (Symmetric Algorithm

Encipher) 397
CSNBSAEJ 404
CSNBSKY (Secure Messaging for

Keys) 595

CSNBSKYJ 598
CSNBSPN (Secure Messaging for

PINs) 599
CSNBSPNJ 603
CSNBT31I (TR31 Key Import) 781
CSNBT31IJ 803
CSNBT31O (TR31 Optional Data

Build) 808
CSNBT31OJ 811
CSNBT31P (TR31 Key Token Parse) 804
CSNBT31PJ 807
CSNBT31R (TR31 Optional Data

Read) 811
CSNBT31RJ 814
CSNBT31X (Key Export to TR31) 755
CSNBT31XJ 781
CSNBTRV (Transaction Validation) 603
CSNBTRVJ 606
CSNBUKD

parameters 370
CSNBUKD (Unique Key Derive) 369
CSNBUKDJ 377
CSNBXEA 817

parameters 817
CSNBXEA (Code Conversion) 817
CSNBXEAJ 821
CSNDDSG (Digital Signature

Generate) 675
CSNDDSGJ 680
CSNDDSV (Digital Signature Verify) 680
CSNDDSVJ 686
CSNDEDH (EC Diffie-Hellman) 195
CSNDEDHJ 208
CSNDKRC (PKA Key Record

Create) 474
CSNDKRCJ 476
CSNDKRD (PKA Key Record

Delete) 476
CSNDKRDJ 478
CSNDKRL (PKA Key Record List) 478
CSNDKRLJ 480
CSNDKRR (PKA Key Record Read) 481
CSNDKRRJ 482
CSNDKRW (PKA Key Record

Write) 482
CSNDKRWJ 484
CSNDKTC (PKA Key Token

Change) 710
CSNDKTCJ 712
CSNDPIC

format 738
parameters 738
required commands 744

CSNDPICJ 744
CSNDPICPublic Infrastructure

Certificate 738
CSNDPIM

format 746
parameters 746
required commands 752

CSNDPIMJ 753
CSNDPIMPublic Infrastructure

Manage 745
CSNDPKB (PKA Key Token Build) 699
CSNDPKBJ 709
CSNDPKD (PKA Decrypt) 327
CSNDPKDJ 330

Index 1177

CSNDPKE (PKA Encrypt) 330
CSNDPKEJ 334
CSNDPKG

parameters 691
CSNDPKG (PKA Key Generate) 689
CSNDPKGJ 695
CSNDPKI (PKA Key Import) 696
CSNDPKIJ 699
CSNDPKT (PKA Key Translate) 713
CSNDPKTJ 719
CSNDPKX (PKA Public Key

Extract) 720
CSNDPKXJ 721
CSNDRKD (Retained Key Delete) 485
CSNDRKDJ 487
CSNDRKL (Retained Key List) 487
CSNDRKLJ 489
CSNDRKX (Remote Key Export) 722
CSNDRKXJ 733
CSNDSXD (Symmetric Key Export with

Data) 350
CSNDSXDJ 353
CSNDSYG (Symmetric Key

Generate) 354
CSNDSYGJ 358
CSNDSYI (Symmetric Key Import) 358
CSNDSYI2 (Symmetric Key

Import2) 362
CSNDSYI2J 369
CSNDSYIJ 362
CSNDSYX (Symmetric Key Export) 344
CSNDSYXJ 349
CSNDTBC (Trusted Block Create) 734
CSNDTBCJ 737
CSU_CMP_WARN_MODE 32, 1086
CSU_DEFAULT_ADAPTER 145, 147
CSU_DEFAULT_DOMAIN 10
CSU_EC_CHECKCURVE 680
CSU_HCPUACLR 15, 444

affected verbs 15
CSU_HCPUAPRT 15

affected verbs 15
CSUAACM

required commands 92
usage notes 93

CSUAACM (Access Control
Maintenance) 89

CSUAACMJ 93
CSUAACT

required commands 100
CSUAACT (Access Control Tracking) 93
CSUAACTJ 100
CSUACFQ

STATOAHL 102
STATOAHL, output data 133

CSUACFQ (Cryptographic Facility
Query) 100

CSUACFQJ 142
CSUACFV (Cryptographic Facility

Version) 143
CSUACFVJ 144
CSUACRA (Cryptographic Resource

Allocate) 144
CSUACRAJ 146
CSUACRD (Cryptographic Resource

Deallocate) 147
CSUACRDJ 149

CSUAESDS 450, 455, 457, 459, 462, 464
CSUAESLD 460
CSUALGQ (Log Query) 152
CSUALGQJ 157
CSUARNT (Random Number Tests) 161
CSUARNTJ 163
CSUCACHE 9
CSUDESDS 450, 466, 467, 469, 471, 473
csulincl.h 24
CSUPKADS 450, 474, 476, 478, 481, 482
current master key

CMK 454
current_reference_PAN_data parameter

PIN Change/Unblock verb 586
current_reference_PIN_block parameter

PIN Change/Unblock verb 586
current_reference_PIN_key parameter

PIN Change/Unblock verb 586
current_reference_PIN_profile parameter

PIN Change/Unblock verb 586
current-key serial number

CKSN 545
CUSP processing rule 382, 387
CV 260, 308
cv_source parameter

TR31 Key Import verb 785
CV-KEK 260
CVARDEC 41, 170, 212, 260, 308
CVARENC 41, 170, 178, 212, 260, 308
CVARENThe restrictions for .C 212
CVARPINE 41, 170, 212, 260, 308
CVARXCVL 41, 170, 175, 212, 260, 308
CVARXCVR 41, 170, 175, 212, 260, 308
CVV Generate (CSNBCSG) 523

format 523
JNI version 526
parameters 523
required commands 525

CVV Key Combine (CSNBCKC) 526
format 528
parameters 528
required commands 530
restrictions 530

CVV Key Combine (CSNBCKCJ)
JNI version 531

CVV Verify (CSNBCSV) 531
format 532
JNI version 534
parameters 532
required commands 534

CVV_key_A_Identifier parameter
CVV Generate verb 523
CVV Verify verb 532

CVV_key_B_Identifier parameter
CVV Generate verb 523
CVV Verify verb 532

CVV_value parameter
CVV Generate verb 523
CVV Verify verb 532

CVV-1 523, 532
CVV-2 523, 532
CVV-3 523, 532
CVV-4 523, 532
CVV-5 523, 532
CVVKEY-A 41, 170, 260, 308
CVVKEY-B 41, 170, 260, 308

D
daemon

openCryptoki 1141
DALL 170, 260, 308
data

deciphering 381
enciphering 385
protecting 379

DATA 41, 167, 170, 182, 184, 190, 209,
212, 234, 235, 260, 308, 322, 344, 354,
358, 382, 985

data confidentiality 3
data integrity 3

managing 55
verifying 417

data key
export 180
import 182
importing 166
re-encipher 180

Data Key Export (CSNBDKX) 180
format 180
JNI version 181
parameters 180
required commands 181
restrictions 181

Data Key Import (CSNBDKM) 182
format 182
JNI version 183
parameters 182
required commands 183
restrictions 182
usage notes 183

data parameter
Diversified Key Generate verb 184
Diversified Key Generate2 verb 190

data structure example of an ACP
list 1078

data structures
access control point list 1075

data_array parameter
Clear PIN Generate Alternate

verb 519
Clear PIN Generate verb 515
Encrypted PIN Generate verb 536
Encrypted PIN Verify verb 556

data_length parameter
Diversified Key Generate verb 184
Diversified Key Generate2 verb 190

data_structure parameter
PKA Decrypt verb 327
PKA Encrypt verb 331

data_structure_length parameter
PKA Decrypt verb 327
PKA Encrypt verb 331

data-encrypting key
definition 41
generating 985
length 41

DATAC 41, 170, 184, 190, 209, 235, 260,
308, 985

DATAM 41, 170, 184, 190, 209, 211, 212,
235, 260, 308, 985

DATAMV 41, 170, 184, 190, 209, 212,
235, 260, 308

dataset_name parameter
AES Key Record List verb 460

1178 Common Cryptographic Architecture Application Programmer's Guide

dataset_name parameter (continued)
DES Key Record List verb 470
PKA Key Record List verb 479

dataset_name_length parameter
AES Key Record List verb 460
DES Key Record List verb 470
PKA Key Record List verb 479

DATAXLAT 41, 212
date 102
day of the week 102
DDATA 170, 260, 308
de-allocating a coprocessor resource 147
DEB

contained files 1109
samples 1110

DEB installation package 1108
Decimalization tables 502
DECIPHER 41, 170, 209, 212, 235, 260,

308
Decipher (CSNBDEC) 381

format 382
JNI version 385
parameters 382
required commands 384
restrictions 384

Decipher processing rule 381
DEFALTXX 1077
DEFALTXX/DFLTXXXX 1129
default card 19
default CCA coprocessor 11
default installation directory 1108
default role 1129
DEFAULT role

contents 1077
derived unique key per transaction

DUKPT 545
DES 168, 250, 260, 302, 345, 354, 359, 365
DES algorithm 33, 379
DES CIPHER keys

definition 41
DES CMK 102
DES cryptographic key verb 166
DES cryptography 33
DES encryption

56-bit 102
triple 380

DES encryption algorithm 382
DES encryption algorithm processing

rule 387
DES engine 9
DES external key token format 850
DES hardware version 102
DES internal key token format 847
DES key 16

managing 165
questionable 160
translation 16

DES key flow 35
DES Key Record Create (CSNBKRC) 466

format 466
JNI version 467
parameters 466
related information 467
required commands 467
restrictions 467

DES Key Record Delete (CSNBKRD) 467
format 467

DES Key Record Delete (CSNBKRD)
(continued)

JNI version 469
parameters 468
related information 469
required commands 468
restrictions 468

DES Key Record List (CSNBKRL) 469
format 470
JNI version 471
parameters 470
related information 471
required commands 471

DES Key Record Read (CSNBKRR) 471
format 472
JNI version 473
parameters 472
related information 472
required commands 472
restrictions 472

DES Key Record Write (CSNBKRW) 473
format 473
JNI version 474
parameters 473
related information 474
required commands 474
restrictions 474

DES key storage 150, 449
DES key storage files 51
DES key token 178
DES key wrapping

compliant-tagged method 37
enhanced method 37
original method 37

DES key-storage initialization 149
DES keys

generating and exporting 722
DES NMK 102
DES OMK 102
DES transport key 41
DES verb 61
DESUSECV variable-length

symmetric 947
device key 4
DEXP 170, 260, 308
DFLTXXxx 1077
DFLTXXXX 1129
digital signature 3

using 675
Digital Signature Generate

(CSNDDSG) 675
format 676
JNI version 680
parameters 676
required commands 679
restrictions 679

digital signature verb 72
Digital Signature Verify (CSNDDSV) 680

format 682
JNI version 686
parameters 682
related information 686
required commands 686
restrictions 686

digital signatures 675
DIMP 170, 260, 308
directory server 8

disable ACPs 1129
distributions

Linux, distribution-specific
information xx

Diversified Key Generate
(CSNBDKG) 183

format 184
JNI version 189
parameters 184
required commands 188
usage notes 189

Diversified Key Generate2 (CSNBDKG)
JNI version 194

Diversified Key Generate2
(CSNBDKG2) 189

format 190
parameters 190
required commands 194
usage notes 194

DK (Deutsche Kreditwirtschaft) 609
DK Deterministic PIN Generate

(CSNBDDPG) 610
format 611
JNI version 616
parameters 611
required commands 616
usage notes 616

DK Migrate PIN (CSNBDMP) 617
format 618
parameters 618
required commands 622
usage notes 622

DK Migrate PIN (CSNBDMPJ)
JNI version 622

DK PAN Modify in Transaction
(CSNBDPMT) 623

format 624
JNI version 629
parameters 624
required commands 629
usage notes 629

DK PAN Translate (CSNBDPT) 630
format 631
JNI version 636
parameters 631
required commands 636
usage notes 636

DK PIN Change (CSNBDPC) 637
format 638
JNI version 648
parameters 639
required commands 648
usage notes 648

DK PIN methods 609, 610
DK PIN Verify (CSNBDPV) 649

format 649
JNI version 652
parameters 650
required commands 652
usage notes 652

DK PRW Card Number Update
(CSNBDPNU) 653

format 653
JNI version 658
parameters 653
required commands 658
usage notes 658

Index 1179

DK PRW CMAC Generate
(CSNBDPCG) 659

format 659
JNI version 662
parameters 659
required commands 661
usage notes 662

DK Random PIN Generate
(CSNBDRPG) 662

format 663
JNI version 668
parameters 663
required commands 667
usage notes 668

DK Regenerate PRW (CSNBDRP) 668
format 669
JNI version 674
parameters 669
required commands 673
usage notes 673

DKYGENKY 41, 170, 184, 190, 212, 260,
308

DKYGENKY variable-length
symmetric 951

DKYL0 170, 260, 308
DKYL1 170, 308
DKYL2 170, 308
DKYL3 170, 308
DKYL4 170, 308
DKYL5 170, 308
DKYL6 170, 308
DKYL7 170, 308
DMAC 170, 260, 308
DMKEY 170, 260, 308
DMPIN 170, 260, 308
DMV 170, 260, 308
domain

default role 1129
domain selection capabilities

any domain configuration 10
single domain configuration 10

DOUBLE 170, 212, 260, 308, 354
double length key 37
double-length key

multiple decipherment 1039
multiple encipherment 1038
using 41

DOUBLE-O 212, 260
DPVR 170, 260, 308
DUKPT

derived unique key per
transaction 545

DUKPT-BH 540
DUKPT-IP 540, 556
DUKPT-OP 540
dynamic RAM (DRAM) memory

size 102

E
EBCDIC conversion 817
EC Diffie-Hellman

key agreement models 52
EC Diffie-Hellman (CSNDEDH) 195

format 200
JNI version 208
parameters 200

EC Diffie-Hellman (CSNDEDH)
(continued)

required commands 206
restrictions 206

EC level
coprocessor 102

ECB processing rule 392, 399
ECB wrapping of DES keys 37
ECC 696, 710

Elliptic Curve Cryptography 195
ECC key 675, 680
ECC key token 874, 881
ECC-PAIR 700
ECC-PUBL 700
ECC-VER0 700
ECC-VER1 700
ECDH protocol 195
ECDSA 71, 675, 676, 680, 682
ECDSA algorithm 71
ECI-1 545
ECI-2 PIN block format 498, 1008
ECI-3 PIN block format 498, 1008
ECI-4 545
edition 2016 xix
edition 2017

second edition for CCA 5.2 xix
edition 2018 xvii
electronic code book (ECB) 380, 1036
Electronic Code Book (ECB)

Symmetric Algorithm Decipher 390
Symmetric Algorithm Encipher 397

Elliptic Curve Cryptography 195
Elliptic Curve Cryptography (ECC) 23,

41, 151
key token 71, 72, 73, 75, 150, 452,

675, 676, 680, 689, 696, 699, 700, 880
Elliptic Curve Diffie-Hellman 195
Elliptic Curve Digital Signature

Algorithm (ECDSA) 71, 676, 682
elliptic curve domain parameters 195
elliptic curve type

Brainpool 195
Prime 195

EMV 2000 184, 190
EMV MAC smart card standard 1034
EMVCRT 716
EMVDDA 716
EMVDDAE 716
EMVMAC 427, 434
EMVMACD 427, 434
enable ACPs 1129
ENC-ZERO 245, 246, 250, 254
ENCIPHER 41, 170, 209, 212, 235, 260,

308
Encipher (CSNBENC) 385

format 387
JNI version 389
parameters 387
required commands 389
restrictions 389

Encipher processing rule 385
enciphered_key parameter

Symmetric Key Export verb 345
Symmetric Key Import2 verb 365

enciphered_key_length parameter
Symmetric Key Export verb 345

enciphered_text parameter
Secure Messaging for Keys verb 596
Secure Messaging for PINs verb 599

ENCRYPT 509, 639, 650, 653, 659, 663,
669

encrypt zeros AES-key verification 1024
encrypt zeros DES-key verification 1024
encrypted key 41
Encrypted PIN Generate

(CSNBEPG) 535
format 535
JNI version 539
parameters 536
required commands 538
restrictions 538

Encrypted PIN Translate
(CSNBPTR) 495, 539

extraction rules 1009
format 540
JNI version 545
parameters 540
required commands 543
usage notes 545

Encrypted PIN Translate Enhanced
(CSNBPTRE) 545

format 547
JNI version 554
parameters 547
required commands 553
usage notes 554

Encrypted PIN Verify (CSNBPVR) 555
extraction rules 1008
format 556
JNI version 560
parameters 556
related information 560
required commands 559

encrypted_PIN_block parameter
Clear PIN Encrypt verb 512
Clear PIN Generate Alternate

verb 519
Encrypted PIN Generate verb 536
Encrypted PIN Verify verb 556

encryption algorithm processing rule
AES 392, 399
DES 382, 387

encryption_master_key parameter
PIN Change/Unblock verb 586

ENH-ONLY 168, 170, 184, 190, 260, 302,
308, 323, 354, 359, 365

enhanced PIN security mode 500
entry point 20
entry point name

prefix 20
entry-point names 19
Environment Identifier (EID) 102
environment variable 1109

CSU_DEFAULT_ADAPTER 145, 147
CSU_DEFAULT_DOMAIN 10
CSU_EC_CHECKCURVE 680
CSU_HCPUACLR 15, 444
CSU_HCPUAPRT 15
CSUAESDS 450, 457, 459, 462, 464
CSUAESLD 460
CSUCACHE 9
CSUDESDS 450, 455, 466, 467, 469,

471, 473

1180 Common Cryptographic Architecture Application Programmer's Guide

environment variable (continued)
CSUPKADS 450, 474, 476, 478, 481,

482
key storage 1117
PATH 27

EPB 611, 618
EPINGEN 170, 260, 308
EPINGENA 41, 170, 260, 308
EPINVER 170, 260, 308
epoch certificate

panel.exe 1132
establishing master keys 84
Europay padding rule 426
EVEN 341, 343
even parity 237, 341, 343
EX 212, 354
EX key form 985
EXEX 170, 212, 260, 308
EXEX key form 987
exit_data parameter 22
exit_data_length parameter 22
expiration_date parameter

CVV Generate verb 523
CVV Verify verb 532

EXPORT 170, 260, 308
exportability parameter

TR31 Key Token Parse verb 805
Exportable (EX) key form 229
exportable key

generating 985
exportable key form 34, 212
EXPORTER 41, 170, 209, 212, 235, 260,

308, 321
exporter key encrypting key

any DES key 209
exporter key-encrypting key 180
exporter_key_identifier parameter

Data Key Export verb 180
Key Export verb 209

exporting DES keys 722
EXTDWAKW 716
EXTERNAL 260, 308
external key 254
external key token 23, 35, 74, 968

DES 850
PKA

RSA private 854
verbs 35

external RKX DES key tokens 851
extraction rules, PIN 1008

F
FCV

function control vector 102, 347,
1151, 1163

feature coexistence 1117
files

hikmNativeNumber.html 26
key storage 52

financial services support for DK 609
financial services verbs 491
FIPS-RNT 162
FIRST 237, 238, 241, 420, 423, 427, 434,

442, 445
fixed-length key token

AES, internal token 847

flash EPROM memory
size 102

form parameter
Random Number Generate verb 341

format control 500
formats

PIN 56
formatting hashes and keys 1044
FPE Decipher (CSNBFPED) 560

format 561
JNI version 567
parameters 561
required commands 567
usage notes 567

FPE Encipher (CSNBFPEE) 568
format 568
JNI version 574
parameters 568
required commands 574
usage notes 574

FPE Translate (CSNBFPET) 575
format 576
JNI version 582
parameters 576
required commands 582
usage notes 582

function control vector
clear 1077
FCV 102, 347, 1151, 1163
load 1077

functional overview
CCA 4

functions
panel.exe 1124

G
Galois/Counter Mode

GCM 390
GBP-PIN 170, 260, 308, 536, 556
GBP-PIN algorithm 556
GBP-PINO 170, 260, 308
GCM

Galois/Counter Mode 390
general format variable-length

symmetric 889
GENERATE 246, 250, 254, 265, 604
generated_key_identifier parameter

Diversified Key Generate verb 184
Diversified Key Generate2 verb 190
PKA Key Generate verb 691

generated_key_identifier_1 parameter
Key Generate verb 212
Key Generate2 verb 222

generated_key_identifier_1_length
parameter

Key Generate2 verb 222
generated_key_identifier_2 parameter

Key Generate verb 212
Key Generate2 verb 222

generated_key_identifier_2_length
parameter

Key Generate2 verb 222
generated_key_identifier_length

parameter
PKA Key Generate verb 691

generating DES keys 722

generating keys
PCI-HSM 2016 compliance

mode 1081
generating_key_identifier parameter

Diversified Key Generate verb 184
Diversified Key Generate2 verb 190

German Banking Pool PIN
algorithm 1011

GET-UDX 102, 117
GETCOMPD 117

H
hardware requirements xxi
Hardware Security Module (HSM) 53
hash algorithm 16
hash formats

PKCS #1 1045
hash formatting 1044
hash message authentication code

HMAC 430
hash parameter

Digital Signature Generate verb 676
Digital Signature Verify verb 682
One-Way Hash verb 445

hash pattern 123, 126, 128, 130
hash_length parameter

Digital Signature Generate verb 676
Digital Signature Verify verb 682
One-Way Hash verb 445

hashing 56
hashing functions 56
hashing method 746
hashing verb 61
HCPUACLR 145, 147
HCPUAPRT 145, 147
HEX-8 427, 434
HEX-9 427, 434
HEXDIGIT 519
HEXDIGIT PIN extraction method

keyword 498
High-performance secure AES keys 16
High-performance secure DES keys 16
hikmNativeNumber 26
hikmNativeNumber.html file 26
HMAC 41, 242, 250, 265, 305, 337, 344,

345, 362, 365, 420, 423
hash message authentication

code 430
Key Token Build2 265

HMAC algorithm 37
HMAC Generate (CSNBHMG) 419

format 419
JNI version 422
parameters 420
related information 422
required commands 422
restrictions 422

HMAC key 221
managing 165
variable-length 304

HMAC keys
definition 41

HMAC MAC variable-length
symmetric 920

HMAC verb 61
HMAC Verify (CSNBHMV 423

Index 1181

HMAC Verify (CSNBHMV (continued)
format 423
JNI version 426
parameters 423
required commands 425
usage notes 425

HMAC Verify (CSNBHMV)
related information 425

HMACVER 41
host CPU acceleration 382, 386, 426, 434

I
I-CBC 406
I-CUSP :390-only 406
I-ECB 406
I-IPS :390-only 406
I-X923 406
IBM

contacting xxviii
IBM 3624 515, 555
IBM 4700 Encrypting PINPAD 1007
IBM Crypto Express3 feature xxi
IBM Crypto Express4 feature xxi
IBM Crypto Express5 feature xxi
IBM Crypto Express6 feature xxi
IBM GBP 555
IBM-PIN 170, 260, 308, 536, 556
IBM-PIN algorithm 556
IBM-PINO 170, 260, 308, 519, 556
IBM-PINO algorithm 556
ICV

initial chaining value 390
ICV selection processing rule

continue 382, 387, 392, 399
initial 382, 387, 392, 399

identifying key tokens for
conversion 1089

IEKYXLAT 41
IKEK-AES 250, 696
IKEK-DES 250, 696
IKEK-PKA 250
IKEY-AES 406
IKEY-DES 406
IKEYXLAT 41, 170, 209, 212, 235, 260,

308, 321
IM 212, 354
IM key form 985
IMEX 170, 212, 260, 308
IMEX key form 987
IMIM 170, 212, 260, 308
IMP-PKA 41, 209
IMPORT 170, 260, 308
Importable (IM) key form 229
importable key

generating 985
importable key form 34, 212
IMPORTER 41, 170, 182, 209, 212, 235,

260, 308, 321
importer key-encrypting key 41
importer_key_identifier

PKA Key Import verb 696
importer_key_identifier parameter

Data Key Import verb 182
Key Import verb 235

INACTIVE 735
INBK PIN 515

INBK-PIN 170, 260, 308, 536, 555, 556
Information Protection System (IPS)

Decipher 381
Encipher 385

INITIAL 406
initial chaining value

ICV 390
initial processing rule 382, 387, 392, 399
initialization_vector parameter

Cryptographic Variable Encipher
verb 178

Decipher verb 382
Encipher verb 387
Secure Messaging for Keys verb 596
Secure Messaging for PINs verb 599
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
initialization_vector_length parameter

Symmetric Algorithm Decipher
verb 392

Symmetric Algorithm Encipher
verb 399

initializing key storage 149
input_block_identifier parameter

Trusted Block Create verb 735
input_block_identifier_length parameter

Trusted Block Create verb 735
input_KEK_key_identifier

Key Translate2 verb 323
input_KEK_key_identifier parameter

Key Translate verb 321
input_KEK_key_identifier_length

Key Translate2 verb 323
input_key_identifier parameter

Secure Messaging for Keys verb 596
input_key_token

Key Translate2 verb 323
input_key_token parameter

Key Translate verb 321
input_key_token_length

Key Translate2 verb 323
input_PAN_data parameter

Secure Messaging for PINs verb 599
input_PIN_block parameter

Encrypted PIN Translate verb 540
Secure Messaging for PINs verb 599

input_PIN_encrypting_key_identifier
parameter

Encrypted PIN Translate verb 540
Encrypted PIN Verify verb 556

input_PIN_profile parameter
Encrypted PIN Translate verb 540
Encrypted PIN Verify verb 556
Secure Messaging for PINs verb 599

installation directory 1108
installation instructions 1107
INTDWAKW 716
Interbank PIN 61, 494, 515, 555
intermediate PIN-block (IPB) 1006
INTERNAL 260, 265, 308
internal key token 23, 74

AES 847
AES, fixed-length 847
definition 35
DES 847, 849

internal key token (continued)
PKA

RSA private 855, 872, 873
intrusion latch 102
IPB (intermediate PIN-block) 1006
IPINENC 41, 170, 209, 212, 235, 260, 308
IPINENC key type 540
IPKCSPAD 406
IPS processing rule 382, 387
ISO 16609 TDES MAC 1035
ISO 9796 682
ISO 9796-1 675
ISO format 0 497, 1005
ISO format 1 497, 1006
ISO format 2 1006
ISO format 3 1006
ISO format3 497
ISO-0 PIN block format 498, 1005
ISO-1 PIN block format 498, 1006
ISO-2 PIN block format 498, 1006
ISO-3 PIN block format 498, 1006
ISO-9796 676
ITER-38 691
ivp.e 1119

J
Java

data types 26
entry point names 26
environment 27
tested versions 27

Java byte code
running 28

Java interaction 3
Java native interface 26
Java Native Interface 3

JNI 27
Java Native Interface (JNI) 28

byte code 28
JNI 3, 26

Java Native Interface 27
sample code 27
sample modules 27

K
KAT 162
KDF in counter mode 37
kek_key_identifier parameter

Control Vector Translate verb 175
Key Test Extended verb 256

KEK_key_identifier parameter
Prohibit Export Extended verb 336

KEK_key_identifier_1 parameter
Key Generate verb 212

KEK_key_identifier_2 parameter
Key Generate verb 212

key
AES master key 41
AES transport 41
asymmetric master key 41
CIPHER 41
clear 16, 18
clear key 41
control vector 34, 40

1182 Common Cryptographic Architecture Application Programmer's Guide

key (continued)
data key

export 180
importing 166
re-enciphering 180

DECIPHER 41
DES exporter key-encrypting 41
DES transport 41
double length 37
double-length 986, 987
ENCIPHER 41
generating

encrypted 212
HMAC 41
key-encrypting 41
MAC 41
master 16
multiple decipherment/

encipherment 1036
NOCV importers and exporters 41
pair 986, 987
parity 166
PIN 41
PIN-encrypting key 539
protected 16, 19
protecting data 379
re-encipher 234
re-enciphering 209
single-length 985, 986
symmetric master key 41
translated 16, 18
triple length DES 37
VISA PVV 518

KEY 260, 308
key agreement models

EC Diffie-Hellman 52
key bundling requirements 79
key cache 9
key cache, host side 9
key completeness 140
Key Derivation Function (KDF) 37
key derivation wrapping 37
key encrypting key 212, 234, 321, 323,

335, 722
distribution 53
exporter 209
new 16

key encrypting key variant
definition 34

key export 337
Key Export (CSNBKEX) 209

format 209
JNI version 211
parameters 209
required commands 210
restrictions 210
usage notes 211

Key Export to TR31 (CSNBT31X) 755
format 757
JNI version 781
parameters 757
required commands 778
restrictions 778

key form 212, 985
combinations for a key pair 218
combinations with key type 218
exportable 34

key form (continued)
importable 34
operational 34

key form bits 995
key formats 847
key formatting 1044
key forms

Exportable (EX) 229
Importable (IM) 229
Operational (OP) 229

key functions 18
Key Generate (CSNBKGN) 212

format 212
JNI version 220
parameters 212
required commands 218
usage notes 218
using 985

Key Generate2
key forms 229
key types 229

Key Generate2 (CSNBKGN2) 221
format 222
JNI version 234
parameters 222
required commands 228
usage notes 229

key generating key 183
definition 41

key identifier 18, 23
definition 74
PKA 74

key identifier parameter
Clear Key Import verb 166

Key Import (CSNBKIM) 234
format 235
JNI version 237
parameters 235
required commands 236
restrictions 236
usage notes 237

key label 8, 23, 74, 178, 209, 449, 450
key length 132, 140
key management 3, 53

PKA 73
key pair 218
key pair generation 1035
key part 157, 158, 254
Key Part Import (CSNBKPI) 237

format 238
JNI version 240
parameters 238
required commands 240
restrictions 240

Key Part Import2 (CSNBKPI2) 241
format 242
JNI version 245
parameters 242
required commands 244
restrictions 244
usage notes 244

key part register 132, 140
key part register hash 132, 140
key record 52, 149

caching 9
key rule 246
key separation 33

key storage 8, 9, 157, 209, 237, 321, 454,
1117

environment variables 450
Linux on Z 452

key storage file 454, 1121
managing AES and DES 51

Key Storage Initialization
(CSNBKSI) 149

format 149
JNI version 151
parameters 150
required commands 151
restrictions 151

key storage mechanisms 449
key storage re-encipher

panel.exe 1128
key subtype

list 41
specified by rule_array 41

Key Test (CSNBKYT) 245
format 246
JNI version 249
parameters 246
required commands 249
usage notes 249

Key Test Extended (CSNBKYTX) 254
format 256
JNI version 259
parameters 256
required commands 258
restrictions 258
usage notes 258

Key Test2 (CSNBKYT2) 249
format 250
JNI version 254
parameters 250
required commands 253
restrictions 253
usage notes 253

key token 18, 23, 37, 167, 180, 182, 183,
184, 190, 209, 234, 259, 307, 323, 335,
337, 344, 362, 423, 455, 734, 968

AES 847
AES CIPHER variable-length

symmetric 904
AES DESUSECV variable-length

symmetric 947
AES DKYGENKY variable-length

symmetric 951
AES EXPORTER and IMPORTER

variable-length symmetric 927
AES MAC variable-length

symmetric 912
AES SECMSG variable-length

symmetric 960
definition 35
DES

external 847, 850
internal 847
null 847, 852

DES internal 849
ECC 874
Elliptic Curve Cryptography

(ECC) 71, 73, 75, 150, 452, 675, 676,
680, 689, 696, 699, 700, 880

external 23, 35

Index 1183

key token (continued)
HMAC MAC variable-length

symmetric 920
internal 23, 35, 75
null 35
null key token 76
operational 23
PINCALC variable-length

symmetric 938
PINPROT variable-length

symmetric 938
PINPRW variable-length

symmetric 938
PKA 880

null 880
RSA 1024-bit modulus-exponent

private 857
RSA 1024-bit private internal 872,

873
RSA 4096-bit modulus-exponent

private 861
RSA private 854, 857
RSA private external 854
RSA private internal 855
RSA public 853
variable Modulus-Exponent 873

PKA external 75
symmetric 889
variable-length 889
variable-length symmetric general

format 889
verbs 35

Key Token Build (CSNBKTB) 41, 259
format 259
JNI version 264
parameters 260
usage notes 264

Key Token Build2
AES 265
HMAC 265

Key Token Build2 (CSNBKTB2) 265
format 265
JNI version 301
keywords 269
parameters 265
restrictions 300

Key Token Change (CSNBKTC) 301
format 302
JNI version 304
parameters 302
required commands 304

Key Token Change2 (CSNBKTC2) 304
format 305
JNI version 307
parameters 305
required commands 307
restrictions 306

Key Token Parse (CSNBKTP) 307
format 308
JNI version 311
parameters 308
usage notes 311

Key Token Parse2 (CSNBKTP2) 311
format 313
JNI version 320
parameters 313
required commands 320

Key Token Parse2 (CSNBKTP2)
(continued)

usage notes 320
key tokens

becoming compliant-tagged 1090
compliant-tagged 1089
PCI-HSM 2016 compliant

restrictions 1084
PKA

number representation 885
Key Translate (CSNBKTR) 321

format 321
JNI version 322
parameters 321
required commands 322
restrictions 322

Key Translate2 (CSNBKTR2) 323
format 323
JNI version 326
parameters 323
required commands 326
restrictions 326

key translation cache 16
key type 23, 34, 170, 212, 234, 985

list 41
key type 1 986, 987
key type 2 986, 987
key types 41
key usage field

must be equal, KUF-MBE 190
must be permitted, KUF-MBP 190

key verification pattern 157, 245, 249
KVP 250

key wrapping 323
AES 37
definition 37
DES 37
double length key 37
ECB wrapping of DES keys 37
electronic code book 37
enhanced CBC 37
wrapping key derivation 37

key_A_identifier parameter
CVV Key Combine verb 528

key_B_identifier parameter
CVV Key Combine verb 528

key_bit_length parameter
EC Diffie-Hellman verb 200

key_block_length parameter
TR31 Key Token Parse verb 805

key_block_version parameter
TR31 Key Token Parse verb 805

key_encrypting_key_identifier parameter
Key Test2 verb 250
Restrict Key Attribute verb 337
Secure Messaging for Keys verb 596
Symmetric Key Generate verb 354

key_encrypting_key_identifier_1
parameter

Key Generate2 verb 222
key_encrypting_key_identifier_1_length

parameter
Key Generate2 verb 222

key_encrypting_key_identifier_2
parameter

Key Generate2 verb 222

key_encrypting_key_identifier_2_length
parameter

Key Generate2 verb 222
key_encrypting_key_identifier_length

parameter
Restrict Key Attribute verb 337

key_form parameter
Key Generate verb 212

key_generation_data parameter
PIN Change/Unblock verb 586

key_hash_algorithm parameter
Key Token Parse2 verb 313

key_identifier parameter
AES Key Record Delete verb 458
Clear Key Import verb 166
Decipher verb 382
Diversified Key Generate verb 184
Diversified Key Generate2 verb 190
Encipher verb 387
HMAC Generate verb 420
HMAC Verify verb 423
Key Part Import verb 238
Key Test Extended verb 256
Key Test verb 246
Key Test2 verb 250
Key Token Change verb 302
Key Token Change2 verb 305
MAC Generate verb 427
MAC Generate2 verb 430
MAC Verify verb 434
MAC Verify2 verb 438
PKA Key Token Change verb 710
Prohibit Export verb 334
Restrict Key Attribute verb 337
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
key_identifier_length parameter

HMAC Generate verb 420
HMAC Verify verb 423
PKA Key Token Change verb 710
Restrict Key Attribute verb 337
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
key_label parameter

AES Key Record Create verb 456
AES Key Record List verb 460
AES Key Record Read verb 462
AES Key Record Write verb 464
DES Key Record Create verb 466
DES Key Record Delete verb 468
DES Key Record List verb 470
DES Key Record Read verb 472
DES Key Record Write verb 473
PKA Key Record Create verb 475
PKA Key Record List verb 479
PKA Key Record Write verb 483
Retained Key Delete verb 485

key_label_mask parameter
Retained Key List verb 487

key_labels parameter
Retained Key List verb 487

key_labels_count parameter
Retained Key List verb 487

1184 Common Cryptographic Architecture Application Programmer's Guide

key_length parameter
Key Generate verb 212

key_material_state parameter
Key Token Parse2 verb 313

key_name parameter
Key Token Build2 verb 265
Key Token Parse2 verb 313
Symmetric Key Import2 verb 365

key_name_1 parameter
Key Generate2 verb 222

key_name_1_length parameter
Key Generate2 verb 222

key_name_2 parameter
Key Generate2 verb 222

key_name_2_length parameter
Key Generate2 verb 222

key_offset parameter
Secure Messaging for Keys verb 596

key_offset_field_length parameter
Secure Messaging for Keys verb 596

key_parms parameter
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
key_parms_length parameter

Symmetric Algorithm Decipher
verb 392

Symmetric Algorithm Encipher
verb 399

key_part parameter
Key Part Import verb 238
Master Key Process verb 158

key_storage_description parameter
Key Storage Initialization verb 150

key_storage_description_length
parameter

Key Storage Initialization verb 150
key_storage_file_name parameter

Key Storage Initialization verb 150
key_storage_file_name_length parameter

Key Storage Initialization verb 150
key_token parameter

AES Key Record Create verb 456
AES Key Record Read verb 462
AES Key Record Write verb 464
DES Key Record Read verb 472
DES Key Record Write verb 473
Key Token Build verb 260
Key Token Parse verb 308
Key Token Parse2 verb 313
PKA Key Record Create verb 475
PKA Key Record Write verb 483
PKA Key Token Build verb 700

key_token_length parameter
AES Key Record Create verb 456
AES Key Record Read verb 462
AES Key Record Write verb 464
PKA Key Record Create verb 475
PKA Key Record Write verb 483

key_type parameter
Control Vector Generate verb 170
Key Export verb 209
Key Import verb 235
Key Token Build verb 260
Key Token Parse verb 308
Key Token Parse2 verb 313

key_type_1 parameter
Key Generate verb 212
Key Generate2 verb 222

key_type_2 parameter
Key Generate verb 212
Key Generate2 verb 222

key_usage parameter
TR31 Key Token Parse verb 805

key_value parameter
Key Token Build verb 260
Key Token Parse verb 308

key_value_structure parameter
PKA Key Token Build verb 700

key_value_structure_length parameter
PKA Key Token Build verb 700

key_verification_pattern parameter
Key Token Parse2 verb 313

key_verification_pattern_type parameter
Key Token Parse2 verb 313

key_version_number parameter
TR31 Key Token Parse verb 805

key_wrapping_method parameter
Key Token Parse2 verb 313

KEY-CLR 246, 265, 392, 399
KEY-CLRD 246
KEY-ENC 246, 254
KEY-ENCD 246, 254
key-encrypting key 41

exporter 180
key-half processing 1002
KEY-KM 246, 254
KEY-MGMT 700
KEY-NKM 246, 254
KEY-OKM 246, 254
KEY-PART 170, 260, 308
key-storage initialization 149
key-token verification patterns 1022
key-verification 1021
Keyed-Hash Message Authentication

Code (HMAC)
generating 419
verifying 423

KEYGENKY 41, 170, 184, 190, 212, 260,
308

KEYIDENT 392, 399
KEYLN16 170, 212, 308, 354
KEYLN24 212, 260, 354
KEYLN32 212, 354
KEYLN8 170, 212, 260, 308, 354
keys

generating in PCI-HSM 2016
compliance mode 1081

keyvalue parameter
PKA Encrypt verb 331

keyvalue_length parameter
PKA Encrypt verb 331

keyword combinations 41
KM-ONLY 700
KUF

key usage field 190
KUF-MBE

key usage field must be equal, 190
KUF-MBP

key usage field must be
permitted 190

KVP
key verification pattern 250

L
label parameter

PKA Key Record Read verb 481
LABEL-DL 458, 468, 477
LAST 237, 238, 241, 420, 423, 427, 434,

442, 445
legacy syntax

panel.exe 1123
libcsulcca.so 24
Linux

distributions xx
LMTD-KEK 41, 170, 260, 308
load-balancing

multi-domain 10
loading a master key 157
local_enciphered_key_identifier

parameter
Symmetric Key Generate verb 354

local_enciphered_key_identifier_length
parameter

Symmetric Key Generate verb 354
Log Query (CSUALGQ) 152

format 152
parameters 152
required commands 156
restrictions 156

Log Query (CSUALGQJ)
JNI version 157

login PIN 1142
lszcrypt -b 1105
lszcrypt, command 1105

M
MAC 41, 55, 170, 184, 190, 209, 212, 235,

260, 265, 308, 985
length keywords 427, 430, 434, 438
managing 55

MAC Generate (CSNBMGN) 426
format 427
JNI version 429
parameters 427
required commands 429
restrictions 429

MAC Generate (CSNBMGN2)
restrictions 432

MAC Generate2 (CSNBMGN2) 430
format 430
JNI version 433
parameters 430
related information 433
required commands 432

MAC keys
definition 41

mac parameter
HMAC Generate verb 420
HMAC Verify verb 423
MAC Generate verb 427
MAC Verify verb 434

MAC Verify (CSNBMVR) 433
format 434
JNI version 437
methods 433
parameters 434
related information 437
required commands 437

Index 1185

MAC Verify (CSNBMVR) (continued)
restrictions 436
usage notes 437

MAC Verify2 (CSNBMVR2) 438
format 438
methods 438
parameters 438
required commands 440
restrictions 440
usage notes 441

MAC Verify2 (CSNBMVR2J)
JNI version 441

mac_length parameter
HMAC Generate verb 420
HMAC Verify verb 423

MACD 211, 235
MACLEN4 427, 434
MACLEN6 427, 434
MACLEN8 427, 434
MACVER 41, 55, 170, 184, 190, 209, 212,

235, 260, 308
manage weak PIN tables 609
mask array preparation 1000
mask_array_left parameter

Control Vector Translate verb 175
mask_array_right parameter

Control Vector Translate verb 175
master key 4, 16, 234, 1121

administration 1119
APKA 1021
asymmetric 83
changing 454

possible effect on internal key
tokens 35

enciphered key 234
establishing 4
methods or tools 1119
random generation of a new

master-key 85
symmetric 83

master key coherence 11
master key loading 157
master key management 452
master key management verbs 58
master key migratioin 1148
Master Key Process (CSNBMKP) 25, 157

format 158
JNI version 161
parameters 158
Questionable DES keys 160
required commands 159
restrictions 159

master key register 157
master key variant 34
master key verification 246
master key verification pattern 849
master keys

establishing 84
managing 83

master-key loading 149
master-key verification 1021
MasterCard card-verification code

(CVC) 492
MasterCard padding rule 426
masterkey_verification_pattern_vnn

parameter
Key Token Parse verb 308

masterkey_verify_parm parameter
Key Token Build verb 260

MD5 55, 445
MDC Generate (CSNBMDG) 441

format 442
JNI version 444
parameters 442
required commands 444
restrictions 444

MDC parameter
MDC Generate verb 442

MDC-2 442
MDC-4 246, 254, 442
mechanisms

supported for the CCA token 1144
mesage_text parameter

MAC Verify2 verb 438
message

authenticating 417
message authentication

definition 55
Message Authentication Code (MAC) 55

description 417
generating 417, 426
verifying 417, 433, 438

Message Authentication Code (MAC)
calculation method 1033

message_text_length parameter
MAC Verify2 verb 438

micropocessor chip operating speed 102
MIDDLE 237, 238, 241, 420, 423, 427,

434, 442, 445
migration

CCA token master keys 1148
master key 1148

migration, openCryptoki CCA
token 1147

migrationg to PCI-HSM 2016 compliance
mode 1088

MIN1PART 242
MIN2PART 242
MIN3PART 242
miniboot firmware version 102
miscellaneous information 823
MIXED 170, 260, 308
MKVP 260

master key verification pattern 849
mode parameter

TR31 Key Token Parse verb 805
modes of operation 379
Modification Detection Code (MDC) 55,

417, 441, 1024
generate 418
verify 418

modular-exponentiation engine 9
Modulus-Exponent format 327, 700, 716,

718, 854, 857, 872, 873
MRP 331
multi-coprocessor selection functions 11
multi-domain load-balancing 10
multiple

decipherment 1036
encipherment 1036

Multiple Clear Key Import
(CSNBCKM) 167

format 167
JNI version 169

Multiple Clear Key Import (CSNBCKM)
(continued)

parameters 168
required commands 169
usage notes 169

multiprocessing 9

N
new_reference_PAN_data parameter

PIN Change/Unblock verb 586
new_reference_PIN_block parameter

PIN Change/Unblock verb 586
new_reference_PIN_key parameter

PIN Change/Unblock verb 586
new_reference_PIN_profile parameter

PIN Change/Unblock verb 586
NIST FIPS PUB 140-1 161
NIST standard SP 800-108 37
NMK 452
NMK status 102
NMK status, AES 102
NMK status, ECC 102
no key 16
NO-CV 260, 308
no-export bit 209
NO-KEY 260, 265, 308
NO-SPEC 170, 260, 308
NO-XLATE 700
NO-XPORT 170, 260, 308
NOADJUST 175, 246, 254
NOCV 34, 209, 235
NOCV importers and exporters 41
NOCV-KEK 260
node key management verbs 58
NOEPB 611, 618
NOEX-SYM 265, 337
NOEXAASY 265, 337
NOEXPORT 337
NOEXUASY 265, 337
nonrepudiation 3
NOOFFSET 170, 260, 308
NOT-KEK 41, 170, 260, 308
NOT31XPT 170
null key token 74, 76, 184, 190, 234

definition 35
format 852, 880

num_opt_blocks parameter
TR31 Key Import verb 785
TR31 Key Token Parse verb 805
TR31 Optional Data Build verb 809
TR31 Optional Data Read verb 812

NUM-DECT 102, 122
number of active coprocessors 102
number representation

PKA key tokens 885

O
O-CBC 406
O-CUSP :390-only 406
O-ECB 406
O-IPS :390-only 406
O-X923 406
OAEP 1045
object protection key (OPK) 859

1186 Common Cryptographic Architecture Application Programmer's Guide

object protection keys
OPK 83

OCV (output chaining value) 1028
ODD 341, 343
odd parity 212, 237, 254, 341, 343
OKEK-AES 691
OKEK-DES 691
OKEY-AES 406
OKEY-DES 406
OKEYXLAT 41, 170, 209, 212, 235, 260,

308, 321
OMK 452
OMK status 102
OMK status, AES 102
OMK status, ECC 102
One-Way Hash (CSNBOWH) 445

format 445
JNI version 447
parameters 445
required commands 447
usage notes 447

ONLY 420, 423, 427, 434, 442, 445
OP 212, 354
OP key form 985
openCryptoki 1139

configuration file 1140
configuring 1140
migration, CCA token 1147
shared library (C API) 1139
slot daemon 1141
SO PIN 1142
standard PIN 1142
status information 1143
token library 1140
tracing 1150

opencryptoki.conf 1140
operating speed

micropocessor chip 102
operating system firmware name 102
operating system firmware version 102
Operational (OP) key form 229
operational key 167, 334, 722

distribution 53
generating 985

operational key form 34, 212
operational key token 23
operational private key 72
OPEX 170, 212, 260, 308
OPEX key form 986
OPIM 170, 212, 260, 308
OPIM key form 986
OPINENC 41, 170, 209, 212, 235, 260,

308
OPINENC key type 540
OPK

object protection keys 83
OPK, object protection key 859
OPKCSPAD 406
OPOP 212
OPOP key form 986
opt_block_data parameter

TR31 Optional Data Build verb 809
TR31 Optional Data Read verb 812

opt_block_data_length parameter
TR31 Optional Data Build verb 809
TR31 Optional Data Read verb 812

opt_block_id parameter
TR31 Optional Data Build verb 809
TR31 Optional Data Read verb 812

opt_block_ids parameter
TR31 Optional Data Read verb 812

opt_block_lengths parameter
TR31 Optional Data Read verb 812

opt_blocks parameter
TR31 Optional Data Build verb 809

opt_blocks_bfr_length parameter
TR31 Optional Data Build verb 809

opt_blocks_length parameter
TR31 Optional Data Build verb 809

opt_parameter1 parameter
Restrict Key Attribute verb 337

opt_parameter1_length parameter
Restrict Key Attribute verb 337

opt_parameter2 parameter
Restrict Key Attribute verb 337

opt_parameter2_length parameter
Restrict Key Attribute verb 337

opt/IBM/CCA 1108
optional_data parameter

Symmetric Algorithm Decipher
verb 392

Symmetric Algorithm Encipher
verb 399

optional_data_length parameter
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
other documentation xxv
outbound_PIN_encrypting_key_identifier

parameter
Encrypted PIN Generate verb 536

output chaining value (OCV) 1028
output chaining vector (OCV)

description 380
output_chaining_vector parameter

Secure Messaging for Keys verb 596
Secure Messaging for PINs verb 599

output_KEK_key_identifier
Key Translate2 verb 323

output_KEK_key_identifier parameter
EC Diffie-Hellman verb 200
Key Translate verb 321

output_KEK_key_identifier_length
Key Translate2 verb 323

output_KEK_key_identifier_length
parameter

EC Diffie-Hellman verb 200
output_key_identifier parameter

CVV Key Combine verb 528
EC Diffie-Hellman verb 200
TR31 Key Import verb 785

output_key_identifier_length parameter
EC Diffie-Hellman verb 200
TR31 Key Import verb 785

output_key_token
Key Translate2 verb 323

output_key_token parameter
Key Translate verb 321

output_key_token_length
Key Translate2 verb 323

output_PAN_data parameter
Encrypted PIN Translate verb 540

output_PAN_data parameter (continued)
Secure Messaging for PINs verb 599

output_PIN_block parameter
Encrypted PIN Translate verb 540

output_PIN_data parameter
PIN Change/Unblock verb 586

output_PIN_encrypting_key_identifier
parameter

Encrypted PIN Translate verb 540
output_PIN_message parameter

PIN Change/Unblock verb 586
output_PIN_profile parameter

Encrypted PIN Translate verb 540
PIN Change/Unblock verb 586
Secure Messaging for PINs verb 599

overlapped processing restrictions 9
OVERLAY 464, 483

P
pad digit 501

format 500
pad_character parameter

Encipher verb 387
PADDIGIT 519
PADDIGIT PIN extraction method

keyword 498
padding method 385
PADEXIST 519
PADEXIST PIN extraction method

keyword 498
PADMDC-2 442
PADMDC-4 442
pair of keys 986, 987
PAN 502
PAN_data parameter

Clear PIN Encrypt verb 512
Clear PIN Generate Alternate

verb 519
CVV Generate verb 523
CVV Verify verb 532
Encrypted PIN Generate verb 536
Encrypted PIN Verify verb 556

PAN_data_in parameter
Encrypted PIN Translate verb 540

PAN-13 523, 532
PAN-14 523, 532
PAN-15 523, 532
PAN-16 523, 532
PAN-17 523, 532
PAN-18 523, 532
PAN-19 523, 532
panel.exe 18, 1119

ACP tracking 1131
authorization 1121
changing the master key 1128
functions 1121, 1124
key storage re-encipher 1128
legacy syntax 1123
query adapter compliance state 1132
show access control points 1129
show active role 1129
utilities 1124
utility 41, 101, 454, 1109, 1121, 1126
verifying CCA epoch certificate 1132

parity of key 166

Index 1187

parity of key (continued)
EVEN

form parameter 341
ODD

form parameter 341
part number

coprocessor 102
party_info parameter

EC Diffie-Hellman verb 200
party_info_length parameter

EC Diffie-Hellman verb 200
PATH 27
payload parameter

Key Token Parse2 verb 313
Payment Card Industry

PCI 31
PCI

Payment Card Industry 31
PCI-HSM 2016 compliance mode 31

converting key tokens 1090
generating keys 1081
identifying key tokens for

conversion 1088
identifying key tokens to be

converted 1088
impact on verbs 1082
migrating applications 1081, 1088
non-compliant verbs 1081
warning events 1088
warnings 32, 1086

PCI-HSM 2016 compliance moden
migrating key tokens 1090
migration mode 1090

PCI-HSM 2016 compliant key tokens
restrictions 1084

pending change stored in adapter 102
pending change user ID 102
personal account number (PAN)

for Encrypted PIN Translate 540
for Encrypted PIN Verify 556

personal identification number (PIN)
3624 PIN generation algorithm 1010
3624 PIN verification algorithm 1013
algorithm value 519, 556
algorithms 56, 494, 515
block format 494, 539
Clear PIN Generate Alternate

verb 518
Clear PIN Generate verb 515
definition 56
description 491
detailed algorithms 1010
encrypting 494
encrypting key 495, 539
extraction rules 1008
formats 56
GBP PIN verification algorithm 1015
generating 493, 515

from encrypted PIN block 494
German Banking Pool PIN

algorithm 1011
Interbank PIN generation

algorithm 1019
keys 41
managing 56
PIN offset generation algorithm 1012
PVV generation algorithm 1018

personal identification number (PIN)
(continued)

PVV verification algorithm 1019
translating 494
translation of, in networks 492
translation verb 539
using 491
verification verb 555
verifying 494, 555
VISA PIN algorithm 1017

PIN 41, 170, 260, 308, 1142
PIN block 494
PIN block format

3621 1008
3624 1007
additional names 545
ANS X9.8 1005
detail 1005
ECI-2 1008
ECI-3 1008
IBM 4700 Encrypting PINPAD 1007
ISO-1 1006
ISO-2 1006
PIN extraction method keywords 498
values 498
Visa-2 1007
Visa-3 1007

PIN block translation
compliant-tagged key tokens 1085

PIN Change/Unblock
PIN extraction rules 1009

PIN Change/Unblock (CSNBPCU) 583,
591

format 586
JNI version 591
parameters 586
required commands 590
usage notes 591

PIN decimalization table identifier 123
PIN extraction rulesCSNBPCU

PIN Change/Unblock () 1009
PIN keys 41
PIN notation 1005
PIN profile 497

description 540, 556
PIN reference word/value (PRW) 610
PIN security mode 500
PIN Transaction Security

PTS 31
PIN validation value (PVV) 494, 515
PIN verb 493
PIN_check_length parameter

Clear PIN Generate Alternate
verb 519

Clear PIN Generate verb 515
Encrypted PIN Verify verb 556

PIN_encrypting_key_identifier parameter
Clear PIN Encrypt verb 512
Secure Messaging for PINs verb 599

PIN_encryption_key_identifier parameter
Clear PIN Generate Alternate

verb 519
PIN_generating_key_identifier parameter

Clear PIN Generate verb 515
Encrypted PIN Generate verb 536

PIN_generation_key_identifier parameter
Clear PIN Generate Alternate

verb 519
PIN_length parameter

Clear PIN Generate verb 515
Encrypted PIN Generate verb 536

PIN_offset parameter
Secure Messaging for PINs verb 599

PIN_offset_field_length parameter
Secure Messaging for PINs verb 599

PIN_profile parameter
Clear PIN Encrypt verb 512
Clear PIN Generate Alternate

verb 519
Encrypted PIN Generate verb 536

PIN_verifying_key_identifier parameter
Encrypted PIN Verify verb 556

PIN-encrypting key 539
PINBLOCK 519
PINBLOCK PIN extraction method

keyword 498
PINGEN 41, 170, 209, 212, 235, 260, 308,

985
PINGEN key 985
PINLEN04 PIN extraction method

keyword 498
PINLEN12 PIN extraction method

keyword 498
PINLENnn 519
PINVER 41, 170, 209, 212, 235, 260, 308
PINVER key 985
PKA CMK 102
PKA cryptographic key 689
PKA cryptography 71
PKA Decrypt (CSNDPKD) 327

format 327
JNI version 330
parameters 327
required commands 329
restrictions 329
usage notes 330

PKA Encrypt (CSNDPKE) 330
format 331
JNI version 334
parameters 331
required commands 333
restrictions 333
usage notes 333

PKA external key token 74, 75
PKA internal key token 75
PKA key 327, 330
PKA key algorithm 71
PKA Key Generate

parameters 691
PKA Key Generate (CSNDPKG) 689

format 691
JNI version 695
required commands 695
restrictions 694

PKA key identifier 74
PKA Key Import (CSNDPKI) 696

format 696
JNI version 699
parameters 696
required commands 698
restrictions 698
usage notes 699

1188 Common Cryptographic Architecture Application Programmer's Guide

PKA key label 74
PKA key management 73
PKA key management verb 74
PKA Key Record Create

(CSNDKRC) 474
format 475
JNI version 476
parameters 475
related information 476
required commands 476

PKA Key Record Delete
(CSNDKRD) 476

format 476
JNI version 478
parameters 477
related information 478
required commands 477

PKA Key Record List (CSNDKRL) 478
format 479
JNI version 480
parameters 479
related information 480
required commands 480

PKA Key Record Read (CSNDKRR) 481
format 481
JNI version 482
parameters 481
related information 482
required commands 482

PKA Key Record Write
(CSNDKRW) 482

format 483
JNI version 484
parameters 483
related information 484
required commands 484

PKA key storage 150, 449
PKA key storage file 52
PKA key token 74, 880

ECC 881
external 75
record format 854

RSA 1024-bit modulus-exponent
private 857

RSA 1024-bit private internal 872,
873

RSA 4096-bit modulus-exponent
private 861

RSA private 854, 857
RSA private external 854
RSA private internal 855
RSA public 853
variable Modulus-Exponent 873

RSA 881
PKA Key Token Build (CSNDPKB) 699

format 700
JNI version 709
parameters 700
required commands 709

PKA Key Token Change
(CSNDKTC) 710

format 710
JNI version 712
parameters 710
required commands 712

PKA key token identifier 880
PKA key token sections 880, 881

PKA key tokens
number representation 885

PKA Key Translate (CSNDPKT) 713
format 715
JNI version 719
parameters 716
required commands 718
restrictions 718
usage notes 719

PKA master key 71
PKA NMK 102
PKA null key token 74
PKA OMK 102
PKA private key

integrity 884
PKA Public Key Extract

(CSNDPKX) 720
format 720
JNI version 721
parameters 720
usage notes 721

PKA public-key
certificate section 885

PKA verb summary 76
PKA verbs 72
PKA_enciphered_keyvalue parameter

PKA Decrypt verb 327
PKA Encrypt verb 331

PKA_enciphered_keyvalue_length
parameter

PKA Decrypt verb 327
PKA Encrypt verb 331

PKA_key_identifier parameter
PKA Decrypt verb 327
PKA Encrypt verb 331

PKA_key_identifier_length parameter
PKA Decrypt verb 327
PKA Encrypt verb 331

PKA_private_key_identifier parameter
Digital Signature Generate verb 676

PKA_private_key_identifier_length
parameter

Digital Signature Generate verb 676
PKA_public_key_identifier parameter

Digital Signature Verify verb 682
PKA_public_key_identifier_length

parameter
Digital Signature Verify verb 682

PKA92 354, 359
PKA92 key format and encryption

process 1042
PKCS #1 hash formats 1045
PKCS #11 1139
PKCS #11 standard C API 1144
PKCS 1.0 675, 676, 682
PKCS 1.1 675, 676, 682
PKCS-1.2 327, 331, 345, 354, 359
PKCS-PAD

Symmetric Algorithm Decipher 390
Symmetric Algorithm Encipher 397

PKCS-PAD processing rule 392, 399
pkcscca tool

master key migratioin 1148
pkcsconf 1142
pkcsconf -t 1143
pkcsconf command 1140
PKCSOAEP 345, 354, 359

pkcsslotd 1141
PKI

public key infrastructure 745
PKOAEP2 345, 365
plain_text parameter

Cryptographic Variable Encipher
verb 178

plaintext
encipher 178
enciphering 379
encrypt 178

POST firmware version 102
POST2 version

coprocessor 102
power-supply voltage 102
Prime

elliptic curve type 195
private external key token

RSA 854
private internal key token

RSA 855, 872, 873
private key

integrity 884
OPK, object protection key 859

private key token
RSA 854, 857

private_KEK_key_identifier parameter
EC Diffie-Hellman verb 200

private_KEK_key_identifier_length
parameter

EC Diffie-Hellman verb 200
private_key_identifier parameter

EC Diffie-Hellman verb 200
private_key_identifier_length parameter

EC Diffie-Hellman verb 200
private_key_name parameter

PKA Key Token Build verb 700
private_key_name_length parameter

PKA Key Token Build verb 700
problems, reporting xxviii
procedure call 19
processing a master key 157
processing overlap 9
processing rule

ANS X9.23 380, 382, 387
CBC 380, 382, 387, 392, 399
CUSP 380, 382, 387
Decipher 381, 382
description 380
ECB 380, 392, 399
Encipher 385, 387
GBP-PIN 515
IBM-PIN 515
IBM-PINO 515
INBK-PIN 515
IPS 380, 382, 387
PKCS-PAD 380, 392, 399
recommendations for Encipher 387
Symmetric Algorithm Decipher 390,

392
Symmetric Algorithm Encipher 397,

399
VISA-PVV 515

profile 4
Prohibit Export (CSNBPEX) 334

format 334
JNI version 335

Index 1189

Prohibit Export (CSNBPEX) (continued)
parameters 334
required commands 335

Prohibit Export Extended
(CSNBPEXX) 335

format 336
JNI version 336
parameters 336
required commands 336
restrictions 336

protected key 16, 19
protected key CPACF 19
protecting data 379
protection_method parameter

TR31 Key Import verb 785
PRW (PIN reference word/value) 610
pseudonym 20
PTS

PIN Transaction Security 31
Public Infrastructure Certificate

(CSNDPIC) 738
format 738
parameters 738
required commands 744

Public Infrastructure Certificate
(CSNDPICJ)

JNI version 744
Public Infrastructure Manage

(CSNDPIM) 745
format 746
parameters 746
required commands 752

Public Infrastructure Manage
(CSNDPIMJ)

JNI version 753
public key cryptography 71
public key infrastructure

PKI 745
public key token

RSA 853
public_key_identifier parameter

EC Diffie-Hellman verb 200
public_key_identifier_length parameter

EC Diffie-Hellman verb 200
publications about cryptography xxvi

Q
QPENDING 102
query adapter compliance state

panel.exe 1132
questionable DES key 160

R
radiation 102
RANDOM 341, 343
random generation of a new

master-key 85
random number 341, 342
Random Number Generate

(CSNBRNG) 341
format 341
JNI version 342
parameters 341
required commands 342

Random Number Generate Long
(CSNBRNGL) 342

format 342
JNI version 344
parameters 343

Random Number Tests (CSUARNT) 161
format 162
JNI version 163
parameters 162

random_number parameter
Key Test Extended verb 256
Random Number Generate Long

verb 343
Random Number Generate verb 341

random_number_length parameter
Random Number Generate Long

verb 343
raw Z value 52
reason code 826
reason codes

with return code 0 826
with return code 12 844
with return code 16 845
with return code 4 827
with return code 8 827

reason_code parameter 22
recommendations for Encipher processing

rule 387
record chaining 380
Recover PIN from Offset (CSNBPFO)

format 592
JNI version 595
parameters 592
required commands 594
usage notes 595

REFORMAT 170, 260, 302, 308, 323, 540
regeneration_data parameter

PKA Key Generate verb 691
regeneration_data_length parameter

PKA Key Generate verb 691
related publications xxv
remote key distribution 53
Remote Key Export (CSNDRKX) 722

format 724
JNI version 733
parameters 724
required commands 731
restrictions 731

remote key loading
ACP 53
definition 53
new example 53
old example 53

reserved parameter
Control Vector Generate verb 170
Key Test2 verb 250

reserved_1_length parameter
EC Diffie-Hellman verb 200

reserved_2_length parameter
EC Diffie-Hellman verb 200

reserved_3_length parameter
EC Diffie-Hellman verb 200

reserved_4_length parameter
EC Diffie-Hellman verb 200

reserved_5_length parameter
EC Diffie-Hellman verb 200

resource_name parameter
Cryptographic Resource Allocate

verb 145
Cryptographic Resource Deallocate

verb 147
resource_name_length parameter

Cryptographic Resource Allocate
verb 145

Cryptographic Resource Deallocate
verb 147

Restrict Key Attribute (CSNBRKA) 336
format 337
JNI version 340
parameters 337
required commands 340
restrictions 340
usage notes 340

restrictions of CCA library 1146
retained key 485
Retained Key Delete (CSNDRKD) 485

format 485
JNI version 487
parameters 485
related information 486
required commands 486

Retained Key List (CSNDRKL) 487
format 487
JNI version 489
parameters 487
related information 489
required commands 488

retained_keys_count parameter
Retained Key List verb 487

RETRKPR 238, 242
return code 825
return_code parameter 22
returned_PVV parameter

Clear PIN Generate Alternate
verb 519

returned_result parameter
Clear PIN Generate verb 515

revision history xvii
RIPEMD-160 55
RKX DES key tokens

external 851
RKX key token 326
role

DEFAULT 4
default role 1129

role data structure example 1079
role identifier 102
role structures 1073

basic structure of a role 1073
RPM

contained files 1109
install and configure 1111
samples 1110

RPM installation package 1108
RPMD-160 445, 676
RSA 676, 682, 696, 710
RSA 1024-bit private internal key

token 872, 873
RSA algorithm 71
RSA hardware version 102
RSA key 327, 330, 354, 358, 362, 675,

680, 689
RSA key generation 1035

1190 Common Cryptographic Architecture Application Programmer's Guide

RSA key token 881
RSA key token sections 75
RSA key-pair generation 1035
RSA PKCS-PSS 675
RSA private external key token 854
RSA private internal key token 872
RSA private key

2048-bit Chinese Remainder
Theorem 865

4096-bit Chinese Remainder
Theorem 867

4096-bit Chinese Remainder Theorem
format 869

4096-bit Modulus-Exponent 863
AES encrypted OPK section 863, 869
external and internal form 869

RSA private key token 854
RSA private modulus-exponent key

token 861
RSA private Modulus-Exponent key

token 857
RSA private token 854, 857
RSA public token 853
RSA variable Modulus-Exponent

token 873
RSA_enciphered_key parameter

Symmetric Key Generate verb 354
Symmetric Key Import verb 359

RSA_enciphered_key_length parameter
Symmetric Key Generate verb 354

RSA_private_key_identifier parameter
Symmetric Key Import verb 359

RSA_public_key_identifier parameter
Symmetric Key Generate verb 354

RSA_public_key_identifier_length
parameter

Symmetric Key Generate verb 354
RSA-AESC 869
RSA-CRT 700
RSA-PRIV 700
RSA-PUBL 700
RSAMEVAR 700
RTCMK 302, 305, 453, 710
RTNMK 302, 305, 453, 454, 710
rule_array element

last five commands 102
security API return code 102

rule_array parameter 23
Access Control Maintenance verb 90
Access Control Tracking verb 94
AES Key Record Create verb 456
AES Key Record Delete verb 458
AES Key Record List verb 460
AES Key Record Read verb 462
AES Key Record Write verb 464
Clear PIN Encrypt verb 512
Clear PIN Generate Alternate

verb 519
Clear PIN Generate verb 515
Control Vector Generate verb 170
Control Vector Translate verb 175
Cryptographic Resource Allocate

verb 145
Cryptographic Resource Deallocate

verb 147
CVV Generate verb 523
CVV Key Combine verb 528

rule_array parameter (continued)
CVV Verify verb 532
Decipher verb 382
DES Key Record Delete verb 468
Digital Signature Generate verb 676
Digital Signature Verify verb 682
Diversified Key Generate verb 184
EC Diffie-Hellman verb 200
Encipher verb 387
Encrypted PIN Generate verb 536
Encrypted PIN Translate verb 540
Encrypted PIN Verify verb 556
HMAC Generate verb 420
HMAC Verify verb 423
Key Generate2 verb 222
Key Part Import verb 238
Key Storage Initialization verb 150
Key Test Extended verb 256
Key Test verb 246
Key Test2 verb 250
Key Token Build verb 260
Key Token Build2 verb 265
Key Token Change verb 302
Key Token Change2 verb 305
Key Token Parse verb 308
Key Translate2 verb 323
MAC Generate verb 427
MAC Verify verb 434, 438
Master Key Process verb 158
MDC Generate verb 442
Multiple Clear Key Import verb 168
One-Way Hash verb 445
PIN Change/Unblock verb 586
PKA Decrypt verb 327
PKA Encrypt verb 331
PKA Key Import verb 696
PKA Key Record Create verb 475
PKA Key Record Delete verb 477
PKA Key Record List verb 479
PKA Key Record Read verb 481
PKA Key Record Write verb 483
PKA Key Token Build verb 700
PKA Key Token Change verb 710
PKA Key Translate verb 716
Random Number Generate Long

verb 343
Random Number Tests verb 162
Restrict Key Attribute verb 337
Retained Key Delete verb 485
Retained Key List verb 487
Secure Messaging for Keys verb 596
Secure Messaging for PINs verb 599
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
Symmetric Key Export verb 345
Symmetric Key Generate verb 354
Symmetric Key Import verb 359
Symmetric Key Import2 verb 365
TR31 Key Import verb 785
TR31 Key Token Parse verb 805
TR31 Optional Data Build verb 809
TR31 Optional Data Read verb 812
Transaction Validation verb 604
Trusted Block Create verb 735

rule_array_count parameter 23

rule_array_count parameter (continued)
Access Control Tracking verb 94
AES Key Record Create verb 456
AES Key Record Delete verb 458
AES Key Record List verb 460
AES Key Record Read verb 462
AES Key Record Write verb 464
Clear PIN Encrypt verb 512
Clear PIN Generate Alternate

verb 519
Clear PIN Generate verb 515
Control Vector Generate verb 170
Control Vector Translate verb 175
Cryptographic Resource Allocate

verb 145
Cryptographic Resource Deallocate

verb 147
CVV Generate verb 523
CVV Key Combine verb 528
CVV Verify verb 532
Decipher verb 382
DES Key Record Delete verb 468
Digital Signature Generate verb 676
Digital Signature Verify verb 682
Diversified Key Generate verb 184
EC Diffie-Hellman verb 200
Encipher verb 387
Encrypted PIN Generate verb 536
Encrypted PIN Translate verb 540
Encrypted PIN Verify verb 556
HMAC Generate verb 420
HMAC Verify verb 423
Key Generate2 verb 222
Key Part Import verb 238
Key Storage Initialization verb 150
Key Test Extended verb 256
Key Test verb 246
Key Test2 verb 250
Key Token Build verb 260
Key Token Build2 verb 265
Key Token Change verb 302
Key Token Change2 verb 305
Key Token Parse verb 308
Key Translate2 verb 323
MAC Generate verb 427
MAC Verify verb 434
MAC Verify2 verb 438
Master Key Process verb 158
MDC Generate verb 442
Multiple Clear Key Import verb 168
One-Way Hash verb 445
PIN Change/Unblock verb 586
PKA Decrypt verb 327
PKA Encrypt verb 331
PKA Key Import verb 696
PKA Key Record Create verb 475
PKA Key Record Delete verb 477
PKA Key Record List verb 479
PKA Key Record Read verb 481
PKA Key Record Write verb 483
PKA Key Token Build verb 700
PKA Key Token Change verb 710
PKA Key Translate verb 716
Random Number Generate Long

verb 343
Random Number Tests verb 162
Restrict Key Attribute verb 337

Index 1191

rule_array_count parameter (continued)
Retained Key Delete verb 485
Retained Key List verb 487
Secure Messaging for Keys verb 596
Secure Messaging for PINs verb 599
Symmetric Algorithm Decipher

verb 392
Symmetric Algorithm Encipher

verb 399
Symmetric Key Export verb 345
Symmetric Key Generate verb 354
Symmetric Key Import verb 359
Symmetric Key Import2 verb 365
TR31 Key Import verb 785
TR31 Key Token Parse verb 805
TR31 Optional Data Build verb 809
TR31 Optional Data Read verb 812
Transaction Validation verb 604
Trusted Block Create verb 735

S
sample verb calls 1093, 1097
SCCOMCRT 716
SCCOMME 716
SCVISA 716
SECMSG 41, 170, 260, 308
SECMSG variable-length symmetric 960
secmsg_key_identifier parameter

Secure Messaging for Keys verb 596
Secure Messaging for PINs verb 599

secure electronic transaction (SET)
services 102

secure key concept 1146
secure messaging 57
Secure Messaging for Keys

(CSNBSKY) 595
format 596
JNI version 598
parameters 596
required commands 598
usage notes 598

Secure Messaging for PINs
(CSNBSPN) 599

format 599
JNI version 603
parameters 599
required commands 602
usage notes 603

Secure Sockets Layer (SSL) 55
security API 8, 9, 20

command and sub-command
codes 1135

security API programming 19
security API return code

rule_array element 102
security officer (SO)

login PIN 1142
security server 8, 16
security_server_name parameter

AES Key Record List verb 460
DES Key Record List verb 470
PKA Key Record List verb 479

seed parameter
Random Number Generate Long

verb 343

seed_length parameter
Random Number Generate Long

verb 343
segmenting

control keywords 427, 434, 438
selecting a coprocessor resource 144, 147
SELFENC 599
sequence_number parameter

Clear PIN Encrypt verb 512
Encrypted PIN Generate verb 536
Encrypted PIN Translate verb 540

sequences of verbs 57
serial number

adapter 102
coprocessor 102

service_code parameter
CVV Generate verb 523
CVV Verify verb 532

SESS-XOR 184, 190
SET command 453
SHA-1 55, 246, 254, 265, 345, 420, 423,

445, 676
SHA-1 engine 9
SHA-224 265, 420, 423, 445
SHA-256 246, 250, 254, 265, 345, 420,

423, 445, 676
SHA-384 265, 345, 420, 423, 445, 676
SHA-512 265, 345, 420, 423, 445, 676
SHA2VP1 250
short blocks 385
SIG-ONLY 700
signature_bit_length parameter

Digital Signature Generate verb 676
signature_field parameter

Digital Signature Generate verb 676
Digital Signature Verify verb 682

signature_field_length parameter
Digital Signature Generate verb 676
Digital Signature Verify verb 682

SIGSEGV error 16
SINGLE 170, 212, 260, 308, 354
single domain configuration 10
single-length key

multiple decipherment 1037
multiple encipherment 1037
purpose 985, 986
using 41

SINGLE-R 212, 354
size of battery-backed RAM 102
size of dynamic RAM (DRAM)

memory 102
size of flash EPROM memory 102
SIZEWPIN 123
skeleton token 140
skeleton token length 140
skeleton_key_identifier parameter

PKA Key Generate verb 691
skeleton_key_identifier_length parameter

PKA Key Generate verb 691
slot daemon, openCryptoki 1141
slot entry 1140
slot manager 1140

starting 1140
SMKEY 170, 184, 190, 260, 308
SMPIN 170, 184, 190, 260, 308
SNA-SLE 1029

SO
login PIN 1142

source_key parameter
PKA Key Translate verb 716

source_key_identifier
PKA Key Import verb 696

source_key_identifier parameter
Data Key Export verb 180
Key Export verb 209
Key Import verb 235
PKA Public Key Extract verb 720
Symmetric Key Export verb 345

source_key_identifier_length parameter
PKA Public Key Extract verb 720
Symmetric Key Export verb 345

source_key_token parameter
Control Vector Translate verb 175
Data Key Import verb 182
Prohibit Export Extended verb 336

source_transport_key parameter
PKA Key Translate verb 716

SSL support 55
standard user (User)

login PIN 1142
STATAES 102
STATAPKA 102
STATCARD 102
STATCCA 102, 143
STATCCAE 102
STATCRD2 102
STATDECT 123
STATDIAG 102
STATEID 102
STATEXPT 102
static keys 545
static TDES keys 545
STATICSA 102, 123

adapter serial number 102
serial number

adapter 102
verb_data field 102

STATICSA operational key parts
output data format 123

STATICSB 126
adapter serial number 102
serial number

adapter 102
verb_data field 102

STATICSB operational key parts
output data format 126

STATICSE 102, 128
adapter serial number 102
serial number

adapter 102
verb_data field 102

STATICSE operational key parts
output data format 128

STATICSX 102, 130
STATICSX operational key parts

output data format 130
STATKPR 102, 132

output data 132
STATKPR operational key parts

output data format 132
STATKPRL 102, 133

input data 132
STATMOFN 102

1192 Common Cryptographic Architecture Application Programmer's Guide

STATOAHL
output data 133

status
AES CMK 102
AES NMK 102
AES OMK 102
ECC CMK 102
ECC NMK 102
ECC OMK 102

status information 1143
STATVKPL 102, 140
STATVKPR 102

operational key parts 140
output data format 140

STATWPIN 141
sub-command codes

security API 1135
summary of PKA verbs 76
SYM-MK 41, 71, 83, 157, 158, 160, 246,

254
Symmetric Algorithm Decipher

(CSNBSAD) 390
format 392
JNI version 396
parameters 392
required commands 396
restrictions 396

Symmetric Algorithm Decipher
processing rule 390

Symmetric Algorithm Encipher
(CSNBSAE) 397

format 399
JNI version 404
parameters 399
required commands 403
restrictions 403

Symmetric Algorithm Encipher
processing rule 397

symmetric key 53
maximum modulus size 102

Symmetric Key Export (CSNDSYX) 344
format 345
JNI version 349
parameters 345
required commands 347
usage notes 348

Symmetric Key Export with Data
(CSNDSXD) 350

format 350
parameters 350
required commands 352
usage notes 353

Symmetric Key Export with Data
(CSNDSXDJ)

JNI version 353
Symmetric Key Generate

(CSNDSYG) 354
format 354
JNI version 358
parameters 354
required commands 357
usage notes 357

Symmetric Key Import (CSNDSYI) 358
format 359
JNI version 362
parameters 359
required commands 361

Symmetric Key Import (CSNDSYI)
(continued)

restrictions 361
usage notes 362

Symmetric Key Import2
(CSNDSYI2) 362

format 365
JNI version 369
parameters 365
required commands 367
restrictions 367
usage notes 368

symmetric key management
TR-31 79

symmetric key token 889
symmetric keys master key 41
symmetric master key 83
syntax, legacy

panel.exe 1123
sysfs interface xxi

T
T31XPTOK 170
tampering 102
target_key_identifier

PKA Key Import verb 696
target_key_identifier parameter

Data Key Export verb 180
Data Key Import verb 182
Key Export verb 209
Key Import verb 235
Multiple Clear Key Import verb 168
Symmetric Key Import verb 359
Symmetric Key Import2 verb 365

target_key_token parameter
Control Vector Translate verb 175
Key Token Build2 verb 265
PKA Key Translate verb 716

target_keyvalue parameter
PKA Decrypt verb 327

target_keyvalue_length parameter
PKA Decrypt verb 327

target_public_key_identifier parameter
PKA Public Key Extract verb 720

target_public_key_identifier_length
parameter

PKA Public Key Extract verb 720
target_transport_key parameter

PKA Key Translate verb 716
TDES 1030
TDES encryption 102
TDES-CBC 596, 599
TDES-DEC 184, 190
TDES-ECB 596, 599
TDES-ENC 184, 190
TDES-MAC 427, 434
TDES-XOR 184, 190, 586
TDESEMV2 184, 190, 586
TDESEMV4 586
temperature 102
terminology xxi
text parameter

HMAC Generate verb 420
HMAC Verify verb 423
MAC Generate verb 427
MAC Generate2 verb 430

text parameter (continued)
MAC Verify verb 434
MDC Generate verb 442
One-Way Hash verb 445

text_length parameter
Cryptographic Variable Encipher

verb 178
Decipher verb 382
Encipher verb 387
HMAC Generate verb 420
HMAC Verify verb 423
MAC Generate verb 427
MAC Generate2 verb 430
MAC Verify verb 434
MDC Generate verb 442
One-Way Hash verb 445
Secure Messaging for Keys verb 596
Secure Messaging for PINs verb 599

time of day 102
TIMEDATE 102
TKE access 102
TKE workstation xxi, 4

for administering weak PIN
tables 609

TKESTATE 102
TLV_data parameter

Key Token Parse2 verb 313
token

openCryptoki 1139
TOKEN 41, 209, 211, 212, 234, 235, 246,

254
token agreement scheme 52
token parameter

PKA Key Record Read verb 481
Token validation value

TVV 847
token validation value (TVV) 849
token_data parameter

Key Token Build2 verb 265
token_length parameter

PKA Key Record Read verb 481
TOKEN-DL 458, 468, 477
tokens

wrapping method 102
TPK-ONLY 682
TR-31 250

symmetric key management 79
TR31 Key Import (CSNBT31I) 781

examples 784
format 784
JNI version 803
parameters 785
required commands 801
restrictions 801
special notes 783

TR31 Key Token Parse (CSNBT31P) 804
format 805
JNI version 807
parameters 805

TR31 Optional Data Build
(CSNBT31O) 808

format 809
JNI version 811
parameters 809
restrictions 810

TR31 Optional Data Read
(CSNBT31R) 811

Index 1193

TR31 Optional Data Read (CSNBT31R)
(continued)

format 812
JNI version 814
parameters 812

tr31_key parameter
TR31 Key Token Parse verb 805
TR31 Optional Data Read verb 812

tr31_key_block parameter
TR31 Key Import verb 785

tr31_key_block_length parameter
TR31 Key Import verb 785

tr31_key_length parameter
TR31 Key Token Parse verb 805
TR31 Optional Data Read verb 812

tracing in openCryptoki 1150
Track 1 Discretionary Data 502
Track 2 Discretionary Data 502
trademarks 1162
trailing short blocks 385
Transaction Sequence Number (TSN) 90
Transaction Validation (CSNBTRV) 603

format 604
JNI version 606
parameters 604
required commands 606
usage notes 606

transaction_info parameter
Transaction Validation verb 604

transaction_key parameter
Transaction Validation verb 604

TRANSLAT 170, 260, 308, 540
translated key 16, 18
transport key 34, 182, 722, 968
transport key variant

definition 34
transport_key_identifier parameter

PKA Key Generate verb 691
Symmetric Key Import2 verb 365
Trusted Block Create verb 735

transporter_key_identifier parameter
Symmetric Key Export verb 345

transporter_key_identifier_length
parameter

Symmetric Key Export verb 345
Triple DES encryption 380
triple-DES 1030
Triple-DES encryption 102
triple-length keys

multiple encipherment 1040
mutiple decipherment 1041

trust parent 745
trusted block 53, 734, 968

number representation 971
section format 971

Trusted Block Create (CSNDTBC) 734
format 735
JNI version 737
parameters 735
required commands 737
restrictions 737

trusted block integrity 970
trusted block section X'11' 972
trusted block section X'12' 972

subsections 974
trusted block section X'13' 980
trusted block sections 969

Trusted Key Entry (TKE) 1071
Trusted Key Entry workstation (TKE)

overview 57
trusted_block_identifier parameter

Trusted Block Create verb 735
trusted_block_identifier_length parameter

Trusted Block Create verb 735
TSN)

See Transaction Sequence Number
TVV

Token validation value 847
token validation value (TVV) 849

U
Ubuntu installation 1107
UKPT 170, 260, 308

format 501
UKPTBOTH 540
UKPTIPIN 540, 556
UKPTOPIN 540
unbinding

PAN to the PIN 1085
unbinding PAN to the PIN 1085
Unique Key Derive

parameters 370
Unique Key Derive (CSNBUKD) 369

format 370
required commands 376
restrictions 375
usage notes 376

Unique Key Derive (CSNBUKDJ)
JNI version 377

unwrap working keys 83
unwrap_kek_identifier parameter

TR31 Key Import verb 785
unwrap_kek_identifier_length parameter

TR31 Key Import verb 785
USE-CV 260
USECONFG 168, 184, 190, 238, 302, 323,

354, 359, 365
User

login PIN 1142
user ID

pending change 102
user_associated_data parameter

Key Token Build2 verb 265
Key Token Parse2 verb 313

user_associated_data_1 parameter
Key Generate2 verb 222

user_associated_data_1_length parameter
Key Generate2 verb 222

user_associated_data_2 parameter
Key Generate2 verb 222

user_associated_data_2_length parameter
Key Generate2 verb 222

user_definable_associated_data parameter
PKA Key Token Build verb 700

user_definable_associated_data_length
parameter

PKA Key Token Build verb 700
usr/lib64 1108
UTC time of day 102
utilities

ivp.e 1119
panel.exe 18, 41, 101, 454, 1109, 1119,

1121, 1124, 1126, 1128, 1129

utilities (continued)
ACP tracking 1131
query adapter compliance

state 1132
verifying CCA epoch

certificate 1132
PKA Key Token Build 699

utility verbs 817

V
VALIDATE 710
validating CCA epoch certificate

panel.exe 1132
validation_values parameter

Transaction Validation verb 604
value_1 parameter

Key Test verb 246
value_2 parameter

Key Test verb 246
variable length token 40
variable Modulus-Exponent token

RSA 873
variable types 20
variable-length AES key 304
variable-length HMAC key 304
variable-length key token 889
VDSP standard

Visa Data Secure Platform 545
verb

access control 59
Access Control Maintenance

(CSUAACM) 89
Access Control Tracking

(CSUAACT) 93
AES 61
AES Key Record Create

(CSNBAKRC) 455
AES Key Record Delete

(CSNBAKRD) 457
AES Key Record List

(CSNBAKRL) 459
AES Key Record Read

(CSNBAKRR) 462
AES Key Record Write

(CSNBAKRW) 464
Authentication Parameter Generate

(CSNBAPG) 508
CCA 61, 87
CCA node 59
CCA nodes and resource control 89
Cipher Text Translate2

(CSNBCTT2) 404
Clear Key Import (CSNBCKI) 166
Clear PIN Encrypt (CSNBCPE) 512
Clear PIN Generate (CSNBPGN) 515
Clear PIN Generate Alternate

(CSNBCPA) 518
Code Conversion (CSNBXEA) 817
common parameters 22
Control Vector Generate

(CSNBCVG) 170
Control Vector Translate

(CSNBCVT) 174
Cryptographic Facility Query

(CSUACFQ) 100, 102

1194 Common Cryptographic Architecture Application Programmer's Guide

verb (continued)
Cryptographic Facility Version

(CSUACFV) 143
Cryptographic Resource Allocate

(CSUACRA) 144
Cryptographic Resource Deallocate

(CSUACRD) 147
Cryptographic Variable Encipher

(CSNBCVE) 178
CVV Generate (CSNBCSG) 523
CVV Key Combine (CSNBCKC) 526
CVV Verify (CSNBCSV) 531
Data Key Export (CSNBDKX) 180
Data Key Import (CSNBDKM) 182
Decipher (CSNBDEC) 381
definition 19
DES 61
DES cryptographic key 166
DES Key Record Create

(CSNBKRC) 466
DES Key Record Delete

(CSNBKRD) 467
DES Key Record List

(CSNBKRL) 469
DES Key Record Read

(CSNBKRR) 471
DES Key Record Write

(CSNBKRW) 473
digital signature 72
Digital Signature Generate

(CSNDDSG) 675
Digital Signature Verify

(CSNDDSV) 680
Diversified Key Generate

(CSNBDKG) 183
Diversified Key Generate2

(CSNBDKG2) 189
DK Deterministic PIN Generate

(CSNBDDPG) 610
DK Migrate PIN (CSNBDMP) 617
DK PAN Modify in Transaction

(CSNBDPMT) 623
DK PAN Translate (CSNBDPT) 630
DK PIN Change (CSNBDPC) 637
DK PIN Verify (CSNBDPV) 649
DK PRW Card Number Update

(CSNBDPNU) 653
DK PRW CMAC Generate

(CSNBDPCG) 659
DK Random PIN Generate

(CSNBDRPG) 662
DK Regenerate PRW

(CSNBDRP) 668
EC Diffie-Hellman (CSNDEDH) 195
Encipher (CSNBENC) 385
Encrypted PIN Generate

(CSNBEPG) 535
Encrypted PIN Translate

(CSNBPTR) 539
Encrypted PIN Translate Enhanced

(CSNBPTRE) 545
Encrypted PIN Verify

(CSNBPVR) 555
entry point name 20
financial services 491
financial services support for DK 609
format 20

verb (continued)
FPE Decipher (CSNBFPED) 560
FPE Encipher (CSNBFPEE) 568
FPE Translate (CSNBFPET) 575
hashing 61
HMAC 61
HMAC Generate (CSNBHMG) 419
HMAC Verify (CSNBHMV) 423
JNI version 20
Key Export (CSNBKEX) 209
Key Generate (CSNBKGN) 212
Key Generate2 (CSNBKGN2) 221
Key Import (CSNBKIM) 234
Key Part Import (CSNBKPI) 237
Key Part Import2 (CSNBKPI2) 241
key storage 449
Key Storage Initialization

(CSNBKSI) 149
Key Test (CSNBKYT) 245
Key Test Extended (CSNBKYTX) 254
Key Test2 (CSNBKYT2) 249
Key Token Build (CSNBKTB) 259
Key Token Change (CSNBKTC) 301
Key Token Change2

(CSNBKTC2) 304
Key Token Parse (CSNBKTP) 307
Key Token Parse2 (CSNBKTP2) 311
Key Translate (CSNBKTR) 321
Key Translate2 (CSNBKTR2) 323
Log Query (CSUALGQ) 152
MAC Generate (CSNBMGN) 426
MAC Generate2 (CSNBMGN2) 430
MAC Verify (CSNBMVR) 433
MAC Verify2 (CSNBMVR2) 438
Master Key Process (CSNBMKP) 157
MDC Generate (CSNBMDG) 441
Multiple Clear Key Import

(CSNBCKM) 167
One-Way Hash (CSNBOWH) 445
parameter list 20
parameters 20
PIN Change/Unblock

(CSNBPCU) 591
PKA 71, 72, 76
PKA Decrypt (CSNDPKD) 327
PKA Encrypt (CSNDPKE) 330
PKA Key Generate (CSNDPKG) 689
PKA Key Import (CSNDPKI) 696
PKA key management 74
PKA Key Record Create

(CSNDKRC) 474
PKA Key Record Delete

(CSNDKRD) 476
PKA Key Record List

(CSNDKRL) 478
PKA Key Record Read

(CSNDKRR) 481
PKA Key Record Write

(CSNDKRW) 482
PKA Key Token Build

(CSNDPKB) 699
PKA Key Token Change

(CSNDKTC) 710
PKA Key Translate (CSNDPKT) 713
PKA Public Key Extract

(CSNDPKX) 720
prefix 20

verb (continued)
Prohibit Export (CSNBPEX) 334
Prohibit Export Extended

(CSNBPEXX) 335
Random Number Generate

(CSNBRNG) 341
Random Number Generate Long

(CSNBRNGL) 342
Random Number Tests

(CSUARNT) 161
Remote Key Export (CSNDRKX) 722
required commands 20
Restrict Key Attribute

(CSNBRKA) 336
restrictions 20
Retained Key Delete

(CSNDRKD) 485
Retained Key List (CSNDRKL) 487
Secure Messaging for Keys

(CSNBSKY) 595
Secure Messaging for PINs

(CSNBSPN) 599
sequence 57
Symmetric Algorithm Decipher

(CSNBSAD) 390
Symmetric Algorithm Encipher

(CSNBSAE) 397
Symmetric Key Export

(CSNDSYX) 344
Symmetric Key Export with Data

(CSNDSXD) 350
Symmetric Key Generate

(CSNDSYG) 354
Symmetric Key Import

(CSNDSYI) 358
Symmetric Key Import2

(CSNDSYI2) 362
Transaction Validation

(CSNBTRV) 603
Trusted Block Create

(CSNDTBC) 734
variable types 20

verb_data field 102
verb_data parameter

Cryptographic Facility Query
verb 102

for Cryptographic Facility Query 117
Key Token Parse2 verb 313

verbs
PCI-HSM 2016 compliance

mode 1082
PIN 493

verification pattern 132, 140, 157, 245,
254, 454, 1021

verification_pattern parameter
Key Test Extended verb 256
Key Test2 verb 250

VERIFY 246, 250, 254, 265, 604
verifying CCA epoch certificate

panel.exe 1132
version_data parameter

Cryptographic Facility Version
verb 143

version_data_length parameter
Cryptographic Facility Version

verb 143

Index 1195

VFPE
Visa Format Preserving

Encryption 502, 545
Visa (EMV) padding rule 426
Visa card-verification value (CVV) 492
Visa Data Secure Platform

VDSP standard 545
VSDP 568

Visa Format Preserving Encryption
VFPE 502, 545

Visa payment card data formats
Cardholder Name 502
PAN 502
Track 1 Discretionary Data 502
Track 2 Discretionary Data 502

VISA PVV 515
VISA PVV key 518
VISA-1 545
Visa-2 PIN block format 1007
VISA-2 PIN block format 498
Visa-3 PIN block format 1007
VISA-3 PIN block format 498
VISA-4 PIN block format 498
VISA-PVV 170, 260, 308, 519, 556
VISA-PVV algorithm 519, 556
VISAPCU1 586
VISAPCU2 586
VISAPVV4 556
VISAPVV4 algorithm 556
VSDP

Visa Data Secure Platform 568

W
warning events

identifying key tokens for
conversion 1088

PCI-HSM 2016 compliance mode 32,
1086

weak PIN table
TKE workstation 609

who should use this document xx
wrap working keys 83
wrap_kek_identifier parameter

TR31 Key Import verb 785
wrap_kek_identifier_length parameter

TR31 Key Import verb 785
WRAP-ECB 168, 184, 190, 238, 260, 302,

308, 323, 354, 359, 365
WRAP-ENH 168, 184, 190, 238, 260, 302,

308, 323, 354, 359, 365
WRAPMTHD 102
wrapping key 16

X
X.509 certificate 745
X3.106 (CBC) method 1028
X9.19OPT 427, 434
X9.31 676, 682
X9.31 hash format 1044
X9.9-1 427, 434
X9.9-1 keyword 427, 434, 438
XLATE 170, 260, 308
XLATE-OK 700
XPORT-OK 170, 260, 308

XPRT-SYM 265
XPRTAASY 265
XPRTUASY 265

Z
z/VM xxi
z/VM guest 1106
zcrypt

installing 1103
ZERO-PAD 327, 331, 345, 354, 359, 676,

682
Zone Encryption Keys 545

1196 Common Cryptographic Architecture Application Programmer's Guide

Readers’ Comments — We'd Like to Hear from You

Linux on Z and LinuxONE
Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide
Version 6.0

Publication No. SC33-8294-08

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via email to: eservdoc@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC33-8294-08

SC33-8294-08

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

SC33-8294-08

	Contents
	Figures
	Tables
	About this document
	Revision history
	Edition April 2018, CCA Support Program Releases 6.0 and 5.3
	Edition March 2017, CCA Support Program Releases 4.4 and 5.2
	Edition July 2016, CCA Support Program Releases 4.4 and 5.2

	Who should use this document
	Distribution-specific information
	Terminology
	Hardware requirements
	How to use this document
	Where to find more information
	Cryptography publications

	Do you have problems, comments, or suggestions?

	Part 1. IBM CCA programming
	Chapter 1. Introduction to programming for the IBM Common Cryptographic Architecture
	Available Common Cryptographic Architecture (CCA) verbs
	Common Cryptographic Architecture functional overview
	How application programs obtain service
	Overlapped processing and load balancing
	Domain selection capabilities
	Multi-coprocessor selection capabilities

	CPACF support
	Environment variables that affect CPACF usage
	CSU_HCPUACLR
	CSU_HCPUAPRT

	Access control points that affect CPACF protected key operations
	CPACF operation (protected key)
	Using keys with CPACF, protected key
	Using keys with CPACF, clear key or no key

	CCA library CPACF preparation at startup
	Interaction between the default card and use of protected key CPACF
	Using the AUTOSELECT option and the use of protected key CPACF

	Security API programming fundamentals
	Verbs, variables, and parameters
	Commonly encountered parameters
	Parameters common to all verbs
	The rule_array and other keyword parameters
	Key tokens, key labels, and key identifiers

	How to compile and link CCA application programs
	Using the Master Key Process (CSNBMKP) verb
	Building C applications using the CCA libraries
	Using the CCA JNI
	Calling the CCA JNI using the Java package infrastructure
	Entry points and data types used in the JNI
	JNI sample modules and sample code
	Preparing your Java environment
	Building Java applications using the CCA JNI
	Building the Java byte code
	Running the Java byte code

	Chapter 2. Running CCA verbs in PCI-HSM 2016 compliance mode
	Compliance warning events

	Chapter 3. Using AES, DES, and HMAC cryptography and verbs
	Functions of the AES, DES, and HMAC cryptographic keys
	Key separation
	Master key variant for fixed-length tokens
	Transport key variant for fixed-length tokens
	Key forms
	Key token
	Key wrapping
	AES key wrapping
	DES key wrapping
	Variable length token (AESKW method)

	Control vector
	Types of keys

	Verbs for managing AES and DES key storage files
	Verbs for managing the PKA key storage file and PKA keys in the cryptographic engine
	EC Diffie-Hellman key agreement models
	Improved remote key distribution
	Remote key loading

	Verbs supporting Secure Sockets Layer (SSL)
	Managing data integrity and message authentication
	Processing message authentication code
	Hashing functions

	Processing personal identification numbers
	Secure messaging
	Trusted Key Entry support
	Typical sequences of CCA verbs
	Using the CCA node and master key management verbs
	Summary of the CCA nodes and resource control verbs
	Summary of the AES, DES, and HMAC verbs

	Chapter 4. Introducing PKA cryptography and using PKA verbs
	PKA key algorithms
	PKA master keys
	PKA verbs
	Verbs supporting digital signatures
	PKA key management
	Key identifier for PKA key token
	Key label
	Key token

	Summary of the PKA verbs

	Chapter 5. TR-31 symmetric key management
	Chapter 6. Understanding and managing master keys
	Symmetric and asymmetric master keys
	Establishing master keys

	Part 2. CCA verbs
	Chapter 7. Using the CCA nodes and resource control verbs
	Access Control Maintenance (CSUAACM)
	Access Control Tracking (CSUAACT)
	Cryptographic Facility Query (CSUACFQ)
	Cryptographic Facility Version (CSUACFV)
	Cryptographic Resource Allocate (CSUACRA)
	Cryptographic Resource Deallocate (CSUACRD)
	Key Storage Initialization (CSNBKSI)
	Log Query (CSUALGQ)
	Master Key Process (CSNBMKP)
	Random Number Tests (CSUARNT)

	Chapter 8. Managing AES, DES, and HMAC cryptographic keys
	Clear Key Import (CSNBCKI)
	Multiple Clear Key Import (CSNBCKM)
	Control Vector Generate (CSNBCVG)
	Control Vector Translate (CSNBCVT)
	Cryptographic Variable Encipher (CSNBCVE)
	Data Key Export (CSNBDKX)
	Data Key Import (CSNBDKM)
	Diversified Key Generate (CSNBDKG)
	Diversified Key Generate2 (CSNBDKG2)
	EC Diffie-Hellman (CSNDEDH)
	Key Export (CSNBKEX)
	Key Generate (CSNBKGN)
	Key Generate2 (CSNBKGN2)
	Key Import (CSNBKIM)
	Key Part Import (CSNBKPI)
	Key Part Import2 (CSNBKPI2)
	Key Test (CSNBKYT)
	Key Test2 (CSNBKYT2)
	Key Test Extended (CSNBKYTX)
	Key Token Build (CSNBKTB)
	Key Token Build2 (CSNBKTB2)
	Key Token Change (CSNBKTC)
	Key Token Change2 (CSNBKTC2)
	Key Token Parse (CSNBKTP)
	Key Token Parse2 (CSNBKTP2)
	Key Translate (CSNBKTR)
	Key Translate2 (CSNBKTR2)
	PKA Decrypt (CSNDPKD)
	PKA Encrypt (CSNDPKE)
	Prohibit Export (CSNBPEX)
	Prohibit Export Extended (CSNBPEXX)
	Restrict Key Attribute (CSNBRKA)
	Random Number Generate (CSNBRNG)
	Random Number Generate Long (CSNBRNGL)
	Symmetric Key Export (CSNDSYX)
	Symmetric Key Export with Data (CSNDSXD)
	Symmetric Key Generate (CSNDSYG)
	Symmetric Key Import (CSNDSYI)
	Symmetric Key Import2 (CSNDSYI2)
	Unique Key Derive (CSNBUKD)

	Chapter 9. Protecting data
	Modes of operation
	Cipher Block Chaining (CBC) mode
	Electronic Code Book (ECB) mode
	Processing rules
	Triple DES encryption

	Decipher (CSNBDEC)
	Encipher (CSNBENC)
	Symmetric Algorithm Decipher (CSNBSAD)
	Symmetric Algorithm Encipher (CSNBSAE)
	Cipher Text Translate2 (CSNBCTT2)

	Chapter 10. Verifying data integrity and authenticating messages
	How MACs are used
	How hashing functions and MDCs are used
	HMAC Generate (CSNBHMG)
	HMAC Verify (CSNBHMV)
	MAC Generate (CSNBMGN)
	MAC Generate2 (CSNBMGN2)
	MAC Verify (CSNBMVR)
	MAC Verify2 (CSNBMVR2)
	MDC Generate (CSNBMDG)
	One-Way Hash (CSNBOWH)

	Chapter 11. Key storage mechanisms
	Key labels and key-storage management
	Key storage with Linux on Z, in contrast to z/OS
	AES Key Record Create (CSNBAKRC)
	AES Key Record Delete (CSNBAKRD)
	AES Key Record List (CSNBAKRL)
	AES Key Record Read (CSNBAKRR)
	AES Key Record Write (CSNBAKRW)
	DES Key Record Create (CSNBKRC)
	DES Key Record Delete (CSNBKRD)
	DES Key Record List (CSNBKRL)
	DES Key Record Read (CSNBKRR)
	DES Key Record Write (CSNBKRW)
	PKA Key Record Create (CSNDKRC)
	PKA Key Record Delete (CSNDKRD)
	PKA Key Record List (CSNDKRL)
	PKA Key Record Read (CSNDKRR)
	PKA Key Record Write (CSNDKRW)
	Retained Key Delete (CSNDRKD)
	Retained Key List (CSNDRKL)

	Chapter 12. Financial services
	How personal identification numbers (PINs) are used
	How Visa card verification values are used
	Translating data and PINs in networks
	Working with Europay-Mastercard-Visa Smart cards
	PIN verbs
	ANSI X9.8 PIN restrictions
	The PIN profile
	Visa Format Preserving Encryption
	Authentication Parameter Generate (CSNBAPG)
	Clear PIN Encrypt (CSNBCPE)
	Clear PIN Generate (CSNBPGN)
	Clear PIN Generate Alternate (CSNBCPA)
	CVV Generate (CSNBCSG)
	CVV Key Combine (CSNBCKC)
	CVV Verify (CSNBCSV)
	Encrypted PIN Generate (CSNBEPG)
	Encrypted PIN Translate (CSNBPTR)
	Encrypted PIN Translate Enhanced (CSNBPTRE)
	Encrypted PIN Verify (CSNBPVR)
	FPE Decipher (CSNBFPED)
	FPE Encipher (CSNBFPEE)
	FPE Translate (CSNBFPET)
	PIN Change/Unblock (CSNBPCU)
	Recover PIN from Offset (CSNBPFO)
	Secure Messaging for Keys (CSNBSKY)
	Secure Messaging for PINs (CSNBSPN)
	Transaction Validation (CSNBTRV)

	Chapter 13. Financial services for DK PIN methods
	Weak PIN table
	DK PIN methods
	DK Deterministic PIN Generate (CSNBDDPG)
	DK Migrate PIN (CSNBDMP)
	DK PAN Modify in Transaction (CSNBDPMT)
	DK PAN Translate (CSNBDPT)
	DK PIN Change (CSNBDPC)
	DK PIN Verify (CSNBDPV)
	DK PRW Card Number Update (CSNBDPNU)
	DK PRW CMAC Generate (CSNBDPCG)
	DK Random PIN Generate (CSNBDRPG)
	DK Regenerate PRW (CSNBDRP)

	Chapter 14. Using digital signatures
	Digital Signature Generate (CSNDDSG)
	Digital Signature Verify (CSNDDSV)

	Chapter 15. Managing PKA cryptographic keys
	PKA Key Generate (CSNDPKG)
	PKA Key Import (CSNDPKI)
	PKA Key Token Build (CSNDPKB)
	PKA Key Token Change (CSNDKTC)
	PKA Key Translate (CSNDPKT)
	PKA Public Key Extract (CSNDPKX)
	Remote Key Export (CSNDRKX)
	Trusted Block Create (CSNDTBC)
	Public Infrastructure Certificate (CSNDPIC)
	Public Infrastructure Manage (CSNDPIM)

	Chapter 16. TR-31 symmetric key management verbs
	Key Export to TR31 (CSNBT31X)
	TR31 Key Import (CSNBT31I)
	TR31 Key Token Parse (CSNBT31P)
	TR31 Optional Data Build (CSNBT31O)
	TR31 Optional Data Read (CSNBT31R)

	Chapter 17. Utility verbs
	Code Conversion (CSNBXEA)

	Part 3. Reference information
	Chapter 18. Return codes and reason codes
	Return codes
	Reason codes
	Reason codes that accompany return code 0
	Reason codes that accompany return code 4
	Reason codes that accompany return code 8
	Reason codes that accompany return code 12
	Reason codes that accompany return code 16

	Chapter 19. Key token formats
	AES internal fixed-length key token
	Token validation value

	DES internal key token
	DES external key token
	External RKX DES key tokens
	DES null key token
	RSA public key token
	RSA private key token
	RSA private external key token
	RSA private internal key token
	RSA private key token, 1024-bit Modulus-Exponent
	RSA private key token, 1024-bit Modulus-Exponent format with OPK section
	RSA private key token, 4096-bit Modulus-Exponent
	RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section
	RSA private key, 2048-bit Chinese Remainder Theorem
	RSA private key, 4096-bit Chinese Remainder Theorem with OPK
	RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section
	RSA private key token, 1024-bit Modulus-Exponent internal format for cryptographic coprocessor feature
	RSA variable Modulus-Exponent token

	ECC key token
	PKA key tokens
	PKA null key token
	PKA key token sections
	Integrity of PKA private key sections containing an encrypted RSA key
	Number representation in PKA key tokens
	PKA public-key certificate section

	HMAC key token
	Variable-length symmetric key tokens
	General format of a variable-length symmetric key-token
	AES CIPHER variable-length symmetric key token
	AES MAC variable-length symmetric key token
	HMAC MAC variable-length symmetric key token
	AES EXPORTER and IMPORTER variable-length symmetric key token
	AES PINPROT, PINCALC, and PINPRW variable-length symmetric key token
	AES DESUSECV variable-length symmetric key token
	AES DKYGENKY variable-length symmetric key token
	AES SECMSG variable-length symmetric key token

	TR-31 optional block data
	Trusted blocks
	Trusted block organization
	Trusted block integrity
	Number representation in trusted blocks
	Trusted block sections
	Trusted block section X'11'
	Trusted block section X'12'
	Trusted block section X'12' subsections

	Trusted block section X'13'
	Trusted block section X'14'
	Trusted block section X'14' subsections

	Trusted block section X'15'

	Chapter 20. Key forms and types used in the Key Generate verb
	Generating an operational key
	Generating an importable key
	Generating an exportable key
	Examples of single-length keys in one form only
	Examples of OPIM single-length, double-length, and triple-length keys in two forms
	Examples of OPEX single-length, double-length, and triple-length keys in two forms
	Examples of IMEX single-length and double-length keys in two forms
	Examples of EXEX single-length and double-length keys in two forms

	Chapter 21. Control vectors and changing control vectors with the Control Vector Translate verb
	Control vector table
	Control-vector-base bit maps
	Key Form Bits, fff
	Specifying a control-vector-base value

	Changing control vectors with the Control Vector Translate verb
	Providing the control information for testing the control vectors
	Mask array preparation
	Selecting the key-half processing mode
	When the target key-token CV is null
	Control vector translate example

	Chapter 22. PIN formats and algorithms
	PIN notation
	PIN block formats
	PIN extraction rules
	IBM PIN algorithms
	VISA PIN algorithms

	Chapter 23. Cryptographic algorithms and processes
	Cryptographic key-verification techniques
	Master-key verification algorithms
	SHA-1 based master-key verification method
	z/OS-based master-key verification method
	SHA-256 based master-key verification method
	Asymmetric master key MDC-based verification method
	Key-token verification patterns

	CCA DES-key verification algorithm
	Encrypt zeros AES-key verification algorithm
	Encrypt zeros DES-key verification algorithm

	Modification Detection Code calculation
	Ciphering methods
	General data-encryption processes
	Single-DES and Triple-DES encryption algorithms for general data
	ANSI X3.106 Cipher Block Chaining (CBC) method
	ANSI X9.23 cipher block chaining

	Triple-DES ciphering algorithms

	MAC calculation methods
	ANSI X9.9 MAC
	ANSI X9.19 Optional Procedure 1 MAC
	EMV MAC
	ISO 16609 TDES MAC
	Keyed-hash MAC (HMAC)

	RSA key-pair generation
	Multiple decipherment and encipherment
	Multiple encipherment of single-length keys
	Multiple decipherment of single-length keys
	Multiple encipherment of double-length keys
	Multiple decipherment of double-length keys
	Multiple encipherment of triple-length keys
	Multiple decipherment of triple-length keys

	PKA92 key format and encryption process
	Formatting hashes and keys in public-key cryptography
	ANSI X9.31 hash format
	PKCS #1 hash formats

	Chapter 24. Access control points and verbs
	Chapter 25. Access control data structures
	Role structures
	Basic structure of a role
	Access control point list
	Default role contents

	Examples of the access control data structures
	Access control point list - data structure example
	Role data structure example

	Chapter 26. Using verbs and applications in PCI-HSM 2016 compliance mode
	Generating PCI-HSM 2016 compliant keys
	Impact of the PCI-HSM 2016 compliance mode on the callable verbs
	Restrictions on creation and use of PCI-HSM 2016 compliant key tokens
	Restrictions on PIN block translation operations for compliant-tagged key tokens
	Generating warning events
	Migrating applications to PCI-HSM 2016 compliance mode

	Chapter 27. Sample verb call routines
	Sample program in C
	Sample program in Java

	Chapter 28. Initial system set-up tips
	Installing and loading the cryptographic device driver
	Unloading the cryptographic device driver
	Confirming your cryptographic devices
	Checking the adapter settings
	Performance tuning
	Running secure key under a z/VM guest

	Chapter 29. CCA installation instructions
	Before you begin
	Ubuntu installation considerations
	Default installation directory
	Download and install the RPM or DEB file
	Files in the RPM or DEB
	Samples in the RPM or DEB
	Groups in the RPM or DEB
	Install and configure the RPM or DEB

	Uninstall the RPM or DEB

	Chapter 30. Coexistence of CEX6C and previous CEX*C features
	Concurrent installations
	CEX6C information

	Chapter 31. Utilities
	CCA Master Key administration: choosing the right method or tool
	The panel.exe utility
	panel.exe default syntax as of CCA 6.0
	panel.exe legacy syntax
	panel.exe functions
	Using panel.exe for key storage initialization
	Using panel.exe for key storage re-encipher when changing the master key
	Using panel.exe to show the active role and ACPs
	Using panel.exe to control ACP tracking
	Using panel.exe for verifying CCA epoch certificates
	Using panel.exe to query the adapter compliance state

	Chapter 32. Security API command and sub-command codes
	Chapter 33. openCryptoki support
	Configuring openCryptoki for CCA support
	Confirming the openCryptoki configuration file
	Starting the openCryptoki slot daemon
	Initializing the token
	How to recognize the CCA token

	Using the CCA token
	Supported mechanisms for the CCA token
	Restrictions with using the CCA library functions

	Migrating openCryptoki version 2 tokens to version 3
	Migrating to a new CCA master key
	Tracing in openCryptoki

	Chapter 34. List of abbreviations
	Part 4. Appendixes
	Appendix. Accessibility
	Notices
	Programming interface information
	Trademarks

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

